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1. Introduction

The engineers used the Partially accelerated life tests
(PALTSs) successfully to estimate the acceleration factor
and thus extrapolating the accelerated data to normal
conditions. In a PALT, items are tested at both normal
and accelerated conditions. There are three Types of
PALTS, these Types are step-stress, progressive-stress and
constant-stress. Such testing conducted under stresses is
called accelerated life test (ALT) or partially accelerated
life test (PALT). In ALT, the units are put under stresses
to get more failures in a short time. The main assumption
in ALT is that the mathematical model relating the
lifetime of the unit and the stress is known or can be
assumed. In some cases, such model is neither known nor
assumed. That is, ALT data cannot be extrapolated to
normal use condition. So, in such cases, PALT is a more
suitable test to be used to estimate the statistical model
parameters.

In a SS-PALT, test unit starts at normal use condition
for a specified time. If it does not fail at that time, it is
putted under stress. Stress is repeatedly increased until the
test unit fails or the test is terminated based on a certain
censoring scheme. As indicated by [1], the step-stress
method can reduce the testing time and save a lot of
manpower, material sources and money. Specifically,
SS-PALT should be used for reliability analysis to save
time and money especially when the test units are with

high reliability and the mathematical model indicated
above is unknown or cannot be assumed Partially
accelerated life tests (PALT) have been studied by several
authors under step-stress scheme. For more details, see
[2-16]. It is noted that no studies have been made on the
step-stress PALT under progressive censoring. In this
paper, we will combine progressive censoring and
step-stress PALT to develop a step-stress PALT
with Progressively Type-1l Censored Data using the
exponential distribution as a lifetime model.

When the experimenter does not observe the lifetimes
of all test units the censored sampling arises in a life test.
There are two censoring schemes, Type-l censoring and
Type-Il censoring. Both of these two censoring schemes
do not allow for units to be removed from the test at the
points other than the final termination point. This
allowance may be desirable when a compromise between
reduced the time of experimentation and the observation
of at least some extreme lifetimes is sought. Progressively
censored sampling allows to the experimenter to save time
and cost. The most popular one is the progressive type-I1
censoring scheme and it can be briefly described as
follows. Suppose n identical units are put on a life testing
experiment. The integer k < n is prefixed, and ry, ..., reare
k prefixed non-negative integers such that Y% ;r; + k =
n.r,; of the surviving units are randomly selected and
removed from the test. Similarly, at the time of the second
failure, r, units are chosen randomly from the remaining
n—1;—2 units and they are removed, and so on. This
experiment terminates when the m™ failure occurs at time
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tam), the remaining surviving units r,, =n—m — 1y —
Ty — -+ — Irpy_q are all removed from the test.

Extensive work has been done on various aspects of
different progressive censoring schemes. [17] and [18]
considered the progressive Type-Il censoring scheme with
fixed r4, 75, ..., T, But in some reliability experiments,
the number of removals cannot be considered to be fixed.
[19] and [20] considered progressive censoring with
random (binomial) removals to estimate the unknown
parameters of Weibull and Gompertz distribution using
ordinary life testing. [21] used progressively Type-Il
censored data with binomial removals to estimate the
parameters of exponential reliability model. [22] discuss
step-stress partially-accelerated life test under progressive
Type-11 censoring with random removals.

The removals from the test are assumed to have
binomial distributions. The lifetimes of the test units are
considered to be exponential distributed. Recently, [23]
provided Step Stress Partially Accelerated Life Test under
Progressive Type-Il Censored Data with Random
Removal for Gompertz Distribution and the removals
from the test are assumed to have binomial and uniform
distributions. Also, [24] introduced the same on Frechet
Distribution.

In this paper, we will use SS-PAL under progressive
Type-1l censoring with random removals. The removals
from the test are assumed to have binomial and uniform
distributions. The lifetimes of the test units are considered
to be Inverse Lomax distributed. Also, we will determine
the optimal stress change time which minimizes the

generalized asymptotic variance of the MLE of parameters.

Section 2 presents the Inverse Lomax distribution and the
assumptions of the partially accelerated model. Estimation
of model parameters is given in Section 3; in Section 4
and 5 simulation study results and conclusion are given.

