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1. Introduction 

Artificial Intelligence (AI) is the branch of Computer 
Science focusing on the theory and practice of creating 
“smart machines” that are able to think, hear, talk, walk 
and even feel, like the humans do [1,2]. The term AI was 
coined by J. McCarthy in 1956, when he held in 
Dartmouth College, USA the first academic conference on 
the subject [3]. However, the effort to understand if 
machines can truly think began much earlier, even before 
the Alan Turing’s abstract “learning machine” invention 

in 1936, which has been proven capable of simulating the 
logic of any computer’s algorithm [4]. 

AI as a synthesis of ideas from mathematics, engineering, 
technology and science (see Figure 1, retrieved from [5]) 
has rapidly developed in the last 50-60 years creating a 
situation that has the potential to generate enormous 
benefits to the human society. The spectrum of AI covers 
many research areas and technologies, like knowledge 
engineering, data mining, reasoning methodologies, 
cognitive computing and modeling, machine learning, 
natural language processing and understanding, artificial 
planning and scheduling, vision and multimedia systems, 
intelligent tutoring and learning systems, etc. 

 
Figure 1. The interdisciplinary science of AI: A graphical approach 
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Since the basis of reasoning in the AI’s expert systems 
is human notions and concepts, the success of those 
systems depends upon the correspondence between human 
reasoning and their formalization. Thus, the study of 
human reasoning appears as a powerful theoretical 
framework for the development of the expert systems. 

Human reasoning is characterized by inaccuracies and 
uncertainties, which stem from the nature of humans and 
the world. In fact, none of our senses and observation 
instruments allows us to reach an absolute precision in a 
world which is based on the principle of continuity, as 
opposed to discrete values.  

Probability theory offers ideal conditions for tackling 
the cases of uncertainty which are due to randomness. 
Edwin T. Jaynes (1922-1998), Professor of Physics at the 
University of Washington, was one of the first suggesting 
in the middle of 1990’s that probability theory is a 
generalization of the bivalent logic reducing to it in the 
special case where our hypotheses are considered to be 
either absolutely true or absolutely false [6]. Many 
eminent scientists have been inspired by the ideas of 
Jaynes. Among those is the Fields medalist David 
Mumford, who believes that Probability theory and 
statistical inference are emerging now as a better 
foundation of scientific models and even as essential 
ingredients for the foundation of mathematics [7].  

In particular, the Markov Chain (MC) theory is a smart 
combination of Probability and Linear Algebra that is used 
in problems of AI to model something that is in discrete 
states, but it is not fully understood how it is evolved [8]. 

The paper at hands aims at representing human 
reasoning in general and scientific thinking in particular 
with the help of the theory of MCs. The rest of the paper is 
formulated as follows: 

 In Section 2 the mechanisms of human reasoning and 
of scientific thinking are described. In Sections 3 and 4 the 
MC models for human reasoning and scientific thinking 
respectively are developed accompanied by examples 
illustrating their applicability in real life applications. The 
article closes with the final conclusions and some hints for 
future research, presented in Section 5.  

2. Human Reasoning and Scientific 
Thinking 

Reasoning is the most important human brain operation 
that leads to creative methodologies, algorithms and 
deductions giving way to sustainable research and 
development.  

 Having a problem at hand, once the collection of the 
related linguistic information from the environment is 
completed, the human inquiry expands the field of 
understanding along different directions. In the mind 
each item concerning the phenomenon under investigation 
is labeled by a word or a set of words (statements, 
propositions). In this way the natural, environmental or 
engineering reality is divided into fragments and 
categories, which are fundamental ingredients in 
classification, analysis and deduction of conclusions.  

In the next step, for any external object human beings 
try to imagine its properties in their minds. This gives 
them the power of initializing their individual thinking 

domain with whole freedom in any direction. Imagination 
includes the setting up of a suitable hypothesis or a set of 
logical rules for the problem at hand.  

In the step of visualization humans use a variety of 
representations to defend their hypotheses including 
sketches, diagrams, charts, figures, etc. In particular, the 
geometric configuration of the objects appearing  
through imagination is the most common among those 
representations. In fact, after an object comes into 
existence vaguely in mind, it is necessary to know its 
shape, which is related to geometry. It is essential that the 
geometric configuration of the phenomenon must be 
visualized in mind in some way, even though it may be a 
simplification under a set of assumptions. This is the 
reason why geometry was developed and recognized by 
philosophers and scientists much earlier than any other 
scientific tools.  

