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Abstract  The paper investigates the comparative effects of several random sampling methods on the maximum 
likelihood estimates of a simple logistic regression model. The study uses simulated data (logistic populations with 
pre-defined parameter values) that used Monte Carlo methods to simulate. Sampling techniques include Simple 
Random Sampling (SRS) and six variations of Stratified Sampling where two are single-stage Stratified Sampling 
and four are choice-based (two-phase) Stratified Sampling. Parameter estimates arising under each sampling 
technique were compared using performance measures Bias, Standard Error & Percentage of models that are 
feasibly estimated. The simulation-based analysis found that choice-based sampling with proportional allocation in 
both phases is the best-suited sampling technique for parameter estimation of a simple logistic regression model. 

Keywords: Monte-Carlo simulations, random sampling, logistic regression, maximum likelihood estimates 

Cite This Article: Oshada Senaweera, Prasanna S. Haddela, and Gayan Dharmarathne, “Effects of Random 
Sampling Methods on Maximum Likelihood Estimates of a Simple Logistic Regression Model.” American 
Journal of Applied Mathematics and Statistics, vol. 9, no. 1 (2021): 28-37. doi: 10.12691/ajams-9-1-5. 

1. Introduction 

The sample size and technique to use when fitting a 
logistic model are important areas of concern. Studies 
have shown that maximum likelihood estimates (MLEs) 
are biased when the sample size is too small [1]. Also, it 
has been identified that parameter estimates of logit and 
probit models are unstable (high variation) for small 
samples [2]. Hence, studies have been conducted to find a 
suitable sample size for a logistic model. The paper [3] 
gives a formula for calculating the sample size for logistic 
regression with a small response probability and found 
that the required sample size is very sensitive to the 
distribution of predictors. Hence, diverse methods yield 
different sample sizes depending on the distribution of 
predictors. Using the formula in [3], paper [4] gives a 
sample size table for logistic models. The table assumes 
that predictors are continuous and have a joint multivariate 
normal distribution, and this table is best suited for models 
with one covariate. These studies have focused solely on 
the effect of sample size, but it is also important to study 
the rate of improvement of parameter estimates with 
sample size and the effect of sampling techniques on the 
bias and precision of parameter estimates.  

The studies [5,6,7] look into parameter estimates of the 
logistic model arising from various sampling strategies. 
These studies show that sample size and sampling strategy 

both affect the small sample bias of the maximum likelihood 
estimator and the precision of the subsequent estimates. 
All these studies use real-world data-sets [5] or data simulated 
according to real-world situations [6,7] in the experiments. 
However, none of these analyze the behavior of sampling 
techniques with different characteristics of the logistic 
populations (odds ratio, population proportion). Therefore, 
a more comprehensive look into this area is essential.  

This study uses Monte Carlo simulation methods to 
simulate multiple population data. Populations were 
generated according to predefined parameter values, and 
repeated samples from these populations were taken using 
various random sampling techniques. The sampling 
techniques used include simple random sampling and six 
variations of stratified sampling. Samples with different 
sample sizes were taken from each population using these 
sampling techniques, and logistic models were fitted for 
these samples. Parameter estimates arising under each 
sampling technique were studied with odds ratio, 
population proportion of success and sample size using 
the performance measures “bias,” “standard error,” and 
“percentage of models that are feasibly estimated.”  

The remainder of this article is structured as follows. 
Section 2 provides details regarding the theories and 
methodologies that were used in the study. The data 
simulation and sampling approaches are discussed in 
Section 3. Section 4 provides details regarding the testing 
procedures and findings of the study. The major findings 
and limitations of the study are provided in Section 5. 
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2. Methodology 

2.1. Sampling Strategies 
This study uses random sampling techniques in which 

every unit in the population has some chance of being 
selected for a sample. Further, sampling without 
replacement was used for all of the sampling techniques. 
The first sampling technique is simple random sampling, 
the easiest to understand and apply. The other sampling 
strategies used are variations of stratified random 
sampling. Both independent and dependent variables were 
used for stratification. We used both equal and 
proportional allocation methods. In equal allocation, equal 
numbers of units from each stratum are selected to fill the 
sample, and in proportional allocation, the number of units 
from each stratum selected for the sample is proportional 
to the size of the stratum. Six variations of stratified 
sampling were used in the study, two with single-stage 
stratified sampling and four with choice-based (two-stage) 
stratified sampling.  

