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Abstract  A comparative mathematical analysis of slider bearing made up of double porous layered slider 
supported by solid wall with different designed stator such as convex, parallel, exponential, inclined, and secant is 
presented in this research paper. The study includes the effect of slip velocity as suggested by Sparrow et al. [13] at 
the interface of film-porous. Effects of squeeze velocity and the oblique variable magnetic field to the lower plate are 
considered. General form of Reynolds type equation, non-dimensional squeeze film pressure and load carrying 
capacity expressions are obtained. The values of non-dimensional load carrying capacity are obtained and compared 
among various considered designs bearings. Overall, it could be concluded that compared to others, secant pad stator 
slider bearing is suggested for the superior performance of the system. 
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1. Introduction 

In a squeeze film bearing, squeeze velocity is defined as 
a squeeze action that takes- place, as bearing surfaces 
approach each other. The squeeze film lubrication plays a 
very considerable role in the field of industries such as in 
bearings, roller bearings, shaft, fluid handling systems, 
clutch plates, engines, gears, human skeletal joints,  
etc. Owing to this motivation several theoretical  
and experimental study from different perspective were 
carried out on squeeze film by numerous researchers  
such as circular disks by Moore [1], parallel surfaces by 
Gould [2], porous annular disks by Wu [3], the spherical 
bodies by Christensen [4], porous inclined slider bearing 
by Prakash and Vij [5]. With the advancement in the 
recent period, a number of researchers have studied 
various magneto-hydrodynamic (MHD) problems. 

Water-based Magnetic fluid or Ferrofluid [6] is a 
colloidal dispersion containing ferromagnetic particles. To 
prevent aggregation, each magnetic particle is thoroughly 
coated with a suitable surfactant. While applying the 
magnetic field externally, ferrofluid experiences magnetic 
body force. As a result of this characteristic, ferrofluids 
(Magnetic fluids) are useful in many applications like in 
elastic damper, in cooling and heating cycles, in high  
 

sliding speeds, in rotating shaft seals, in loudspeakers to 
reduce unwanted resonances, etc. [6,7]. With the initiation 
of ferrofluids, many researchers have worked on ferrofluid 
lubrication theory to find its application on bearing 
systems. Effects of ferrofluid on a porous inclined slider 
bearing were investigated by Agrawal [8] and found  
that such a bearing has greater performance as compared 
to the viscous porous inclined slider bearing. Patel and 
Deheri [9] studied the effect of magnetic fluid lubricant  
on the squeeze films and investigated that results of  
the bearing in the case of secant curved plate are  
slightly superior to that of exponentially curved plates. 
Using Jenkin’s model, the effects of ferrofluid on slider 
bearing having a circular convex pad stator were studied 
by Shah and Bhat [10], they concluded that film-pressure 
and load carrying capacity can be enlarged by the 
escalating the strength of the magnetic field. A 
comprehensive analysis of ferrofluid lubrication with 
some experimental studies was presented by Huang and 
Wang [11] and shown that; ferrofluids under the external 
magnetic field reduces friction and anti-wear capabilities 
over traditional lubricants. 

In an innovative analysis, Beavers and Joseph [12] put 
forward an alternative boundary condition that allows a 
non-zero tangential velocity (called slip velocity) at the 
porous surface, it was found that; the consideration of slip 
velocity affect the bearing performance extensively.  
 

mailto:katariaramesh@hotmail.com�


44 American Journal of Applied Mathematics and Statistics  

 

Under the assumptions of anisotropic permeability, slip 
velocity at the interface of the film-porous layer, the 
performance of a porous composite slider bearing was 
analyzed by Puri and Patel [14] and concluded that the 
bearing had a superior load capacity and higher friction 
than the inclined slider bearing. Ferrofluid lubricated 
convex pad porous surface slider bearing with slip and 
squeeze velocity was studied by Shah and Bhat [15]. 
Under the consideration of anisotropic permeability, slip 
and squeeze velocities, newly designed doubled porous 
layered ferrofluid lubricated axially undefined journal 
bearing was analyzed by Shah and Patel [16]. 
Comparative analysis of various designed slider bearings 
with ferrofluid lubrication was studied by Shah and 
Parsania [17] and found that slider bearing design  
with inclined or convex pad stator surfaces gave the 
greater performance to the system. Recently, mathematical 
modeling of ferrofluid based slider bearing having  
convex pad stator with double porous layers attached to 
the slider was studied by Shah and Kataria [18] and 
concluded that better dimensionless load carrying capacity 
can be obtained. Researchers [19,20] have also analyzed 
the effects of ferrofluids in their study from different 
perspectives. 

