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Abstract  Radio channel signals are heavily used tool in telecommunications. A suitable probability distribution is 
needed to model signals. Many probability distributions have been introduced for this purpose. The α-μ probability 
distribution is a general channel signal fading model that encompasses many applied important distributions as a 
special case. This distribution is also known as generalized gamma, Stacy distribution. This distribution is used to 
describe the fading mobile radio signal under a general diffuse scattering. The main advantage of this probability 
distribution is that it is flexible and mathematically tractable. Also, many other distributions can be considered as a 
special case of α-μ probability distribution. In this article we discuss the model parameters' estimation. Two new 
maximum likelihood (ML) and Psi-inverse (PI) estimators for the α-μ channel signal fading distribution have been 
proposed. Simulation study is finally conducted to evaluate the performance of the proposed estimators. Simulation 
results show that the proposed methods perform well comparable to the existing estimators. This behavior is valid 
for limited sample size; n<1000 or large sample size; n≥1000. 

Keywords: fading radio signals, α-μ distribution, Stacy distribution, gamma distribution, Erlang distribution, chi-
squared, Nakagami distribution, size-biased distributions, ML estimators 

Cite This Article: Abdel Nasser S.A.A. Hassan, Ahmed M. Gad, and Wafaa M. Ibrahim, “On the Estimation 
of the α-μ Channel Signal Fading Distribution Parameters.” American Journal of Applied Mathematics and 
Statistics, vol. 8, no. 1 (2020): 28-38. doi: 10.12691/ajams-8-1-4. 

1. Introduction 

Radio channel signals are very important tool, in the 
field of telecommunications, to monitor the quality of the 
mobile signals within a specific range. The signal spread 
within a specific medium is interrupted by absorption, 
reflection, diffraction and scattering. The channel behavior 
has to be described using a suitable probability distribution 
model. This is enable us to set-up a good communication 
system. The short term fading that is resulted from a 
multiple path environments can be modeled using several 
distributions. The α µ−  distribution channel signal fading 
(CSF) model has been introduced by [14] as a general 
short-term fading distribution. This distribution is also 
known as generalized gamma, Stacy distribution. The 
channel signal envelope is modeled as a nonlinear 
function represented by the power parameter 0α > ， and 
the parameter 0µ > is related to the number of multipath 
components forming the signal. This means that the power 
parameter α  represents the nonlinearity of the environment 
(propagation medium) and the parameter µ  is related to 
the number of multipath signal clusters. 

Reference [14] pointed out that the α µ− distribution is 
flexible and mathematically tractable. Moreover, many 
other distributions can be considered as special types of 

the α µ− distribution including Gamma distribution, Erlang 
distribution, Central Chi-squared distribution, Nakagami-m 
distribution, Exponential distribution, Weibull distribution, 
one-sided Gaussian distribution and Rayleigh distribution. 
Reference [15] discussed the relationship between the 
α µ− distribution and other usable fading models. He also 
obtained the joint statistics of two for such variates among 
some other distributional characteristics. Reference [5] 
obtained an integral expression for the moment generating 
function of the α µ−  distribution and used it to evaluate 
the bit error rate of coherent modulation techniques. 
Reference [6] mentioned that the α µ−  model assumes 
that the channel radio signal is a composition of clusters of 
multipath waves propagating in a non-homogeneous 
environment. In this case the random phases of the 
scattered waves have similar delay times and the delay 
time spreads, of different clusters, are relatively large. 
Reference [3] presented a highly accurate closed form 
density and cumulative functions for the sum of 
independent identically distributed (i.i.d), α µ−  variates. 
They presented some numerical illustrative examples. 
Reference [1] obtained the maximum likelihood (ML) 
normal equations of the η µ−  distribution parameters. 
They pointed out that many software packages can be 
used to solve these normal equations numerically. The 
asymptotic numerical estimators' variances were also 
obtained. 
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The probability density function and the cumulative 
function of sum of ratios of products and sum of products 
of independent α µ−  random variables are presented in 
[12]. Reference [2] introduced an estimator for the 

kα µ− −  distribution parameters and studied their true 
parameters' closeness. More applications can be found in 
[9], [4] and [10]. 