On the basis of their hypotheses humans generate 
relevant ideas. The ideas begin to crystallize and they are 
expressed verbally by a native language to other 
individuals to get their criticisms, comments, suggestions 
and support for the betterment of the mental thinking. It is 
emphasized that, whatever are the means of reasoning, the 
arguments are expressed verbally prior to any symbolic 
abstractions. 

In conclusion the main steps of the process of human 
reasoning involve ([9], Section 4]):  
  S1 = understanding  
  S2 = perceptions (feelings through imagination) 
  S3 = sketches (design through visualization) 
  S4= ideas generation.  
The perceptions part is very important, because it 

provides complete freedom of thinking without expressing 
it to others, who can restrict the activity. The subjectivity 
is the main characteristic of the above part, but as one 
enters the sketch domain the subjectivities decrease and at 
the final stage, since the ideas are exposed to other 
individuals, the objectivity overrules becoming at least 
logical. 

Note that the first three of those steps are continuous, 
since the completion of each one of them usually needs 
some time characterized by transitions between 
hierarchically neighboring steps. For example, being at the 
step of perceptions (S2) the individual may return to S1 for 
a better understanding of the corresponding problem, 
being at S3 and having difficulties to sketch properly 
his/her perceptions, he/she may return to S2 to clarify them 
better, etc. Therefore, a graphical representation of the 
reasoning process is that shown in Figure 2. 

 
Figure 2. A graphical representation of the process of human reasoning 

Scientific thinking is obviously a subclass of human 
reasoning. The process of scientific thinking is graphically 
represented in Figure 3, retrieved from [10]. In this Figure 
a1, a2, …., an are observations of the real world that have 
been transformed, by induction, to the theory T1. Theory 
T1 was verified by deduction and additional deductive 
inferences K1, K2,…, Ks were obtained. Next, a new series 
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of observations b1, b2,…, bm follow. If some of those 
observations are not compatible to the laws of theory T1, a 
new theory T2 is formed by induction (intuitively) to 
replace/extend T1. The deductive verification of T2 is 
based on axioms partially or even completely different to 
those of theory T1 and new deductive inferences L1, L2,…, 
Lt follow. The same process could be repeated 
(observations c1, c2,…, ck , theory T3, inferences M1, 
M2,…, Mp, etc.) one or more times. In each case the new 
theory extends or rejects the previous one approaching 
more and more the absolute truth. 

 
Figure 3. The scientific method 

This procedure is known as the scientific method. The 
term was introduced in the 19th century, when significant 
terminologies appeared establishing clear boundaries 
between science and non science. However, the scientific 
method characterizes the development of science since  
at least the 17th century. Aristotle (384-322 BC) is 
recognized as the inventor of the scientific method due to 
his refined analysis of the logical implications contained 
in demonstrative discourse. The first book in the history of 
human civilization written on the basis of the principles of 
the scientific method is, according to the existing 
witnesses, the “Elements” of Euclid (365-300 BC) 
addressing the axiomatic foundation of Geometry. 

The scientific method is highly based on the Trial and 
Error procedure, a term introduced by C. Lloyd Morgan 
(1852-1936) [11]. This procedure is characterized by 
repeated attempts, which are continued until success or 
until the subject stops trying. In other words, one could 
say that scientific thinking is a synthesis of repeated 
attempts of human reasoning. Therefore, under the light of 
Figure 2, the process of scientific thinking can be 
graphically represented as it is shown in Figure 4.  

 
Figure 4. The process of scientific thinking 

In fact, when the verification of theory T1 is integrated 
in S4, the new observations b1, b2,…, bm that follow may 
be or not be compatible to the laws of theory T1. In the 
first case the process of scientific thinking remains to S4, 
whereas in the second case a new attempt starts for 
developing theory T2. This means that the process returns 
to step S1 and the same circle is repeated again, and so on.  

Sir Karl Raimund Popper (1902-1994), one of the 20th 
century’s most influential philosophers of science, 
proposed the principle of falsification to distinguish 
between science and pseudo-science. According to this 
principle a proposition can be characterized as scientific, 
if, and only if, it includes all the necessary criteria for its 
control, i.e. if, and only if, it could be falsified [12]. 
Critiques on the principle of Popper report that he used it 
to decrease the importance of induction for the scientific 
method [13]. 

It is of worth noticing that the error of inductive 
reasoning is transferred to deduction through its premises, 
which are always obtained by induction ([10], Section 3). 
Therefore, the scientific error in its final form is actually a 
deductive and not an inductive error! However, many 
philosophers consider deduction as being an infallible 
method due to the following two reasons: 
  Deduction is always a consistent method, i.e. the 

truth of its premises guarantees the truth of the 
deductive inference. 

