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Abstract  In this paper, we will deal with the problem of calculating the average velocity of a celestial object 
revolving around another celestial object in an elliptical orbit. After proving our main theorem to this effect, we will 
give some alternate forms of the formula for the average velocity, and show that this average value is in fact, 
attained at certain points of the orbit. We will conclude the paper by providing an intuitively natural and 
straightforward amendment of this formula. 
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1. Introduction 

Human awareness of planetary motions dates back to 
prehistoric times. It is well-known that, scholars from the 
Mesopotamian, Greek and Egyptian civilizations, for 
reasons ranging from scientific to spiritual to paranormal, 
tried to observe the motions of celestial objects, their 
efforts culminating in the Ptolemaic model. 

Eventually, medieval scientists, in particular, Nicolas 
Oresme (1320-1382) and Jean Buridan (1300-1361), paved 
the way to Johannes Kepler’s (1571-1630) invention of a 
system that correctly described the major aspects of the 
motions of the planets around the sun. The crucially needed 
mathematical support of the theory was later furnished by 
Sir Isaac Newton (1643-1727), mainly through his law of 
gravitation. For a more detailed discussion of this 
fascinating historic development, see Thurston [1]. 

Our principal goal in this paper is to compute the 
average velocity of a planet rotating around the sun in the 
Keplerian model. For physical and astronomical 
background Dilgan [2], Gamow [3], and Curtis [4].  

Suppose that a planet 𝑃𝑃 of mass 𝑚𝑚  is moving in an 
elliptical orbit about an object of mass 𝑀𝑀 located at tone 
of the foci of the ellipse at distance 𝑐𝑐 from the center. Let 
the semi-major and semi-minor axes of the orbit be 𝑎𝑎 and 
𝑏𝑏, respectively. Let 𝑣𝑣 be the velocity of 𝑃𝑃 when it is at a 
distance 𝑟𝑟 from 𝑀𝑀. Let the average velocity be denoted as �̅�𝑣. 

Setting the kinetic energy  

 21
2

KE mv=  

equal to the gravitational potential energy 

 GMmU
r

= −  

we get 

 21
2 2

GMm GMmmv
r a

− =  

Solving this equation for the velocity 𝑣𝑣, we obtain 

 ( )2 1v GM f r
r a

 = − = 
 

 

the so-called vis-viva equation. Here 𝐺𝐺𝑀𝑀 = 𝜇𝜇 = 4𝜋𝜋2𝑎𝑎3

𝑇𝑇2  is 
the standard gravitational parameter.  

2. The Main Theorem  

Before we state and prove our main theorem, let us 
prove a simple algebraic identity: 
Lemma 1. For any two real numbers 𝑎𝑎 and 𝑐𝑐 

 ( ) ( ) ( ) ( )
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+ −
 

Proof. Clearly, the left hand-side can be written as 
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Now for the main result we want to prove: 
Theorem 1. Suppose a planet 𝑃𝑃 of mass 𝑚𝑚 is moving in an 
elliptical orbit about an object of mass 𝑀𝑀 located at one 
of the foci of the ellipse at distance 𝑐𝑐 from the center. Let 
the semi-major and semi-minor axes of the orbit be 𝑎𝑎 and 
b, respectively. Then, the average velocity v� is given as 
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Proof. 
Our goal is to compute the average value of the 

function 𝑓𝑓(𝑟𝑟), namely the integral 

 1 2 1
2

a c

a c
v GM dr

c r a

+

−

 = − 
 ∫  

Let us first compute the indefinite integral by making 
the change of variables 
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Then,  
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Thus, our integral becomes 

 
( )

2
2

22
4

1

xa dx
ax

−
+

∫  

Since 
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integrating we obtain 
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Consequently, 
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Invoking Lemma 1, we obtain 
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and since 
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we get, 
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Using the fact that the eccentricity of an ellipse is 

 c
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one can also write 
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Recalling that 
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for −1 ≤ 𝑥𝑥 ≤ 1, we have 
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 and subsequently, 
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proving our theorem. 
Lemma 2. (An Alternate Formulation) Let 𝑅𝑅  be the 
radius of curvature of the ellipse. Then 

 2 Rv
T
π

=  

Proof. Suppose we parametrize the equation of an ellipse 
using 

 𝑥𝑥(𝑡𝑡) = 𝑏𝑏cos𝑡𝑡 
and 

 𝑦𝑦(𝑡𝑡) = 𝑎𝑎sin𝑡𝑡 
Then, using the formula 

 
( )3/22 2

''

' '

' ''

x y
R

x y y x−′

+
=  

for the radius of curvature, we get at 𝑡𝑡 = 0 
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and consequently, 
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3. Some Additional Results 
Here are some additional results of interest: 

Lemma 2. The average velocity �̅�𝑣 is the arithmetic mean 
of the maximum velocity attained at the pericenter and the 
minimum velocity attained at the apocenter. 
Proof. This follows immediately from the formulas of the 
maximum and minimum velocity [5]. Indeed, 
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Lemma 3. Every planet attains its average velocity �̅�𝑣. 
Proof. Solving the equation  
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we get that these velocities are equal whenever 
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4. A Modification of the Formula for the 
Average Velocity 

The results of the previous sections were obtained using 
the first degree of approximation to the inverse tangent 
function. If we now take two terms in the series, and use 
the approximation 
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for −1 ≤ 𝑥𝑥 ≤ 1, the equality 
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yields 
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and subsequently, 
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Implying the formula 

 
222 1a cv

T b b
π   =  −  

   
 

would yield a more accurate approximation to the average 
velocity without introducing any additional computational 
complexities. Of course, if 𝑐𝑐 ≪ 𝑏𝑏, then this second-degree 
approximation will be close to the first-degree 
approximation obtained in Section 2. 
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