Now let iX  and , 1, ,iY i µ= …  be a mutually 
independent Gaussian processes corresponding to the ith 
multipath component with a zero mean and equal variance 

2.σ  Define the random variable ( )2 2
1 i iiR X Yµα
== +∑  

as the envelope of the sum of the multipath components 
with the received channel signal. Then the fading signal 
envelop R, probability density function (PDF) has the 
form; 
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be derived from the probability density function in Eq. (1). 
These include the Weibull distribution if 1,µ =  the 
Gamma if 1,α =  Nakagami-m if 2,α =  Rayleigh when 

1, 2µ α= =  and for 2α =  and 0.5,µ =  the PDF will 
be that of the one-sided Gaussian. Reference [14] derived 
the k-moment for the distribution in Eq. (1) as 
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Reference [15] illustrated that the α µ−  channel signal 
fading distribution is another form of the Stacy 
(generalized Gamma) distribution. He also obtained the 
distribution level-crossing rate, average fade duration and 
some joint distribution characteristics. Reference [3] 
proposed a highly accurate closed-form approximations 
for the sum of i.i.d α µ−  random variables PDF and CDF. 
It is worth noting here that the model in (1), can be seen as 
the probability density of the random variable v Rα=  not 
of R, as the model is presented totally in terms of .Rα  

The aim of this article is to propose two new estimators; 
the maximum likelihood (ML) and Psi-inverse (PI) 
estimators, for the α µ−  channel signal fading distribution. 
The performance of these two proposed estimators are 
discussed and compared with the existing ones through 

numerical simulations. The rest of the article is organized 
as follows. Section 2 is devoted to the estimation of the 
α µ−  channel signal fading distribution parameters. In 
section 2.1 we present two available estimation methods 
namely, the moment method (MM) and skewness 
logarithmic moment (SL) estimators. Sections 2.2 and 2.3 
are devoted to the two new proposed estimators. The first 
are the ML estimators introduced in Section 2.2. Section 
2.3 presented the second new set of estimators called the 
psi inverse (PI). In Section 3 a simulation study is 
presented to evaluate the proposed methods. Section 3.1, 
contains the small, moderate to large sample size 
performance and the very large sample size is discussed in 
Section 3.2. 

2. Model Parameters' Estimation 

Choosing the system behavioral model, up to and 
including its characteristic parameters, is the first step to 
design a controllable channel communication system.  
In this case the formula used to estimate the model 
parameters efficiently is the main challenge. This is can be 
done depending on data set. One of the oldest concepts in 
statistical science is the estimation techniques. 

2.1. The Method of Moments (MM) 
The sum of independent, possibly non-identical, 

lognormal random variables of α µ−  random variable in 
Eq. (1) are approximated by [12]. The sum of these 
lognormal random variables is used to evaluate an 
approximate MM estimators and a non-linear PDF least 
square estimators.  

Reference [2] suggested MLE for the Kα µ− −  fading 
distribution using the so called Smith spectrum sampling 
generation and solving its normal equations numerically. 
They also discussed confidence interval for the single 
parameter of such distribution.  

Reference [15] used the concept of the MM and 
numerically obtained its estimators of the two parameters 

andα µ  of the distribution in Eq. (1). Reference [14] 
started with the measurable parameter 1,k kϑ =  which is 
defined as 
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It can be easily seen that replacing 𝑘𝑘 with 𝛼𝛼 in Eq. (1) 
gives .kθ µ=  Depending on Eq. (2) the expression of kθ  
in Eq. (3) can be written as 
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The first two theoretical measurable parameters 
1 2,k kandθ θ  according to the MM concept, are equated 

with the corresponding sample counterparts. So, we have 
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and 
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where ˆ ˆm mandα µ  are the MM estimators for the 
parameters ,andα µ  respectively. The equations (5) and 
(6) are solved numerically. The values of 1 2k and k  for 

kθ  need to be chosen to conduct numerical solution.  
 Reference [8] introduced an MM estimators for the 

parameters ,andα µ  based on the logarithmic α µ−  

random variable, namely SL estimators. Assume that 
( )ln ,Y K R=  where R is the random variable in Eq. (1) 

and then based on the MM estimator ˆmα  of the 
parameter ,α  the statistic ˆ ˆN mθ α  can be estimated by 
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Also, define the estimator 
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where 1 2y , y , ..., yn  is a simple random sample of size 
n from the distribution of the random variable ( )ln ,Y R=  

and the constant ( )20 ln 10 .K =  
Using the second and third theoretical moments of the 

random variable ( )lnK R  that are obtained in equations 
(11) and (12) of [8] and Eq. (8), we have SL as follows; 
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Trigamma function and Tetragamma function respectively. 
Reference [8] solved Eq. (9) numerically for ˆSLµ  using 
the least squares method. They gave the following least 
squares approximation; 
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Using the resulted estimate of Eq. (9), they recalculated 