The present work attempts to investigate and evaluate 
the behaviour of non-dimensional load carrying capacity 
of various designed double porous layered slider bearings 
such as convex, parallel, exponential, inclined, and secant 
pad stator. Further, the study includes effects of slip 
velocity at the film-porous interface with squeeze velocity. 
The porous layers in the bearing are considered due to 
self-lubrication property and the flow in the porous region 
satisfies Darcy’s law. A Study concerning the motion of 
Magnetic fluid (Ferrofluid) is based on the formulation 
given by R. E. Rosensweig [6]. A general Reynolds type 
equation is derived for the above bearing designs and  
non-dimensional pressure and load-carrying capacity 
expressions are obtained and in this connection, results are 
calculated.  

2. Mathematical Modelling  

Representation of the various designed double porous 
layered slider bearings with squeeze velocity h  are 
demonstrated in Figure 1 - Figure 5.  

 
Figure 1. Double porous convex pad stator slider bearing 

 
Figure 2. Double porous parallel pad stator slider bearing 

 
Figure 3. Double porous exponential pad stator slider bearing 

 
Figure 4. Double porous inclined pad stator slider bearing 

 
Figure 5. Double porous secant pad stator slider bearing 
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As shown in Figure 1 - Figure 5, in each bearing lower 
surface is a slider of length A and is sliding in the  
x-direction with consistent velocity U and width B in the 
y-direction, B>>A. A stator represents the upper surface of 
different profiles like convex, parallel, exponential, 
inclined, and secant pads. The opening between stator and 
slider is identified as fluid-film thickness and is filled with 
water-based Magnetic fluid (Ferrofluid) lubricant.  

Film thickness h for each slider bearing is defined by 
[17] below, here 1h  and 2h  are minimum and maximum 
film thicknesses respectively. 

• For convex pad stator: 
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Hereδ : central thickness of the convex pad. 
• For parallel pad stator: 

 1 2 , 0ph h h x A= = ≤ ≤  (2) 

• For exponential pad stator:  
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• For inclined pad stator:  

 2 2 1( ) / , 0ih h h h x A x A= − − < ≤  (4) 

• For secant pad stator:  

 1
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2s
A xh h x A

A
π − = < ≤ 
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  (5) 

Two porous layers of widths d2 and d1 are backed with 
solid wall, the lower surface-slider. Porous layer of width 
d2 is attached first and then porous layer of width d1. Also, 
the stator moves normally towards the lower surface-slider 
with the consistent velocity  

 ,dhh
dt

=  (6) 

where t is time in seconds, is called squeeze  
velocity.  

Oblique variable magnetic field is applied to the lower 
surface, which vanishing at the inlet and outlet of the 
bearing as 

 2 ( ) ,H Kx A x= −   (7) 

where K is chosen to suit the dimensions of both sides of 
equation (7) which helps in getting magnetic field strength 
at ,2

Ax =  as follows [21].  

From equation (7), maximum H2 = 10− 4 K which 
implies for K = O(1010), so that H = O(103) or ( ) 3,O H ≈  
here O indicates order. 

For the film region, the basic flow equations [22] under 
the influence of magnetic field on the hydrodynamics of 
Ferrofluid or Magnetic fluid theory presented by R.E. 
Rosensweig are 

 ( ) 2
0 ( ) ,p

t
ρ η µ∂ + •∇ = −∇ + ∇ + •∇ ∂ 

q q q q M H  (8) 

 0,H∇× =  (9) 

 ,χ=M H  (10) 

 ( ) 0,∇• + =H M  (11) 

where 0,  ,  ,  ,  ,  ,  ,  pρ η µ χq M H  are density, film 
pressure, fluid viscosity, fluid velocity, free space 
permeability, magnetization vector, magnetic field vector 
and magnetic susceptibility respectively.  
And continuity equation 

 0,∇• =q  (12) 
where  

 u v w ,= + +q i j k  (13) 

here u, v, w are velocity components of film-fluid in 
directions- x, y, and z correspondingly.  

