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Abstract  The principles of social constructivism for learning have become very popular in the recent decades for 
teaching mathematics. In the present paper a mathematical representation is created of the process of teaching 
mathematics (based on those principles) by applying an ergodic Markov chain on its steps. This enables the 
instructor to evaluate the student difficulties in the classroom and therefore to reorganize his (her) plans for teaching 
the same subject in future. A classroom application to teaching the Conic Sections to engineering students is also 
presented illustrating the usefulness of our Markov chain model in practice. 
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1. Introduction 

The process of learning is fundamental to the study of 
the human cognitive action. There are many theories and 
models designed for the description of the mechanisms of 
learning. Volumes of research have been written about it 
and many attempts have been made by psychologists, 
cognitive scientists and educators to make learning 
accessible to all in various ways.  

There are four main philosophical frameworks under 
which learning theories fall. These are: Behaviorism, 
Cognitivism, Constructivism and the Socio-cultural 
approach. Behaviorism focuses only on the objectively 
observable aspects of learning; for behaviorists learning is 
the acquisition of new behavior through conditioning. 
Cognitive theories look beyond behavior to explain brain-
based learning, while constructivism views learning as a 
process in which the learner actively constructs or builds 
new ideas and concepts. On the other hand, the socio-
cultural views for learning are based on the Vygotsky’s 
ideas [1] that knowledge is a product of culture and social 
interaction. Learning takes place when the individuals 
engage socially to talk and act about shared problems or 
interests [2]. The combination of constructivism with  
the socio-cultural ideas is known as social constructivism 
[3]. 

Mathematics teaching is intended to promote the 
learning of mathematics. But, while theories enable us to 
analyze and explain the process of learning, they rarely 
provide direct guidance or practical rules for promoting 
the teaching process.  

The application of the principles of social constructivism 
have become very popular for teaching mathematics since 
the 1980’s, when the failure of the introduction of the 
“new mathematics” to school curricula had been already 
evident to everybody ([4], Section 6). The steps of a 
typical teaching framework based on those principles 
could be considered to be the following:  
  Orientation (S1): This is the starting step which 

connects the past with the present learning 
experiences and focuses student thinking on the 
learning outcomes of the current activities. 

  Exploration (S2): In this step students explore their 
environment to create a common base of 
experiences by identifying and developing concepts, 
processes and skills. 

  Formalization (S3): In this step students explain and 
verbalize the concepts that they have been explored 
and they develop new skills and behaviors. The 
instructor has the opportunity to introduce formal terms, 
definitions and explanations for the new concepts and 
processes and to demonstrate new skills or behaviors. 

  Assimilation (S4): Here students develop a deeper 
and broader conceptual understanding and obtain 
more information about areas of interest by 
practicing on their new skills and behaviors. 

  Assessment (S5): This is the final step of the 
teaching process, where learners are encouraged to 
assess their understanding and abilities and teachers 
evaluate student skills on the new knowledge. 

Depending on the student reactions in the classroom, 
there are forward or backward transitions between the 
three intermediate steps (S2, S3, S4) of the above 
framework during the teaching process.  
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It is of worth noticing that those three steps are actually 
the Polya’s consecutive phases for teaching mathematics 
with the method of discovery [5], which is highly based on 
active learning. The last one is an idea adopted from 
Piaget, who is considered to be the forerunner of the 
constructivism, although the corresponding theory was 
formally introduced by von Clasersfeld [6]. 

The consecutive phases and the active learning are the 
first two of the Polya’s three famous axioms of learning 
[7], for which he used to say that they are not of his own 
conception, but they have been derived through the 
experience of centuries. The third axiom is the best 
motivation (a problem, a real life situation, a story, etc.), 
which is connected to the step of orientation (S1) and has 
to do with the suitable “learning situation” that has to be 
created by the instructor connecting the previous to the 
new knowledge and increasing the student interest about it. 

The objective of the paper at hands is to create a 
mathematical representation of the process of teaching 
mathematics by applying an ergodic Markov chain on the 
steps of the previous teaching framework. The rest of the 
paper is formulated as follows: In Section 2 the necessary 
for our purposes information from the theory of ergodic 
Markov chains is presented. In Section 3 the Markov 
chain model is developed and through it some measures 
are obtained for evaluating the student difficulties in the 
classroom during the teaching process. An application of 
the model is presented in Section 4 and the paper closes 
with the conclusions and some hints for future research 
that are stated in Section 5. 