a new estimate for ;α  

 ( )
2

ˆ'
ˆ

ˆ
SL

SL K
ϕ µ

α
µ

=  (10) 

where 2µ̂  is the estimator of the second central 
moment of the logarithmic α µ−  random variable of Eq. 
(1), given by 
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Reference [8] conducted a numerical comparison 
between the MM estimators suggested by [14] and the 
skewness logarithmic transformation estimators. They 
reported that both the MM and SL estimators are slightly 
biased, but the SL perform better. The comparison criteria 
was the normalized mean square error (NMSE) defined by; 
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M i

i
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ζ ζ
ζ
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−
= ∑  (12) 

where ˆ , 1, 2,...,i i Mζ =  are the ith simulation trial 
estimate for the parameter ζ  and M are the simulation 
number of trails.  

 Reference [6] suggested an empirical procedure for 
estimating the parameters andα µ  using the fact that 

2
2 41 ,Sθ =  where , 1, 2,...k kθ =  is defined by Eq. (4). 

The amplitude index 4 ,S  given by 
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I

−
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where 2 ,I R=  is the intensity, R is the envelope random 

variable of Eq. (1) and .  is the ensemble average. Note 
that the equation 2 41 Sθ =  is in two unknown parameters 

,andα µ  they empirically searched for the estimates of 
,andα µ  say ˆ ˆE Eandα µ  that produce the best PDF fit 

for the data. Reference [6] based on empirical study 
proposed a third degree polynomial approximation using 
the least square technique for the relation between the 
estimated α  and the value of 40.3 1;S≤ ≤  

 3 2
1 4 4 4ˆ 17.649 39.109 27.8218 7.498S S Sα = − + − +  (14) 

and ( )1 4ˆ 1 log 10Sα =  for 4 1.S >  Using simple data set 
[6] studied the performance of the above approximations 
which produced a very close values compared to the real 
parameters. 

2.2. The New Proposed Estimators 
In this section two new estimators for the α µ−  

distribution in Eq. (1) are discussed. These estimators are 
the ML estimator and the PI estimator. The estimators are 
derived via approximation of the resulted equations, since 
these equations cannot be presented in a closed form. The 
second proposed estimator; the PI estimator, is based on 
the cumulants of the random variable in hand, R. In 
Section 3, we show that our new method PI outperform  
all other existing methods in estimating the α µ−  
distribution parameters. 

2.2.1. The Maximum Likelihood Method (ML) 
In the above the α µ−  distribution parameters' 

estimation problem is mainly handled using the MM. The 
maximum likelihood estimators (MLE's) are discussed 
below. Reference [1] discussed the ML estimators of the 
η µ−  distribution which is another channel fading 
distribution introduced by [13]. They pointed out that the 
ML estimators can be obtained using the general 
maximization technique and these estimators will have the 
general MLE’s asymptotic properties. In their simulation 
study they compared between two distribution formats 
based on the true parameter values. It can be seen from [1], 
that the derivation of the ML estimators of such 
distributions is difficult and only reachable through 
numerical methods. The ML estimators for the model in 
Eq. (1) are derived below. Also, an approximate form for 
these estimators are presented. 

Let 1 2r , r ,..., rn  be a simple random sample from the 
α µ−  distribution of Eq. (1), then the joint PDF of the 
sample is given by; 
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Where r 0, i 1, 2,..., n .i > =  Taking the natural log for 
the joint PDF above, we get 
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where ( )q E Rα α=  as in Eq. (1). The bivariate 

function in Eq. (15) is very complicated with respect to 
differentiation especially for the parameter .α  Thus using 

rough approximations for the two terms ( )q E Rα α=  and 

ln ,qα  Eq. (15) may be written as 
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Where ( )Y ln , 1,2,...,i iR i n= =  and ( ) .E Y B Y≈ =  
The above (16), may then be simplified as; 

 
( ) ( ) ( )

( ) ( )
1

, ln ln

ln ,
n

y Bi

i

L n n

n Y e α

α µ α µ µ

µ µ −

=

≈ +

− Γ + − ∑
 (17) 

Differentiating Eq. (17) with respect to the two 

unknown parameters ;andα µ  we have 
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where ˆ ˆL Landα µ  are the MLE's of the parameters 
andα µ  respectively.  
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Solving equation (19) iteratively for ˆLα  then we use 
the estimated value of ˆLα  of Eq. (19) in Eq. (18) we 
calculate .ˆLµ  