Using equations (8) to (12) and assuming standard 
hydrodynamic lubrication for the film region, lubricant 
flow in the x-direction is given by  
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Here H : the magnetic field strength. 
By slip boundary conditions [13]  
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And 

 0, ,u when z h= =  (16) 

where s: slip parameter, α: slip coefficient and k1 : 
permeability of the upper porous layer. These parameters 
depend on the characteristics of the porous material and 
independent of the lubricant properties and film thickness. 

Equation (14) becomes 
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Integrating equation (17) over the film region, gives 
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2
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Using equation (18) in the integral form of continuity 
equation for the film region 
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yields 
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as ,hz hw w V h= = = = −  which represents the effect of 
squeeze velocity in the downward z - direction and 

00 .zw w= =  
In the porous region, the components of the velocity in 

the x and z - directions as per Darcy’s law are given by 
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respectively. Where j = 1, 2 correspond to velocity 
coordinates in the porous regions of widths d1 and d2 and 
permeabilities k1 and k2 respectively. 

With the assumption of continuous flow between two 
porous layers in the z-direction, one obtains 
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Also, at solid lower surface 

 
2

0 22 2

( )1 2

0.
2

z d d

kk P H
z z

µ χ
η η

=− +

 ∂ ∂
− + = 

∂ ∂  
 (24) 

Substituting equations (21) and (22) in the continuity 
equation for the porous region  
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x z
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gives 
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Integrating equation (25) with respect to z over the 
porous layer of the width 1d , yields 
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Again, integrating equation (25) with respect to z over 
the porous layer of the width d2, gives 
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Using condition (23), equation (26) becomes  
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By equations (24), (27) and with the help of  
Morgan-Cameron approximation [21], above equation (28) 
takes the form  
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Considering continuity of the normal components of 
velocity across the film-porous interface, gives  

 0 0 .z zw w= ==  (30) 

By equation (22) at z = 0, equations (29), (30) and the 
fact 2 / 0H z∂ ∂ = , equation (20) takes the form  
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which is known as general form of Reynolds’s equation of 
the considered phenomenon. 

Introducing non-dimensional quantities 
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Non-dimensional form of equations (1) - (5): 
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Equation (31), Reynolds’s equation takes non-
dimensional form as 
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Non-dimensional form of the equation (7) is  

 2 2 (1 ).H K A X X= −  (35) 

3. Solution 

Subject to the boundary conditions  

 0, 0, 1.p when X= =  (36) 

Solving equation (33), the non-dimensional pressure p  
can be obtained as 
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and W  can be expressed as 
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4. Results and Discussion 

Simpson′s 1/3rd - rule is used in the computation of  
non-dimensional load carrying capacity W  from equation 
(38) for the following values [18] of the different  
variables.  
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For the subsequent discussion, notations used for  
non-dimensional load carrying capacity of various slider 
bearings are as follows:  

cW - convex pad stator, pW - parallel pad stator,  

eW - exponential pad stator, iW - inclined pad stator,  

sW  - secant pad stator. 
The calculated values of W are presented as below: 
Table 1 and Table 2 shows the values of ,W  for 

swapping the values of k1 and k2, for two different cases 
0h = and 0h ≠ . It is observed that when k1 > k2, in 

convex pad stator slider bearing, W  increases about  
6.35 % in both the cases 0h = and 0h ≠ as compared to k1 

< k2. When k1 < k2, W  increases about 1.76 % in 
exponential pad stator slider bearing, 1.79 % in inclined 
pad stator slider bearing, and 3.87% in secant pad stator 
slider bearing for 0h = and 0h ≠  as compared to k1 > k2. 
When 0h = , if we swap the values of k1 and k2 in parallel 
pad stator slider bearing, the values of W  remains same.  