In single-stage stratified sampling, stratification is 
performed using only independent variable: 

•  Stratify based only on independent variable using 
equal allocation. 

•  Stratify based only on independent variable using 
proportional allocation. 

Choice-based stratified sampling involves two stages of 
sampling. In the first stage, the number of cases required 
from each category of response is determined.  
Samples are taken according to the number of cases. In the 
second phase, a stratified sample is taken from the 
previous sample with the stratification variable being the 
independent variable: 

•  Use equal allocation in both the first and the second 
stages. 

•  Use equal allocation in the first stage and 
proportional allocation in the second. 

•  Use proportional allocation in the first stage and 
equal allocation in the second. 

•  Use proportional allocation in both the first and the 
second stages. 

2.2. Maximum Likelihood Estimation of a 
Logistic Regression Model 

In contrast to linear regression, logistic regression has 
no closed-form expression for the coefficient values that 
maximize the likelihood function. Therefore, an iterative 
process such as the Newton-Raphson method is used. 
Such a process begins with an initial guess and then 
revises it until it converges to a specific value. In some 
instances, the MLE does not converge. This indicates that 
the parameter estimates are not meaningful, because the 
iterative process was unable to find appropriate solutions. 
Failure to converge can occur for several reasons;  

•  Having too many independent variables and too few 
observations (cases) [8]. 

•  Multicollinearity between predictor variables [9].  
•  Separation (complete or quasi-complete) in the 

sample [10]. 

This study only considers separation, as other kinds of 
situations are not encountered. 

2.2.1. Complete Separation 
Complete separation in logistic regression occurs when 

a linear combination of the predictors yields a perfect 
prediction of the response variable. As an example, 
consider the sample in Table 1, in which Y is the response 
variable and X is the predictor variable. 

Table 1. Example of completely separated sample 

Y 0 0 0 1 1 1 1 1 1 1 1 
X 1 1 3 4 4 5 6 7 8 8 8 

 
From the example, it is clear that if X ≥ 4, then Y = 1, 

and if X < 4 then Y = 0. This is an example of complete 
separation. 

According to [10], if a sample is completely separated, 
then the MLEs are not unique and do not converge 

2.2.2. Quasi-Complete Separation  
Similar to complete separation, quasi-complete separation 

in logistic regression occurs when the outcome variable 
separates a predictor variable or a combination of 
predictor variables to some degree. As an example, 
consider the sample in Table 2, in which Y is the response 
variable and X is the predictor variable. 

Table 2. Example of a quasi-completely separated sample 

Y 0 0 0 0 1 1 1 1 1 1 1 
X 1 1 3 4 4 5 6 7 8 8 8 

 
In the above sample, if X < 4, then Y = 0, and if X > 4 

then Y = 1, but if X = 4 then Y could be zero or one. This 
overlap in the middle range of the data renders the 
separation quasi-complete. It is highly unlikely that  
quasi-complete separation will occur with truly continuous 
data. Therefore, this situation will not be encountered in 
the study, as the study used a continuous independent 
variable. Again, in this instance, the MLEs of the model 
coefficients are not unique and do not converge [10]. 

If complete or quasi-complete separation does not occur 
in the sample, then there is an overlap in the sample points. 
In this situation, the MLEs exist and are unique [10]. 

2.3. Fitting a Logistic Regression Model Using 
R Software 

This study was conducted using the statistical software 
R to fit logistic models to the derived samples. For some 
samples, warning messages occurred during the fitting of 
the logistic model. 