2.2.2. The Psi-Inverse (PI) Method 
Reference [7] used the cumulants of the beta random 

variable to estimate the beta distribution parameters. They 
called the method (estimators), Psi-inverse method 
(estimators). Here we use their method to estimate the 
parameters of the model in Eq. (1). Consider the random 
variable ( )Y ln R=  defined in the ML method above, 
then the moment generating function (MGF) of Y is given 
by; 
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It is known that the cumulant function (CF) of  
the random variable Y is defined as, ( ) ( ){ }ln ,Y YK t m t=  
i.e. 
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Using the first and second differentiations of ( )YK t  
with respect to t, then plug in t 0,=  we have 
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Using a random sample 1 2, r ,..., rnr  from the α µ−  
distribution of (1), calculating the random values, 

, 1, 2,...,iy i n=  and the two equations (22) and (23) we 
get 
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where Y  and 2SY  are the Y-sample mean and  
variance. 

Equation (25) gives ( )1 2 2' SYϕ ϕµ ϕ α−=  and substituting 

this in equation (24); 

 

( ) ( )
( )

( )

( )

1 2 2

1 2 2

1 2 21

1 2 2

ln ' S

ln ' S

ln ' S

ln ' S

Y

Y

n Yi

i
Y

Y

E R
Y

e

n

αϕ
ϕ

ϕ

ϕ

αϕ

ϕ
ϕ

ϕ

ϕ ϕ α
α

ϕ α

ϕ ϕ α
α

ϕ α

−

−

−=

−

    +      =  
 −
 
  
  
    +     ≈   

    
 −
 

∑  (26) 

The ( )1 .ϕ−  estimates andϕ ϕα µ  of Eq. (25) and Eq. 
(26) can be obtained by using any simple computer 
program package available for ( )1' . ,ϕ −  as the one given 
by MTLAB or R-package. 

Alternatively, the following simple approximation of 
( )1' . ,ϕ −  derived by [11] can be used, 
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3. Simulation Studies 

Two simulation studies have been conducted. The aim 
of the first simulation study is to evaluate the performance 
and applicability of the two new proposed estimators, for 
relatively small sample sizes that are common in statistical 
applications. The second simulation study compares our 
work with [8] using large sample sizes that are common in 
telecommunications. The codes for simulation are written 
using R-package. 

3.1. The First Simulation Study 
The aim of this simulation study is to assess the 

performance and applicability of the two new proposed 
estimators; the PI and the ML estimators. These two new 
estimators are compared to the existing estimators; the 
MM of [14], and the SL of [8]. Limited number of 
observations is very common in statistical applications;  
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sample size below 500 observations. So, in this first 
simulation study the focus is on these limited  
samples; 1 500.n< <  The sample sizes are chosen as  
20, 50, 100 and 500 to cover small, moderate and  
large samples. The normalized mean square errors 
(NMSE’s) as in Eq. (12) is used as a comparison criteria. 
They are obtained for each estimator. The smaller the 
Normalized mean square error (NMSE) the better the 
estimator. 
Simulation Setting 

Samples of size n are generated from the α µ−  
distribution in Eq. (1). The generation process is 
conducted using two different methods. The first method 
is to generate two mutually independent Gaussian random 
variables with mean zero and variance one; iX and

, 1, .iY i µ= …  Then, define a random draw from the α µ−  

distribution, R, as ( )2 2
1 .i iiR X Yµα
== +∑  The process is 

repeated m times to obtain the required sample size. The 
second method is to simulate a random sample of  
size n from Gamma distribution ( ),1 ,iG Gam ma µ=  

1, 2,...,i n=  and then , 1, 2,...,i iR G i nα= =  as in [8]. 
This means that the comparison study has been conducted 
twice depending on the generation method. 

The parameters µ  and α  are chosen as 0.7,1,µ =  
1.3,1.8,1.9, 4.3,5,10,15,30,50  and 0.8,1,1.1,1.5,1.6,α =  
2, 2.2, 2.5,3, 3.9. Different combinations of these 
parameters α  and µ  are used to generate Normal  
and Gamma variables. The sample sizes are chosen  
as 20,50,100 and 500n =  to cover small, and moderate 
sample size. The samples are simulated depending  
on the different combinations of the two parameters  
µ  and .α  The number of replications is fixed at  
100000 replications. For each of the 100000 replications, 
the two parameters µ  and α  are estimated using  
all four methods of estimation; the MM, the SL, the  
ML and the PI. More combinations of the parameters  
have been tried; 5,10µ =  and 1.5,α =  but the results are 
not reported because they are similar to the reported 
results. 
Simulation results 

 
Figure 1. Log Normalized mean square error (NMSE) of µ̂  and α̂  at n=20, and 100000 replications when simulating from Gaussian distribution. 