Table 3 and Table 4 present the values of W  by 
considering two same values of k1 and k2 for two different 
cases 0h = and 0h ≠ . It is observed that when k1 = k2= 
0.0001, W  increases about 113% for convex pad stator 
slider bearing, 22% for exponential pad stator slider 
bearing, 22% for inclined pad stator slider bearing and  
18% for secant pad stator slider bearing in both the cases 
for 0h = and 0h ≠  as compared to k1 = k2 = 0.01. When 
k1 = k2 = 0.0001, W  increases about 2.46% for parallel 
pad stator slider bearing as compared to k1 = k2 = 0.01 for 

0h ≠ . 
Table 5 and Table 6 present the values of W by 

considering same widths of both the porous layers with 
respect to k1 = k2 = 0.01, assuming 0h =  and 0.h ≠  It 
shows W  is maximum when 1 0d =  and 2 0d = . But 
with the attachment of double porous layers, maximum 
W  can be obtained for small sizes of both the porous 
layers for exponential, secant and inclined pad stator slider 
bearing for 0h = , 0h ≠  and k1 = k2 = 0.01. Thus, we can 
say that for small permeability, W  increases. Also, W  
remains the same for parallel pad stator slider bearing 
when 0h = .  

Table 7 and Table 8 show W  increases for exponential, 
inclined and secant slider bearing when widths of both the 
porous layer are small. Also, for distinct decreasing values 
of d1 and d2, W  remains same for 0h = , but it increases 
for 0h ≠  in parallel pad stator slider bearing, while W
decreases for convex pad stator slider bearing for both 

0h = and 0.h ≠  

Table 9 and Table 10 present the values of W  by 
considering the same widths of both the porous layer with  
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respect to k1 = 0.0001 and k2 = 0.1 considering 0h = and 
0h ≠ . It shows W  increases for exponential, inclined and 

secant pad stator slider bearing for k1 = 0.0001, k2 = 0.1 
and 0h = , 0h ≠ . So, we can say that, when the 
permeability of upper porous layer is small as compared to 

lower porous layer then W  increases for exponential, 
inclined and secant pad stator slider bearing. For different 
widths d1 and d2, there is no change in non-dimensional 
load capacity for parallel pad stator slider bearing for 

0h = . 

Table 1. W  by swapping the values of k1 and k2 taking 0h ≠  

k1 k2 cW  pW  eW  iW  sW  

0.1 0.0001 0.1621569 0.1638404 0.1640247 0.1640291 0.1642217 

0.0001 0.1 0.1524624 0.1638419 0.1669208 0.1669700 0.1705878 

% increase in W  6.35 0.0009 1.77 1.79 3.88 

Table 2. W  by swapping the values of k1 and k2 taking 0h =  

k1 k2 cW  pW  eW  iW  sW  

0.1 0.0001 0.1620510 0.1636905 0.1638891 0.1638946 0.1641476 

0.0001 0.1 0.1523362 0.1636905 0.1667791 0.1668291 0.1705025 

% increase in W  6.38 0.000 1.76 1.79 3.87 

Table 3. W for same values of k1 and k2 considering 0h ≠  

k1 k2 cW  pW  eW  iW  sW  

0.0001 0.0001 0.3385819 0.1683898 0.2031797 0.2028627 0.1969178 

0.01 0.01 0.1592045 0.1643411 0.1661153 0.1661417 0.1664758 

% increase in W  112.67 2.46 22.31 22.10 18.28 

Table 4. W for same values of k1 and k2 considering 0h =  

k1 k2 cW  pW  eW  iW  sW  

0.0001 0.0001 0.3386675 0.1636905 0.2013517 0.2011534 0.1960181 

0.01 0.01 0.1588051 0.1636905 0.1656497 0.1656887 0.1662517 

% increase inW  113.26 0.00 21.55 21.40 17.90 

Table 5. W  for same values of d1 and d2 with k1 = k2 = 0.01 and 0h =  

d1 d2 cW  pW  eW  iW  sW  

3 3 0.1636797 0.1636905 0.1637018 0.1637021 0.1637828 

1 1 0.1636563 0.1636905 0.1637242 0.1637252 0.1639256 

0.1 0.1 0.1691361 0.1636905 0.1640055 0.1640143 0.1646607 

0.05 0.05 0.1591652 0.1636905 0.1642785 0.1642940 0.1650338 

0 0 0.1746165 0.1636905 0.1690870 0.1691025 0.1684826 

Table 6. W for same values of d1 and d2 considering k1 = k2 = 0.01 and 0h ≠  

d1 d2 cW  pW  eW  iW  sW  

3 3 0.1636824 0.1636931 0.1637044 0.1637047 0.1637850 

1 1 0.1636643 0.1636983 0.1637320 0.1637330 0.1639319 

0.1 0.1 0.1691383 0.1637671 0.1640783 0.1640867 0.1647048 

0.05 0.05 0.1592946 0.1638407 0.1644149 0.1644294 0.1651095 

0 0 0.1726714 0.1675794 0.1704452 0.1703622 0.1691509 
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Table 7. W  for same sizes of d1 and d2 taking k1 = 0.1, k2= 0.0001 and 0h =  