1. glm.fit: Algorithm Did Not Converge 
The “stats” package in R estimates parameters of a 

logistic regression model using the maximum likelihood 
method, which uses the iterative Newton-Raphson method. 
In this process, an initial value for a parameter estimate is 
guessed, and this value is then revised until the value 
converges to a specific value. If the value does not 
converge after a specified number of iterations (this 
number can be changed), then R returns the last iteration 

 



30 American Journal of Applied Mathematics and Statistics  

value as the parameter estimate with a warning message to 
that effect. 

2. glm.fit: Fitted Probabilities Numerically Zero or One 
Occurred 

Consider the simple logistic model ln (P/1−P) = β0 + 
β1·X. Here, a logistic regression model is used to calculate 
the probability of success P for a given X value. Since the 
ratio P/1−P doesn’t exist for P = 1 and P = 0, P must be 
in the interval (0, 1) for all values of X in the logistic 
model. Therefore, in a fitted model, if the estimated 
probability of success is zero or one for some (or all) X 
values, then R returns a warning message to that effect 
with the parameter estimates of the fitted model. 

2.4. Performance Measures for Comparing 
Sampling Techniques 

2.4.1. Bias and Standard Error  

Bias = |E( 𝛽̂𝛽 ) − β| and Standard Error = standard 
deviation of the sampling distribution of 𝛽̂𝛽, where β is the 
parameter, 𝛽̂𝛽 is the MLE of β and E(𝛽̂𝛽) is the expected 
value of 𝛽̂𝛽. 

2.4.2. Percentage of Models That Are Feasibly 
Estimated 

For some samples, during the fitting of a logistic model 
using R, both of the above warnings occur, and for some 
samples, only the second occurs. It was found from the 
examination of these samples that if both warnings occur, 
the sample is completely separated, and if only the second 
warning occurs, the sample is not separated, but for a large 
range of X values, the response is only one or zero. As an 
example, consider the sample in Table 3. 

Table 3. Example of a sample with one warning 

X interval (or value) No. of cases Response 
[0, 1.49] 5 0 

1.682 1 1 
1.798 1 0 

[2.032, 5.824] 23 1 
 
The X interval [2.03, 5.82] yields only the value one. 

Therefore, models fitted for this kind of sample will yield 
a fitted probability that is extremely close to one  
(e.g., values such as 0.9999999999) for X values around 
5.824. In these instances, R cannot distinguish these fitted 
probability values from one and considers the model as a 
perfect fit (i.e., P(X = 5.824) = 1). Theoretically, this 
cannot happen in a logistic model, because when P equals 
one, P/1−P goes to infinity, thereby generating a warning 
message. However, this sample has an overlap. Therefore, 
the MLEs of the logistic model do converge to a unique 
value. This study requires models that have unique 
estimates. Hence, models that result in both of the 
discussed warnings were considered as models that are not 
feasibly estimated.  

Models fitted to samples with complete separation are 
quite good at classifying observations, but inferences 
regarding population parameters from those models are to 
be avoided, because the coefficients of those models are 
large. Therefore, during the calculation of the other two 

performance measures, estimates of samples where both 
warnings occur were omitted. 

3. Design of the Study 

Because simple logistic regression was considered in 
this study, only one independent variable was considered 
when simulating population data. Populations of size 
100,000 were generated according to the simple logistic 
regression model, ln (P/1−P) = β0 + β1·X. Here, the 
independent variable (X) is considered to follow a normal 
distribution. Since normal distributions can be used to 
model a wide range of real-world data, the use of a normal 
distribution as the distribution of the independent variable 
will enable the simulated population to reflect qualities of 
a real-world logistic population.  

Values for the parameter β1 were pre-decided according 
to the required odds ratio, and the range for the 
independent variable was derived by manipulating the 
mean and standard deviation. To obtain the required 
population proportion of success (PS), each population 
was generated using trial and error, where the value of β0 
was changed until the required proportion was achieved. 
Since it is difficult to achieve an exact PS, the required 
proportions were defined as ranges. The ranges were 0.08-
0.12, 0.23-0.27, and 0.48-0.52. The reason for generating 
populations with different population proportions of 
success is to study the effect of the PS on the logistic 
regression model. Here, a high PS (PS greater than 0.6) 
was not considered. A population with a high PS will 
simply interchange the numbers of zeroes and ones of a 
population with a low PS. For example, consider two 
populations with the proportions of success of 0.2 and 0.8. 
The first population’s responses will consist of 20,000 
ones and 80,000 zeroes, and the second population’s 
responses will consist of 20,000 zeroes and 80,000 ones. 
Therefore, low proportions of success will have the same 
effect on a logistic model as high proportions of success. 