 
Figure 2. Log Normalized mean square error (NMSE) of µ̂  and α̂  at n=50, and 100000 replications when simulating from Gaussian distribution. 
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Figure 3. Log Normalized mean square error (NMSE) of µ̂  and α̂  at n=100, and 100000 replications when simulating from Gaussian distribution. 

The simulation results are shown in Figure 1 - 3 and 
and Table 1 - 8. Depending on the Normalized mean 
square error (NMSE) different estimators have been 
compared. The smaller the Normalized mean square error 
(NMSE) the better the estimator. The smallest values of 
the Normalized mean square error (NMSE) in each case 
are in bold. From the results it is obvious that the new 
proposed PI method is superior, by a significant factor for 
the two parameters, to the other three methods. The PI 
method is performing much better than the other three 
methods, followed by the MM then by ML for estimating 

µ  and by ML then the MM for estimating .α  However, 
the SL estimator of [8] performs poorly due to the  
sample size limitation, 500.n <  It is anticipated that this 
estimator will improve as the sample size increases, for 

1000.n ≥  The generation method of the variables does  
not affect performance of the results. That is the seed 
variable generation, Gaussian or Gamma, does not affect 
the estimators' performance. The simulation study also 
indicates that the general NMSE values decreased with the 
increase of the sample size. This means that as the sample 
size increases the performance of estimators gets better. 

Table 1. Normalized mean square error (NMSE) of 𝝁𝝁� and 𝜶𝜶� at n=500, and 100000 replications simulating from Gaussian distribution 

 𝜇𝜇 1 15 30 50 
𝛼𝛼 Method �̂�𝜇 𝛼𝛼� �̂�𝜇 𝛼𝛼� �̂�𝜇 𝛼𝛼� �̂�𝜇 𝛼𝛼� 

1 

MM 8.36471 0.362551 3.60697 0.21049 1.3302 0.31081 0.49361 0.4663 
SL 267.785 128.3681 9.8E+10 0.18301 7.E+15 0.31073 5.9E+13 0.4633 
ML 36.6750 0.452851 5564.89 0.39354 6529.7 0.40199 5635.27 0.4042 
PI 0.02836 0.031491 0.31966 0.15764 0.4372 0.24130 0.42180 0.2820 

2 

MM 124.125 0.832607 3.33824 0.16815 1.2469 0.29557 0.3423 0.3458 
SL 274.586 217.0968 1.1E+09 0.18316 8E+13 0.30902 6.9E+13 0.4616 
ML 36.5967 0.452596 5558.07 0.39430 2E+08 0.40703 4.5E+08 0.4271 
PI 0.58879 0.030525 2.88114 0.04674 3.4109 0.05341 3.32836 0.0522 

3 

MM 91.7316 1.585671 3.12517 0.16611 0.2206 0.19973 0.22272 0.3428 
SL 281.605 336.3533 1.1E+09 0.18316 8E+13 0.30902 6.9E+13 0.4616 
ML 36.6030 0.452834 4.7E+12 0.44140 1E+13 0.51672 2.4E+13 0.5708 
PI 2.12475 0.010433 8.50622 0.04237 9.9583 0.05033 9.84479 0.0497 

Table 2. Normalized mean square error (NMSE) of 𝝁𝝁� and 𝜶𝜶� at n=20, and 100000 replications simulating from Gamma distribution 

 𝜇𝜇 1 15 30 50 
𝛼𝛼 Method �̂�𝜇 𝛼𝛼� �̂�𝜇 𝛼𝛼� �̂�𝜇 𝛼𝛼� �̂�𝜇 𝛼𝛼� 

1 

MM 398.02 1316.86 11.51746 127 2.7232 40.726 0.92094 246.661 
SL 1.E+14 292.2162 6.8E+12 0.73 3E+14 1.378 6.16E+11 2.28 
ML 375360 0.557534 6620000 0.44 416666 0.452 1.62E+09 0.469 
PI 1.0110 598.0757 0.216666 0.33 0.2058 0.32 0.212665 0.31 