  The existing theories (used as premises to deduction) 
are considered as being always true, which leads 
frequently to surprises.  

The Scottish philosopher David Hume (1711-1776) 
argued that, with deductive reasoning only, humans would 
be starving. Although this could not happen nowadays due 
to our past knowledge obtained with the help of induction, 
without inductive reasoning no further scientific progress 
could be achieved! 

Thus, it is crucial to find a better way than the  
Poppers’ falsification principle, to distinguish science 
from pseudo-science by assigning a degree of truth to each 
possible case. This gave us in an earlier work ([10], 
Section 5) the impulsion to apply principles of fuzzy logic 
and Bayesian probabilities for this purpose. Here, as we 
have already statedf in our Introduction, we are going to 
study human reasoning and scientific thinking with the 
help of the theory of finite MC’s. 

3. The Markov Chain Model for Human 
Reasoning 

The basic principles of the MC theory were introduced 
in 1907 by the Russian mathematician A. Markov  
(1856-1922) through his efforts of coding literal texts. 
Since then, the corresponding theory has rapidly 
developed and its importance for probabilistic reasoning 
has been recognized to the natural, social and applied 
sciences [14,15,16,17].  

A MC is defined as a stochastic process that moves in a 
sequence of steps through a set of states and has only a 
one-step memory. This means that, being in a certain state 
at a certain step, the probability of entering another (or the 
same) state in the next step (transition probability) 
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depends only on the state occupied in previous step and 
not in earlier steps (Markov property).  

However, since the application of the MC theory 
enables one to make accurate forecasts for the evolution of 
a great number of random phenomena, many authors, in 
their effort to cover as many as possible such phenomena 
using MC’s, have weakened the Markov property by 
accepting that, although the transition probability from 
one state to another depends mainly on the state occupied 
in the previous step, need not be completely independent 
from the states occupied in previous steps (e.g. see [18], 
Chapter IV, Section 12, [17] Chapter 2, pp. 33-34, etc.). 

When the set of states of a MC is finite, the chain is 
called a finite MC. For basic facts about a finite MC we 
refer to Chapters 2 and 3 of the book [17], while for more 
detailed proofs the reader may look the classical on the 
subject book [14] or any other of the many modern books 
that are available in the literature (e.g. [15,16], etc.). 

Here, we introduce a finite MC on the steps Si, i = 1, 2, 
3, 4, of human reasoning, as they have been described in 
the previous Section. Consider the probability vector  

 Pi = [p1( i ) p2( i ) p3( i ) p4( i )] 
where pk

(i) denotes the probability of the MC to be in state 
Sk at the i-th step, k=1, 2, 3, 4 and i = 0, 1, 2,.... . It is well 
known then that  

 Pi+1 = PiA, i = i = 0, 1, 2,....  (1) 
Equation (1) enables one to make short run forecasts 

for the evolution of the reasoning process (see Example 1). 
Since in our case S1 is always the starting state of the MC, 
one finds that  

 P0 = [1 0 0 0].  
 P1 = P0A = [0 1 0 0] 
 P2 = P1 A = [p21 0 p23 0]  (2) 
 P3 = P2 A = [0 p21+ p23p32 0 p23p34] 
 P4 = P3A = [p212+p21p23p32 0 p21p23+ p232 p32 p23p34 ] 
…………………………………………………. 
and so on. 

Observe also that, when the chain reaches the state S4 it 
is impossible to leave it. In other words, S4 is an 
absorbing state of the MC. Further, since it is possible 
from any state to reach the absorbing state S4, not 
necessarily in one step (see Figure 2), our MC is an 
absorbing MC (AMC) having S4 as its unique absorbing 
state. 

Denote by pij the transition probability from state Si to 
Sj, i, j = 1, 2, 3, 4. Then, with the help of Figure 2, one 
finds that the transition matrix of the MC is 
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with p21+p23 = p32+p34 = 1 (probability of the certain event). 
Applying standard results of the theory of the AMC’s, 

we bring the transition matrix A to its standard form A* 

by listing its absorbing state first and we make a partition 
of A* to sub-matrices as follows:  
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Therefore, the transition matrix of the non absorbing 
states is equal to 
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Denote by I3 the 3X3 unitary matrix. Then the determinant 
D(I3-Q)=1-p23p32-p21=p23-p23p32= =p23(1-p32)=p23p34 ≠ 0, 
therefore I3-Q is an invertible matrix. The fundamental 
matrix of the AMC is calculated by  
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with i, j = 1, 2, 3. 
It is well known that the element nij of N is equal to the 

mean number of times in state Sj before the absorption, 
when the MC starts from the state Si, where Si and Sj are 
non absorbing states. Therefore, since in our case S1 is 
always the starting state, the mean number of steps taken 
before the absorption is equal to  

 
3

23 32 23 34
1j

23 34 23 34j 1

2+p (1-p ) 2+p p
n .

p p p p
t

=
= = =∑  (3) 

The minimal value of t is equal to 3, corresponding to 
the case where we have no backward transitions between 
neighboring states (Figure 2). It becomes evident that the 
greater is the value of t, the more the difficulties during 
the reasoning process. Another indication about those 
difficulties is of course the total time spent by the 
individual during the reasoning process. 