The algorithm below specifies how Population 1 was 
generated (refer to Table 4 for the parameter values of 
Population 1).  

3.1. Algorithm for Generating Population 1 

•  Generate 100,000 random numbers from a normal 
distribution with a mean of six and a standard 
deviation of one. Let these numbers be denoted by X. 

•  Designate an arbitrary value for β0 (use a pre-
decided value for β1). 

•  Calculate P values corresponding to each X value 
using P = 1/(1 + exp(β0 + β1·X)). 

•  Generate 100,000 random numbers from a Bernoulli 
distribution using the P values calculated above. Let 
these generated numbers be denoted by Y. Here, the 
generated numbers will include only zeroes and 
ones (Y is binary). 

•  Calculate the PS: PS = ∑Y/100,000. 
•  If PS is in the range 0.08-0.12, we consider the 

generated X and Y values as our population. 
Otherwise, go to step 2 and repeat this procedure 
until PS is in the range of 0.08-0.12.  
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Table 4. Details of the simulated populations 

Population Name β0 β1 
Proportion of 

success Range of X 

Population 1 6 −1.5 0.09559 1.911-10.819 
Population 2 1 −0.5 0.11238 1.911-10.819 
Population 3 −2.5 0.1 0.11838 1.911-10.819 
Population 4 −8 1 0.12001 1.911-10.819 
Population 5 −15 2 0.08921 1.911-10.819 
Population 6 7.5 −1.5 0.25329 1.911-10.819 
Population 7 9 −1.5 0.49766 1.911-10.819 
Population 8 80 −2 0.13710 9.110-98.190 

3.2. Stratification of the Independent 
Variable 

For this study, it was considered that there are four 
strata for both ranges of populations. This is a subjective 
number, as another person could decide on different 
numbers of strata. However, considering too few strata 
will result in high within-strata variation. Moreover, the 
number of strata can be increased only up to a specific 
level, as the inclusion of too many strata will reduce the 
practicality and increase the complexity of the stratified 
sampling procedure. Therefore, considering the above 
facts and the researchers’ convenience, the number of 
strata was designated as four. Table 5 and Table 6 show 
how the stratification variable was created. 

Table 5. Stratification of X when the range is 1.911-10.819 

Value of X Stratum Number 
1.911 ≤ X < 4.139 1 
4.139 ≤ X < 6.366 2 
6.366 ≤ X < 8.593 3 
8.593 ≤X< 10.819 4 

Table 6. Stratification of X when the range is 9.110-98.190 

Value of X Stratum Number 
9.11 ≤ X< 31.38 1 
31.38 ≤X< 53.65 2 
53.65 ≤X< 75.92 3 
75.92 ≤X< 98.19 4 

3.3. Summary of Sampling 
Sample sizes of 30, 60, 90, 150, 210, and 300 were 

considered for this study. For each sample size and 
population combination, 1,000 samples were taken using 
each sampling technique. For example, 1,000 samples of 
size 30 were taken from Population 1 using simple 
random sampling. This procedure was repeated for all of 
the other sampling techniques as well. Samples were also 
drawn in this manner using the seven sampling techniques 
for all of the other combinations. 

4. Results and Discussion 

MLEs typically perform well with respect to three 
performance measures for large samples. However, since 
taking large samples is not practical most of the time, 
estimates from small samples (size 30) must be analyzed 
extensively. 