2 

MM 499.63 212.378 11.36293 204.51 2.3748 2.19 0.737176 2.665 
SL 2E+11 541.038 7.73E+11 145.36 566666 9596.35 1.75E+09 300.380 
ML 20083 0.559 1806666 0.68 7E+10 0.73 1.22E+13 0.756 
PI 1.5175 150.873 2.249553 0.01 2.1222 0.01 2.133398 0.004 

3 

MM 120.08 57.355 11.60886 1.06 2.5130 1.80 0.753845 3.698 
SL 1E+09 520.710 7.73E+10 8972.23 4E+13 31018.27 2.22E+11 44.655 
ML 110317 0.575 2.43E+13 0.80 1E+16 0.82 5.06E+14 0.828 
PI 4.5145 0.113 7.3428 0.01 6.9736 0.00 299.822 0.000 
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Table 3. Normalized mean square error (NMSE) of 𝝁𝝁� and 𝜶𝜶� at n=20, and 100000 replications simulating from Gamma distribution using non-
integer values for α and µ. 

Method 
α=1.1, µ=1.3 α=1.6, µ=1.3 α=2.2, µ=1.8 

�̂�𝜇 𝛼𝛼� �̂�𝜇 𝛼𝛼� �̂�𝜇 𝛼𝛼� 
MM 276.5705 1047.634 441.3752 240.5957 125.6602 45.29593 
SL 8818525 1.438052 1332810 1.296705 5E+08 5.507658 
ML 39198392 0.550133 27118245 0.540466 37823757 0.541258 
PI 1.542043 0.93611 2.829862 0.236036 5.50375 0.059498 

Method 
α=0.8, µ=4.3 α=3.9, µ=0.7 α=2.5, µ=1.9 

�̂�𝜇 𝛼𝛼� �̂�𝜇 𝛼𝛼� �̂�𝜇 𝛼𝛼� 
MM 498.2039 17.14023 605.8959 83.4929 95.28845 14.24005 
SL 7592426 4.408869 10383.55 0.99685 85395188 4.438051 
ML 1.14E+09 0.65136 4.43E+08 0.603757 32712704 0.555202 
PI 25.50683 0.076529 22.24618 0.09391 3.664399 0.069466 

Table 4. Normalized mean square error (NMSE) of 𝝁𝝁� and 𝜶𝜶� at n=50, and 100000 replications simulating from Gamma distribution 

 𝜇𝜇 1 15 30 50 
𝛼𝛼 Method �̂�𝜇 𝛼𝛼� �̂�𝜇 𝛼𝛼� �̂�𝜇 𝛼𝛼� �̂�𝜇 𝛼𝛼� 

1 

MM 121.17 18.47027 10.88361 127 2.7424853 40.726 0.918987 246.661 
SL 1.E+09 145.532 2.36E+17 0.73 2.216E+11 1.378 1.37E+12 2.28 
ML 155579 0.502578 131793.7 0.44 133666666 0.452 1.63E+10 0.469 
PI 0.5221 23.13945 0.261261 0.33 0.1577809 0.32 0.12425 0.31 

2 

MM 499.63 7.601 10.48987 95.41 2.234092 0.95 0.693044 1.186 
SL 2E+11 29249.055 1.17E+13 4.77 2.97E+13 4.99 3.84E+15 5.159 
ML 20083 0.503 1.78E+16 0.57 4.666E+10 0.64 1.12E+15 0.680 
PI 1.5175 0.109 2.355422 0.03 1.717 0.02 1.459747 0.011 

3 

MM 120.08 3.157 10.09518 0.35 2.353828 0.78 0.708074 1.903 
SL 1E+09 425.247 3.43E+12 2.34 8.06E+10 4.62 5.84E+17 5.859 
ML 110317 0.504 4.79E+13 0.72 1.09E+11 0.77 5.44E+12 0.783 
PI 4.5145 0.069 7.44474 0.03 5.9748066 0.01 299.822 0.005 

Table 5. Normalized mean square error (NMSE) of 𝝁𝝁� and 𝜶𝜶� at n=50, and 100000 replications simulating from Gamma distribution using non-
integer values for α and µ. 