2. Ergodic Markov Chains 

It is recalled that a Markov chain (MC) is a stochastic 
process that moves in a sequence of steps (phases) through 
a set of states and has a one-step memory. In other words, 
the probability of entering a certain state in a certain step 
depends on the state occupied in the previous step and not 
in earlier steps. This is known as the Markov property. 
However, for being able to model as many real life 
situations as possible by using MCs, one could accept in 
practice that the probability of entering a certain state  
in a certain step, although it may not be completely 
independent of previous steps, it mainly depends on the 
state occupied in the previous step [8].  

When the set of states of a MC is a finite set, then we 
speak about a finite MC. Let us consider a finite MC with 
n states, say S1, S2, …, Sn, where n is a non negative 
integer, n ≥ 2. Denote by pij the transition probability from 
state Si to state Sj , i, j = 1, 2,…, n ; then the matrix A= [pij] 
is called the transition matrix of the MC. Since the 
transition from a state to anyone of the other states 
(including its self) is the certain event, we have that  

 1 2 ..  1, 1,  2,  ,  .i i inp p p for i n+ +… + = = …  (1) 

The row-matrix Pk = [p1
(k) p2

(k)… pn
(k)], known as the 

probability vector of the MC, gives the probabilities pi
(k) 

for the MC to be in state i at step k , for i = 1, 2,…., n and 
k = 0, 1, 2,…. Obviously we have again that  

 ( )
1

( ( )
2

)  .  1.k k k
np p p+ + … + =  (2) 

It is well known ([9], Chapter 2, Proposition 1) that 
Pk+1= Pk A (3), for all non negative integers k. Therefore a 
straightforward induction on k gives that  

 0 k
kP P A=  (3) 

for all integers k ≥  1. 
Formula (4) enables one to make short run forecasts for 

the evolution of the various situations that can be 
represented by a finite MC. 

In practical applications we usually distinguish between 
two types of finite MCs, the absorbing and the ergodic 
ones. In recent works we had the opportunity to apply the 
theory of the absorbing MCs to problem-solving [10] and 
to the Bloom’s taxonomy for learning [11]. Here we are 
going to apply the theory of ergodic MCs for representing 
the process of teaching mathematics. 

A MC is said to be an ergodic MC (EMC), if it is 
possible to go between any two states, not necessarily  
in one step. It is well known ([12], Theorem 5.1.1)  
that, as the number of its steps tends to infinity  
(long run), an EMC tends to an equilibrium situation, in 
which the probability vector Pk takes a constant price  
P = [p1 p2 …. pn], called the limiting probability vector of 
the EMC.  

Therefore, as a direct consequence of equation (3), the 
equilibrium situation is characterized by the equation  

 P PA=  (4) 
with p1+ p2+ ….+ pn = 1.  

The entries of P express the probabilities of the EMC to 
be in each of its states in the long run, or in other words 
the importance (gravity) of each state of the EMC. 

Let us now demote with mij the mean number of times 
in state Si between to successive occurrences of the state 
Sj, i, j = 1, 2, …., n. It is well known then that  

 i
ij

j
m

p
p

=  (5) 

where Pi and Pj are the corresponding limiting 
probabilities ([12], Theorem 6.2.3). 

3. The EMC Model  

We introduce a finite MC with states the steps S1,  
S2, S3, S4 and S5 of the teaching framework described  
in our introduction. It is assumed that, when the  
teaching process of a certain mathematical topic is 
finished, then the instructor begins the teaching of  
a new topic. This means that the MC moves from state  
S5 back to its starting state S1 and the same process is 
repeated. Therefore, its flow-diagram is that shown in 
Figure 1.  

 
Figure 1. The flow diagram of the MC  

From Figure 1 it becomes evident that we have an EMC 
with transition matrix 
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with p32 + p34 = p43 + p45 = 1.  
Therefore, equation (5) gives that 
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Consequently it turns out that 
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, , ,
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= =
 (6) 

Adding by members the first four of the equations (6) 
one finds that 
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Therefore, the fifth of the equations (6) is equivalent to 
the rest of them.  