Note. The following denotations will be included in 
figures. SRS: simple random sampling; STR-Equal: 
stratified sampling with equal allocation; STR-Prop: 
stratified sampling with proportional allocation; Equal-
Equal: choice-based sampling with equal allocation from 
choice and covariate; Equal-Prop: choice-based sampling 
with equal allocation from choice and proportional 
allocation from covariate; Prop-Equal: choice-based 
sampling with proportional allocation from choice and 
equal allocation from covariate; Prop-Prop: choice-based 
sampling with proportional allocation from choice and 
covariate. 

4.1. Comparison of Sampling Techniques 
with Odds Ratio 

Figure 1, Figure 2 and Figure 3 compare how the 
sampling techniques perform for various odds ratios when 
the PS is approximately 0.1, the sample size is 30, and the 
range of X is 1.911-10.819. 

 
Figure 1. Bias of β0 and β1 estimates for sampling methods with odds ratios 
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Figure 2. Standard error of β0 and β1 estimates for sampling methods with odds ratios 

 
Figure 3. Percentage of models that are feasibly estimated with odds ratios 

From Figure 1, it is clear that the choice-based 
sampling techniques other than Prop-Prop sampling yield 
biased estimates for both parameters. One-stage sampling 
and Prop-Prop sampling yield less biased estimates  
and perform virtually the same with respect to bias 
measurement. Another fact visible from it is that the 
estimates of β1 are less biased than the estimates of β0 for 
all of the sampling techniques. According to Figure 2, 
choice-based samples yield estimates with low standard 
error than that of one-stage samples. Among the choice-
based samples, the standard error values of the Equal-
Equal and Prop-Equal sample estimates are extremely low. 
Also, the estimates for β1 have lower standard errors than 
the estimates for β0 for all sampling techniques. Figure 3 
indicates that choice-based sampling outperforms one-
stage sampling with respect to the percentage of feasible 
models. When we compare the performances of one-stage 
sampling techniques with respect to the feasible model 
percentage, we see that there is no noteworthy difference 
among the three sampling techniques and that this is also 

the case for the four choice-based sampling techniques.  
When we consider all three performance measurements, 

the estimates usually perform well when the odds ratio is 
approximately one for all of the sampling techniques. 
From the figures, it seems that when the odds ratio is not 
equal to one, the estimates are more prone to 
underperform for all sampling techniques. Further, when 
the odds ratio is either low or high, the estimation 
behavior does not vary in a major manner. Consider, for 
example, the bias values derived when the odds ratios are 
0.223 and 7.389. The bias values for a particular sampling 
technique in these instances are very similar.  

4.2. Comparison of Sampling Techniques 
with Proportions of Success  

Figure 4, Figure 5 and Figure 6 compare how the 
sampling techniques perform for various proportions of 
success, when the odds ratio is 0.223, the sample size is 
30, and the range of X is 1.911-10.819.  
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Figure 4. Bias of β0 and β1 estimates for sampling techniques with proportions of success 

 
Figure 5. Standard error of β0 and β1 estimates for sampling techniques with proportions of success  

 
Figure 6. Percentage of models that are feasibly estimated with proportions of success 
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In this instance also, the behavior of the sampling 
techniques is similar as before (high bias in choice-based 
and high standard error in single staged). When consider 
all three performance measurements, we can see that 
estimates perform comparatively well when the PS is 
approximately 0.5, i.e. bias, standard error is low and 
feasible percentage high when PS is around 0.5 for all 
sampling techniques. 

Further, by considering the analysis in the above sections, 
we can infer that the performance of a sampling technique does 
not depend on the odds ratio or PS. That is, if one sampling 
technique performs better than another, this would not 
change significantly when the odds ratio or PS changes. 

4.3. Comparison of Sampling Techniques 
with Sample Sizes 

The previous analysis showed that estimates are more 
prone to underperform when the odds ratios are very low 

(or very high) or the proportions of success are very low 
(or very high). Hence, it is necessary to identify the 
sampling techniques that perform well in situations that 
might yield problematic estimates. Therefore, the best 
populations for comparing sampling techniques properly 
are Populations 1 and 8.  