Method 
α=1.1, µ=1.3 α=1.6, µ=1.3 α=2.2, µ=1.8 

�̂�𝜇 𝛼𝛼� �̂�𝜇 𝛼𝛼� �̂�𝜇 𝛼𝛼� 
MM 363.3865 930.2021 360.9082 250.7539 81.98651 1.940368 
SL 3095688 3.736328 30200278 3.131442 76147.12 8.821595 
ML 29743080 0.524846 34234187 0.559461 2489811 0.478868 
PI 1.097822 18.32337 3.137915 0.245365 4.707902 0.066347 

Method 
α=0.8, µ=4.3 α=3.9, µ=0.7 α=2.5, µ=1.9 

�̂�𝜇 𝛼𝛼� �̂�𝜇 𝛼𝛼� �̂�𝜇 𝛼𝛼� 
MM 30.44225 6.126682 319.6473 2.298922 76.93467 0.600999 
SL 4.91E+08 4.484801 3205.069 16.83392 342200.6 62.84481 
ML 1647324 0.448978 62068635 0.540921 990993.5 0.473275 
PI 0.321248 0.481059 10.13117 0.059549 5.990333 0.063457 

Table 6. Normalized mean square error (NMSE) of 𝝁𝝁� and 𝜶𝜶� at n=100, and 100000 replications simulating from Gamma distribution. 

 𝜇𝜇 1 15 30 50 
𝛼𝛼 Method �̂�𝜇 𝛼𝛼� �̂�𝜇 𝛼𝛼� �̂�𝜇 𝛼𝛼� �̂�𝜇 𝛼𝛼� 

1 

MM 50.02322 2.786005 9.19013 127 2.52678 40.7 0.8764 246.6 
SL 4552.653 707.5228 3.4E+19 0.73 1066666 1.37 2.E+14 2.28 
ML 20287.81 0.476596 18656.8 0.44 83955.2 0.45 4E+10 0.469 
PI 0.208247 0.216498 0.38769 0.33 0.23576 0.32 0.159 0.31 

2 

MM 499.6382 2.301 9.53033 9.49 2.10215 0.61 0.6482 0.793 
SL 2.23E+11 10312.51 8.9E+13 0.75 3.3E+10 1.32 5E+14 2.251 
ML 20083.27 0.476 2.4E+11 0.49 2563333 0.56 1E+14 0.601 
PI 1.517595 0.084 3.0782 0.05 2.15528 0.03 1.7159 0.021 

3 

MM 120.0871 1.632 8.5054 0.26 2.16951 0.53 0.6631 1.019 
SL 1.66E+09 653.520 1.4E+13 0.77 1.6E+13 1.34 3E+10 2.274 
ML 110317.1 0.476 3.16E13 0.64 1E+12 0.71 1E+16 0.736 
PI 4.514539 0.045 9.16833 0.04 7.08238 0.03 299.82 0.017 
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Table 7. Normalized mean square error (NMSE) of 𝝁𝝁� and 𝜶𝜶� at n=100, and 100000 replications simulating from Gamma distribution using non-
integer values for α and µ. 

Method 
α=1.1, µ=1.3 α=1.6, µ=1.3 α=2.2, µ=1.8 

�̂�𝜇 𝛼𝛼� �̂�𝜇 𝛼𝛼� �̂�𝜇 𝛼𝛼� 
MM 52.40374 1.923051 204.4898 2.249282 35.70785 1.620354 
SL 367.0863 0.776423 202.8599 0.780174 5.4E+08 0.680482 
ML 4429.429 0.450467 888.9694 0.463341 226739.8 0.438629 
PI 0.325413 0.181788 0.957086 0.126601 2.140547 0.077104 

Method 
α=0.8, µ=4.3 α=3.9, µ=0.7 α=2.5, µ=1.9 

�̂�𝜇 𝛼𝛼� �̂�𝜇 𝛼𝛼� �̂�𝜇 𝛼𝛼� 
MM 18.76111 1.792048 214.4723 0.998233 20.63483 0.159805 
SL 4613161 0.283859 2233.297 14.70996 164.3369 0.293215 
ML 329803 0.443901 157.6046 0.527266 237811.5 0.445787 
PI 0.289312 0.235699 6.012686 0.040923 4.417651 0.051187 

Table 8. Normalized mean square error (NMSE) of 𝝁𝝁� and 𝜶𝜶� at n=500, and 100000 replications simulating from Gamma distribution. 