d1 d2 cW  pW  eW  iW  sW  

3 3 0.1636900 0.1636905 0.1636913 0.1636913 0.1636980 

1 1 0.1636889 0.1636905 0.1636928 0.1636929 0.1637120 

0.1 0.1 0.1636715 0.1636905 0.1637132 0.1637139 0.1638296 

0.05 0.05 0.1636449 0.1636905 0.1637352 0.1637366 0.16390066 

0 0 0.1670543 0.1636905 0.1654536 0.1654607 0.1652634 

Table 8. W  for same sizes of d1 and d2 with k1 = 0.1, k2 = 0.0001 and 0h ≠  

d1 d2 cW  pW  eW  iW  sW  

3 3 0.1636905 0.1636910 0.1636985 0.1636918 0.1636918 

1 1 0.1636904 0.1636921 0.1636944 0.1636944 0.1637133 

0.1 0.1 0.1636878 0.1637060 0.1637286 0.1637293 0.1638410 

0.05 0.05 0.1636803 0.1637215 0.1637655 0.1637668 0.1639210 

0 0 0.1649784 0.1674848 0.1667642 0.1666749 0.1659072 

Table 9. W  for same sizes of d1 and d2 considering k1 = 0.0001, k2 = 0.1and 0h =  

d1 d2 cW  pW  eW  iW  sW  

3 3 0.1633068 0.1636905 0.1637019 0.1637021 0.1637551 

1 1 0.1626256 0.1636905 0.1637247 0.1637253 0.1638805 

0.1 0.1 0.1584162 0.1636905 0.1640289 0.1640350 0.1652169 

0.05 0.05 0.1569106 0.1636905 0.1643601 0.1643719 0.1662550 

0 0 0.3354656 0.1636905 0.2024224 0.2021947 0.1966901 

Table 10. W  for same sizes of d1 and d2 considering k1= 0.0001, k2 = 0.1 and 0h ≠  

d1 d2 cW  pW  eW  iW  sW  

3 3 0.1633074 0.1636910 0.1637024 0.1637026 0.1637556 

1 1 0.1626272 0.1636921 0.1637262 0.1637269 0.1638819 

0.1 0.1 0.1584308 0.1637061 0.1640444 0.1640504 0.1652293 

0.05 0.05 0.1569386 0.1637215 0.1643907 0.1644025 0.1662778 

0 0 0.3355169 0.1686905 0.2043056 0.2039525 0.1976204 

Table 11. Comparative effect of conventional lubricant and magnetic fluid on W  for k1 = k2 = 0.0001 and different values of *µ and h  

 

0h =  

% 

increase in W  

for * 0µ ≠  

0h ≠  
% 

increase in 

W  

for * 0µ ≠  

* 0µ =  
(Using conventional 
lubricant or without 
using magnetic fluid 

lubricant) 
 

* 0µ ≠  
(Using magnetic 
fluid lubricant) 

* 0µ =  
(Using conventional 
lubricant or without 
using magnetic fluid 

lubricant) 

* 0µ ≠  
(Using magnetic 
fluid lubricant) 

cW  0.1749770 0.3386675 93.55% 0.1748914 0.3385819 93.59% 

pW  0.0000000 0.1636905 16.36% 0.0046993 0.1683898 3483.29% 

eW  0.0376612 0.2013517 434.64% 0.0394892 0.2031797 414.52% 

iW  0.0374629 0.2011534 436.94% 0.0391722 0.2028627 417.87% 

sW  0.0323276 0.1960181 506.35% 0.0332273 0.1969178 492.64% 

 
Thus, the maximum W for all shapes of the bearing can 

be obtained when d1= d2 =0, i.e. when there is no porous 
region on the slider for 0h =  and 0h ≠ . In general, when 
the width of porous region is small, the load capacity 
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increases, as the presence of porous layer provides an 
alternative path for the fluid-flow resulting in an increase 
in sinkage rate. 