The following example illustrates the applicability of 
the previous MC model to real conditions. 
Example 1: We want to construct a channel to run water 
by folding the two edges of a rectangular metallic leaf 
having sides of length 20 cm and 32 cm, in such a way 
that they will be perpendicular to the other parts of the leaf. 
Assuming that the flow of the water is constant, how we 
can run the maximum possible quantity of the water? 
Analysis of the problem 

Imagination: The basic thing to realize is that the 
quantity of water to run through the channel depends on 
the area of the vertical cut of the channel. 

Visualization (geometric configuration): Folding the 
two edges of the metallic leaf by length x across its longer 
side the vertical cut of the constructed channel is an 
orthogonal with sides x and 32-2x (Figure 5). 
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Figure 5. The vertical cut of the channel 

Ideas generation: The area of the orthogonal has to be 
maximized. This idea leads to the following mathematical 
manipulation: The area is equal to E(x)=x(32-2x)=32x-2x2. 
Taking the derivative E΄(x) the equation E΄(x)=32-4x=0 
gives that x=8cm. But E΄΄(x)=- 4<0, therefore E(8)=128 cm2 
is the maximum possible quantity of water to run through 
the channel. 

Assume now that at the first glance the solver did not 
understand well the statement of the problem and that he 
tried to construct the channel by curving the metallic leaf. 
As a result, the vertical cut of the leaf turned to be a 
parabola. The solver realized the complexity of the 
problem in that case and, by studying more carefully the 
problem’s statement, he understood the proper way of 
constructing the channel. However, in his next effort  
he folded the shorter side of the leaf and he found  
E(x)=x(20-2x)=20x-2x2. In that case the equation 
E΄(x)=20-4x=0 gives that x=5cm and therefore  
E(5)= 50 cm2. Finally, the solver decided to fold also the 
longer side of the leaf and by comparing the two outcomes 
he found the correct solution. 

Observe now with the help of Figure 2 that, when the 
MC reaches S2 for first time, it returns to S1. However, 
when it comes back from S1 to S2 for second time, then it 
proceeds to S3, wherefrom it returns to S2 to proceed again 

to S3. Therefore, we have that p21=
1
3

and p23=
2
3

. In the 

same way it is straightforward to check that p32= p34=
1
2

. 

Replacing those values to equation (3) one finds that t = 7 
steps.  

Also, the third of equations (2) gives that P3=[0 2
3

 0 1
3

]. 

Therefore, the probability to be in state S2 at the fourth 

step of the process is equal to p2
(3) = 2 ,

3
and so on. 

4. The Markov Chain Model for Scientific 
Thinking 

Here, we introduce a finite MC on the steps Si, i = 1, 2, 
3, 4, of scientific thinking, as they have been described in 
Section 2. With the help of Figure 4 it is straightforward 
to check that the transition matrix of this chain is equal to 
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Further, from Figure 4 it becomes evident that in this 
MC there is no absorbing state. Also it is not possible to 

go between any two states; e.g. being in state S4 it is not 
always possible to go to state S1 and through it to any 
other state. It is recalled that a MC is said to be an ergodic 
MC (EMC), if from any state we can go to any other state, 
not necessarily in one step. Therefore, the constructed 
chain is neither an AMC, nor an EMC. 

Note that, as the number of steps of an EMC tends to 
infinity (long run), the chain tends to an equilibrium 
situation, in which the probability vector Pk takes a 
constant price P = [p1 p2 …. pn], with p1+p2+p3+p4 = 1. P is 
called the limiting probability vector of the EMC. 
Therefore, equation (1) gives in this case that  

 P=PA.  (4) 
The entries of P express the probabilities of the EMC to 

be in each of its states in the long run, i.e. the importance 
(gravity) of each state of the EMC. 

In other words, only in case of an EMC one can make 
long run forecasts for the evolution of the corresponding 
situation. Consequently, one cannot make long run 
forecasts for the evolution of the scientific theories. The 
following examples from the history of science illustrate 
the importance of this remark. 