 𝜇𝜇 1 15 30 50 
𝛼𝛼 Method �̂�𝜇 𝛼𝛼� �̂�𝜇 𝛼𝛼� �̂�𝜇 𝛼𝛼� �̂�𝜇 𝛼𝛼� 

1 

MM 0.49361 0.466323 3.67333 0.21173 1.3371 0.31179 0.49270 0.4600 
SL 5.9E+13 0.463397 2.6E+20 0.18535 5E+11 0.31143 4.4E+12 0.4584 
ML 5635.27 0.404207 6049.75 0.39471 6896.6 0.40311 5677.62 0.4039 
PI 0.42180 0.282001 0.33614 0.15944 0.461 0.24192 0.42241 0.2852 

2 

MM 118.310 0.788064 3.35258 0.17064 1.2521 0.29634 0.34274 0.3441 
SL 280.332 2966.876 4.8E+12 0.18587 8E+12 0.31240 9.1E+11 0.4604 
ML 36.7754 0.452925 155583 0.39423 6E+10 0.40685 7.1E+11 0.4259 
PI 0.59172 0.030668 2.91004 0.04691 3.3895 0.05320 3.33242 0.0524 

3 

MM 88.9055 1.608563 3.13893 0.16801 0.2224 0.20014 0.22246 0.3432 
SL 267.884 30.19459 2.1E+11 0.18557 1E+13 0.31198 7.2E+11 0.4628 
ML 36.6010 0.452639 1.0E+12 0.44358 1E+14 0.51901 6.4E+19 0.5705 
PI 2.12635 0.010452 8.65200 0.04327 10.223 0.05195 9.84479 0.0501 

 
To sum up, the tables and graphs show that the new Psi-

inverse estimator outperforms the other three estimators. 
This suggest that it is statistically, in case of limited 
sample sizes, reasonable to use the new estimation method, 
the Psi-inverse method, over the other three methods.  
This is due to its good performance. Moreover, the 
method superiority is not affected by the sample size. 
Hence, the new estimators provide an attractive and 
reliable alternative parameters’ estimators to the available 

traditional ones. 

3.2. The Second Simulation Study 
The aim of this simulation study is to compare the 

proposed estimators with existing estimators, in [8], in the 
case of very large samples; 1000.n ≥  Similar to the first 
simulation study the comparison criteria is the normalized 
mean square error (NMSE). 

 
Figure 4. Log Normalized mean square error (NMSE) of µ̂  and α̂  at n=1000, and 500 replications when simulating from Gamma distribution. 

 



 American Journal of Applied Mathematics and Statistics 37 

 
Figure 5. Log Normalized mean square error (NMSE) of µ̂  and α̂  at n=10000, and 500 replications when simulating from Gamma distribution. 

 
Figure 6. Log Normalized mean square error (NMSE) of µ̂  and α̂  at n=100000, and 500 replications when simulating from Gamma distribution. 

Simulation setting 
Samples are generated from the α µ−  distribution in 

Eq. (1). The samples are generated in the special case of 
gamma distribution using the setup of [8]. The objective 
of generating from gamma distribution is to mimic the 
work [8] and to utilize non-integer values for the 
parameter .µ  The same sample sizes are fixed at 1000, 
10000 and 100000; the same as in [8]. The set of 
parameters used in [8] are 0.8,1.1,1.2,1.6, 2.2,2.5,3.9α =  
and 0.7,1.3,1.8,1.9,4.3.µ =  Note that the Gaussian seed 
generation for the variable in Eq. (1), requires integer 
values for µ  which is not the case for Gamma distribution. 
The number of replications is fixed at 500 replications. 
Simulation results 

Simulation results are displayed in Figure 4-6. The 

results are reported the new estimators and the existing 
ones; namely the MM estimator and the SL estimator. It 
can be seen from the results that the PI method still 
outperform the other three methods except in few cases 
where the SL method produces better estimates for 
parameter µ  but not .α  It is also clear that whenever the 
difference between µ  and α  gets larger the SL estimator 
deteriorates. 

4. Discussions 

In telecommunications field the radio channel signals 
are very important tool. As any phenomena a model is 
needed to accommodate the behavior of radio channel 
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signals. In literature the α µ−  probability distribution has 
been introduced for this purpose. It is a general channel 
signal fading model that encompasses many applied 
important distributions as a special case. This distribution 
is also known as generalized gamma, Stacy distribution. 
Many other distributions can be considered as special 
cases of the α µ−  distribution including Gamma distribution, 
Erlang distribution, Central Chi-squared distribution, 
Nakagami-m distribution, Exponential distribution, Weibull 
distribution, one-sided Gaussian distribution and Rayleigh 
distribution. In this article we propose two methods to 
estimate the unknown parameters for the α µ−  probability 
distribution. They are the maximum likelihood (ML) and 
Psi-inverse (PI) estimators. The proposed estimators are 
compared with the MM estimator of [14] and the SL 
estimator of [8]. Depending on simulation studies the 
proposed methods perform well comparable to the existing 
estimators; the MM estimator and the SL estimator. This 
behavior is valid apart from the sample size. 
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