Table 11 shows, the comparative effect of  
conventional lubricant and magnetic fluid on W  by 
considering two same values of k1 and k2 for 0h =  and 

0h ≠ . It is observed that the use of magnetic fluid as 
lubricant W increases more as compared to conventional 
lubricant. And it is found that convex pad stator slider 
bearing is having superior load-supporting capacity when 

0µ∗ ≠  as compared to 0µ∗ = . For 0h =  when 

0,µ∗ = then 0.1749770cW = and when 0,µ∗ ≠ then 
0.3386675cW = . Therefore, the increase rate of cW  is 

almost 93.55% when 0µ∗ ≠  as compared to 0µ∗ = . 

Similarly, for 0h ≠  when 0 ,µ∗ = 0.1748914cW =  and 

when 0 ,µ∗ ≠  0.3385819cW = . Therefore, the increase 

rate of W  is almost 93.59% when 0µ∗ ≠  as compared to

0µ∗ = . 
It is also observed from Table 11, that the using 

magnetic fluid as lubricant W  increases more, up to 
434.64% for exponential pad stator slider bearing,  
436.94% for inclined pad stator slider bearing and  
506.36% for secant pad stator slider bearing as compared 
to conventional lubricant for k1 = k2 =0.0001 and 0h = . 
For 0h ≠  and 0µ∗ ≠ , W  increases about 414.52% for 
exponential pad stator slider bearing, 417.87% for inclined 
pad stator slider bearing and 492.64% for secant pad  
stator slider bearing as compared to conventional  
lubricant. 

In the absence of squeeze velocity and magnetic fluid 
lubricant, model does not support any load to parallel pad 
stator slider bearing. Squeeze velocity has significant 
effect on the bearing design system. 

5. Conclusions  
We noted the following results from the analysis. 

1.  During the course of the investigation, it is 
observed that the constant magnetic field does not 
enhance W  in this model, as / 0H x∂ ∂ =  in 
equation (14). 

2.  Among all the bearing designs, secant slider bearing 
supports maximum W  for two different cases of 
permeability i.e. k1 < k2 and k1 > k2 when 0 .h =  

3.  Secant slider bearing has maximum W  than other 
bearings when k1 < k2 for 0.h ≠   

4.  Almost same behavior is obtained for exponential 
and inclined pad stator slider bearing, when k1 < k2, 
k1 > k2 and k1= k2 for 0 .h =  

5.  Among all the bearing designs, W  increases for 
both 0h =  and 0h ≠  when k1 = k2 = 0.0001 as 
compared to k1 = k2= 0.01. 

6.  W  increases when the permeability of the upper 
porous layer is small as compared to the lower 
porous layer. 

7.  Better load carrying capacity is obtained when 
widths d1 and d2 of upper and lower porous  
layers are small for exponential, inclined and  
secant pad stator slider bearing for both 0h =  and 

0h ≠ . 
Thus, for the superior performance of the system, it is 

recommended to design secant pad stator slider bearing 
when 0h = and 0.h ≠  

Nomenclature 

a  2

1

h
h  

A Bearing length (m) 
B Bearing breadth (m) 
d1, d2  Widths of the porous regions (m) 
h  Fluid film thickness (m) 
h   Non-dimensional film thickness 
h1, h2 Minimum and maximum values of h  
h   /dh dt , squeeze velocity (m/s)  
H Strength of variable magnetic field  
H  Magnetic field vector 
K  Quantity as defined in eq. (7)  

1 2,k k   Permeability of the porous regions (m2) 
M  Magnetization vector  
p  Film pressure (N / m2)  
P  Fluid pressure in the porous region (N/m2)  
q  Fluid velocity vector 
s   Slip parameter (1 / m)  
s   Non dimensional slip parameter  
t  Time (s) 
u, v, w  Components of film fluid velocity in x, y  

and z -directions (m/s) 
U  Velocity of slider (m/s) 

,j ju w   Darcy’s velocity components in the x and z - 
directions respectively 

W  Load-carrying capacity (N) 
W   Non-dimensional load-carrying apacity as 

defined in eq. (38) 
x, y, z  Cartesian co-ordinates (m) 
η   Fluid viscosity (N s / m2) 
µ0   Free space permeability (N / A2) 
α   Slip constant 
ρ   Fluid density (N s2 / m 4) 
χ   Magnetic susceptibility 
µ* Non-dimensional magnetization parameter as 

defined in eq. (32) 
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