Previous studies have shown that the sample size plays 
a vital role in deriving estimates that are unbiased and 
precise [1,2]. Figure 7, Figure 8 and Figure 9 compare the 
estimates derived using each sampling technique with the 
sample sizes in Population 1 (the range of X is 1.911-
10.819). 

In this situation also, choice-based techniques perform 
better than one-stage techniques with respect to the 
standard error and feasible model percentage. With respect 
to bias, one-stage techniques perform better than choice-
based techniques except for Prop-Prop sampling. Further, 
it is clear that all of the sampling techniques perform 
increasingly well with increasing sample size. 

 
Figure 7. Bias of β0 and β1 estimates for sampling techniques with the sample sizes in Population 1 

 
Figure 8. Standard error of β0 and β1 estimates for sampling techniques with the sample sizes in Population 1 
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Figure 9. Percentage of models that are feasibly estimated with the sample sizes in Population 1 

Figure 10, Figure 11 and Figure 12 give the performance of sampling techniques with the sample size for Population 8 
(range of X is 9.110-98.190). 

 
Figure 10. Bias of β0 and β1 estimates for sampling techniques with the sample sizes in Population 8 

 
Figure 11. Standard error of β0 and β1 estimates for sampling techniques with the sample sizes in Population 8 
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Figure 12. Percentage of models that are feasibly estimated with the sample sizes in Population 8 

Figure 10 - Figure 11 show that the bias and standard 
error of the estimates from all of the sampling techniques 
do not differ greatly. However, when we consider  
the percentage of feasible models, there is a clear 
difference between the sampling techniques. The sampling 
techniques that use a proportional allocation from the 
independent variable (X) together with SRS outperform 
the other sampling techniques. Sampling technique  
STR-Equal is the most underperforming sampling 
technique, whereas sampling techniques Prop-Equal and 
Equal-Equal perform better than STR-Equal.  

When we compare the performance measures of the 
sample estimates from Populations 1 and 8, we see that 
there is a visible difference. This difference is highly 
visible in estimates derived for β0 as the bias, and the 
standard error values are very high in population 8. On the 
whole, sampling techniques perform poorly with respect 
to bias and standard error even for the relatively large 
sample sizes in Population 8. This indicates that the range 
of X has a strong impact on sample estimates. 

5. Conclusion 

Based on the analysis, it was evident that choice-based 
sampling with proportional allocation in both phases is  
the best-suited sampling technique for parameter 
estimation of a simple logistic regression model. Further, 
when the range of X is not large, one-stage sampling  
is recommended over choice-based sampling. Except for 
both phase proportional allocations, other choice-based 
sampling techniques tend to yield biased estimates for 
small samples even though the standard errors of these 
estimates are comparatively low against one-stage sampling 
estimates. Further, the use of a choice-based sampling 
technique will complicate the sampling procedure; 
therefore, it is always better to use the one-stage sampling 
technique in such instances because there is no special 
advantage of using the two-stage sampling technique. In 
addition, when the range of X is large, an equal allocation 
is not recommended, as it will have a low chance of 
obtaining a feasibly estimated model. Furthermore, as the 
sample size increases, the chance of obtaining a model 

with high performing estimates increases irrespective of 
the sampling technique. Moreover, also irrespective of the 
sampling technique, it is suitable to take a large sample, if 
any of the following holds: 

•  The odds ratio is very small or very large. 
•  The population proportion is very large or very 

small. 
•  The range of X is large. 
Since the study was based on simulations, some 

limitations can be identified as follows: 
•  The generated data were not naturally generated  

in separate strata. All of the data were  
generated randomly and assigned into strata defined 
later. 

•  Only one independent variable was considered, and 
it was assumed to be normally distributed. This 
might not be the case in some practical situations. 

•  Sampling procedures of stratified sampling in the 
study are very subjective, especially the number of 
strata. 

In addition to the above, we do not adjust for sampling 
design where the sampling weights are used in the 
estimation of models. Future studies in this topic can 
further investigate this area by incorporating estimators 
that are adjusted for sampling design in the study. 
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