Example 2: The geocenrtic theory (Almagest) of 
Ptolemy of Alexandria (100-170), being able to predict 
satisfactorily the movements of the planets and the moon, 
was considered to be true for centuries. However, it was 
finally proved to be wrong and has been replaced by the 
heliocentric theory of Copernicus (1473-1543). The 
Copernicus’ theory was supported and enhanced a 
hundred years later by the observations/studies of Kepler 
and Galileo. But, although the idea of the earth and the 
other planets rotating around the sun has its roots at least 
to the time of the ancient Greek astronomer Aristarchus of 
Samos (310-230 B.C.), the heliocentric theory faced many 
obstacles for a long period of time, especially from the 
part of the church, before its final justification [19]. 

Example 3: Euclid created the theoretical foundation of 
the traditional Geometry on the basis of 10 axioms, which 
were used to prove all the other known on that time 
geometric propositions and theorems. The fifth of those 
axioms, stated in its present form by Proclus (412-485), 
says that from a point outside a given straight line only 
one parallel can be drawn to this line. However, this 
axiom does not have the plainness of the rest of the 
Euclid’s axioms. This gave during the centuries to many 
mathematicians the impulsion to try to prove the fifth 
axiom with the help of the other Euclid’s axioms.  

One of the latest among those mathematicians was the 
Russian Lobachevsky who, when he failed to do so, he 
decided to investigate what happens if the fifth axiom 
does not hold. Thus, replacing (on a theoretical basis) that 
axiom by the statement that AT LEAST TWO parallels 
can be drawn from the given point to the given line, he 
created the hyperbolic geometry, which is developed on a 
hyperbolic paraboloid’s (saddle’s) surface. The Riemann’s 
elliptic geometry on the surface of a sphere followed, 
which is based on the assumption that NO PARALLEL 
can be drawn from the given point to the given straight 
line. The elliptic geometry for small distances on the earth 
reduces to the traditional Euclidean geometry. 

Example 4: Approximately 50 years after the 
development of the non Euclidean geometries Einstein 
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expressed his strong belief that the Newton’s calculation 
of the gravitational force F between two masses m1 and m2 
by the formula  

 F=G 1 2
2

m m
r

 

where G stands for the gravitational constant, was not 
correct for the existing in the Universe (outside the earth) 
strong gravitational forces (general relativity theory). This 
new approach was based on the fact that, according to 
Einstein’s special theory of relativity (1905) the distance 
(r) and the time (t) are changing in a different way with 
respect to a motionless and to a moving observer.  

To support his argument Einstein introduced the 
concept of the 4-dimensional time-space and after a series 
of intensive efforts (1908-1915) he finally managed to 
prove that the geometry of this space is non Euclidean! 
For example, the non Euclidean divergence of the radius r 
of a sphere of total surface S and mass m is, according to 

Einstein’s theory, is equal to r - S
4π

= 2
Gm
3C

. 

The non Euclidean form of the time-space is physically 
explained by its distortion created by the presence of mass 
or of an equivalent amount of energy. This appears 
analogous to the distortion created by a ball of bowling on 
the level of a trampoline. 

Einstein’s theory was experimentally verified by the 
irregularity of the Hermes’ orbit around the sun although 
on that time many scientists argued that this irregularity 
was due to the existence of an unknown planet near 
Hermes or an unknown satellite of Hermes or a group of 
asteroids near the planet. However, the magnitude of the 
divergence of the light’s journey, which was calculated 
during the eclipse of the sun on May 29, 1919, was the 
definite evidence for the soundness of Einstein’s theory. 
In fact, the eclipse let some stars, which normally should 
be behind the sun, to appear besides it on the sky [20]. 

5. Conclusion 

The following conclusions can be drawn from the 
discussion performed in this work: 
  The process of human reasoning can be studied by 

developing an AMC on its steps. 
  Scientific thinking is a synthesis of repeated 

attempts of human reasoning, which is based on a 
series of observations of the real world. Therefore, 
the process of scientific thinking can be also 
represented by a MC, which however is neither an 
AMC nor an EMC. This proves mathematically that 
no long run forecasts can be made for the evolution 
of the scientific theories. 

  Examples from the history of science were 
presented illustrating the previous conclusion. 

Several other applications of AMCs and EMCs to topics 
like education, decision-making, case-based reasoning, 
management, economics, etc. have been presented in 
earlier works of the author; e.g. see [17], Chapters 2 and 3 
and the relative references contained in it, [21,22], etc. We 
plan to focus a great part of our future research too on this 
interesting subject. 
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