Consider now the linear system L of the first four of 
equations (6) and of the equation p1+p2+ p3+ p4+ p5 = 1. 
It is straightforward to check that the determinant of L is 
equal to 
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Therefore, by the Cramer’s rule one finds that 
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In the same way one finds that 
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Furthermore, since S1 is the starting state of the EMC, 
with the help of equation (6) it becomes evident that the sum  
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gives the mean number of steps of the EMC between two 
successive occurrences of the state S5, i.e. the mean 
number of steps for the completion of the process of 
teaching a subject matter in the classroom. 

It becomes also evident that the bigger is m, the more 
the student difficulties in the classroom during the 
teaching process. Another factor of the student difficulties 
is the total time spent for the completion of the teaching 
process. However, the time is usually fixed in a formal 
teaching procedure in the classroom, which means that in 
this case m is the unique factor measuring the student 
difficulties. 

4. A Classroom Application 

The following application took place recently at the 
Graduate Technological Educational Institute of Western 
Greece, when the Conic Sections were taught to a group 
of engineering students. Five teaching hours were spent in 
total on the subject for teaching the circle, the ellipse, the 
parabola, the hyperbola and the general equation of the 
Conic Sections. At the end of the teaching process, where 
the teaching framework of our introduction based on the 
principles of social constructivism was followed, a 
number of exercises and problems analogous to those 
solved in the classroom were given to students on the 
purpose of checking at home their understanding of the 
subject. A week later a written test was performed in the 
classroom enabling the instructor to assess the student progress. 

Another important thing remaining for the instructor 
was to evaluate the student difficulties during the teaching 
process, which could help him in reorganizing properly 
his plans for teaching the same subject in future. This was 
succeeded with the help of the above developed EMC 
representation of the teaching process in the following 
simple way: 

The instructor noticed that the student reactions during 
the teaching process for Conic Sections led to 10 in total 
transitions of the discussion from state S3 (formalization) 
back to state S2 (exploration), which gives a mean number 
of 2 transitions per teaching hour. Therefore, since from 
state S2 the chain moves always to S3 (Figure 1), we have 
a mean number of 3 transitions from S2 to S3 per teaching 
hour. The instructor also counted 15 transitions from S4 
(assimilation) back to S3, i.e. a mean number of 3 
transitions per teaching hour. . Therefore, since from state 
S3 the chain moves always to state S4 (Figure 1), we have 
a mean number of 4 transitions from S3 to S4 per teaching 
hour. Consequently, we had a mean number of 3+3 = 6 in 
total “arrivals” to S3, 2 “departures” from S3 to S2 and 4 

“departures” from S3 to S4. Therefore p32 =
2
6

 and p34 =
4
6

. 

In the same way one finds that p43 =
3
4

 and p45 = 1
4

. 
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Replacing the above values of the transition 

probabilities to equation (7) one finds that p5=p1 =
1

15
. 

Also from equations (8) it turns out that p2 =
1
5

, p3 =
2
5

and 

P4 =
4

15
. Therefore, the state of formalization (S3) is the 

state with the greatest gravity, which means in our case 
that students faced the greatest difficulties in that state of 
the teaching process. 

Furthermore, equation (9) gives for p5=
1

15
 that m=14, 

which is equal to the mean number of steps for the 
completion of the teaching process in each teaching hour. 
Consequently, since the minimal number of steps for the 
completion of the teaching process is 4 (when no 
backward transitions exist), the students faced significant 
difficulties during the teaching process. Therefore the 
instructor should find ways to improve his teaching 
procedure for the same subject in future.  

5. Conclusion 

The theory of MCs, being a smart combination of 
Linear Algebra and Probability, offers ideal conditions for 
the study and mathematical modelling of a certain kind of 
situations depending on random variables [12,13,14,15]. 
In the paper at hands a mathematical representation of the 
process of teaching mathematics, based on the principles 
of social constructivism for learning, was developed with 
the help of the theory of EMCs enabling the instructor to 
evaluate the student difficulties during the teaching 
process. This is very useful for reorganizing his (her) 
plans for teaching the same subject in future. An 
application of that representation was also presented to 
teaching the Conic Sections to engineering students. 

Although the development of the EMC model was 
proved to be quite laborious requiring the calculation of 6 
in total determinants of fifth order, its final application is 
very simple. The only thing needed for this purpose is the 

calculation by the instructor of the transitions of the EMC 
from S3 back to S2 and from S4 back to S3.  

Several other applications of MCs to education have 
been attempted by the present author in earlier works (e.g. 
see Chapters 2 and 3 of the book [9]) and it is hoped that 
this research could be continued in future. 
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