2. Inverse Lomax Distribution

The Lomax or Pareto Il (the shifted Pareto) distribution
was proposed in [25]. This distribution has found wide
applications especially in analysis of the business failure
life time data, income and wealth inequality, size of cities,
actuarial science, medical and biological sciences,
engineering, lifetime and reliability modeling. In lifetime,
the Lomax model belongs to the family of decreasing
failure rate in [26].

The Inverse Lomax distribution (ILD) belongs to
inverted family of distributions and found to be
very flexible to analyze the situation where the
non-monotonicity of the failure rate has been realized in
[27]. If a random variable Y has Lomax distribution, then

x:E has an Inverse Lomax distribution (ILD) [28].
y

(ILD) has an application in stochastic modeling of
decreasing failure rate life components. Like other
distributions belonging to the family of generalized Beta
distribution, the (ILD) also has application in economics
and actuarial sciences [29]. (ILD) was implemented on
geophysical databases [30] on the sizes of land fires in the
California state. [31], carried out research work regarding

the statistical inference and Prediction on (ILD) through
Bayesian inferences. [32] considered the (ILD) to possess
the Lorenz ordering relationship between ordered statistics.

The probability density function (PDF) and the

cumulative distribution function (CDF) for (ILD)
respectively are as follows:
—-a-1
t0)=2(1:2]" x>0a6>0. (1
X2 X
9 -
F(x):(l+—j x>0,a,0>0. @)
X

3. Model and Assumptions

The following assumptions are used throughout the

paper:
1. nidentical and independent units are put on the life
test.
2. The lifetime of each unit has an exponential
distribution.

3. The test is terminated at the m" failure, where m is
prefixed (m < n).

4. Each of the n units is first run under normal use
condition. If it does not fail or remove from the test
by a pre-specified time t. it is put under accelerated
condition (stress).

5. At the i" failure a random number of the surviving
units, R;,i =1,2,..m —1, are randomly selected
and removed from the test. Finally, at the m™ failure
the remaining surviving units R, =n—m —
Ym 1 R;are all removed from the test and the test is
terminated.

6. The lifetime, say X, of a unit under SS-PALT can
be rewritten as

T if T<r

X = T-7
T+

if T>7

In this paper, we will have assumed that, probability
density function (PDF) of X is given by

—a-1
fl(x):a—e(l+gj O<x<rt
X

(3
alpf

[1+ 0 j_a_lx>r
(r+B(x-7))° L (r+B(x-7))

In addition, the survival functions (SF) under normal
and accelerate use conditions respectively is given by

fy(x)=

Sl(x):l—(l+§j_a,0<x<r. @

And
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4. Estimation of Parameters

4.1. Parameter Estimation with the Binomial
Removals

The number of units removed from the test at each
failure time follows a binomial distribution and any
individual unit being removed is independent of others but
with the same probability p. that is, R;~bino(n — m, p)
and for i =1,2,..3 , R;~bino (n —m — Z}’;l?} ,p) and
T =N —M—T] =Ty — " —Tp_q.

Let (x;, 1, ug;, Uy),i = 1,2,.., m, denote the observation
obtained form a progressively Type-1l censored sample
with random removals in a SS-PALT. Herex;) < ... <
Xm)- Given the pre-determined  number  of
removals R = (Ry = 1y,..,R,,_1 = m_1), the conditional

likelihood function of the observations
x ={(y,r,uu), i =1,2,..,m} takes the following
form
Ly (%, @, B, Ui, Ugi|R =)
m ugj ui (6)
-] fsos 0| futtsoon ™.
i=1

From (1), (2) and (3) is inserted in (6) and simplify, we
get

Ly (Y, @, B, i, UpiIR =)

o 0] o

11

r qu2i
a 6p

0 —-a-1
(T+,B(X—z'))2 [:H (T+IB(X_7))J

p -a
_ 1{“<r+ﬂ<x—r>)]

1 ifx;<t 0 ifx; <t
Where uy; ‘{0 if x, > 7 1% = {1 ifx, >
And 2:1;11 uq; + 2;121 Uz = .
The number of units removed at each failure time
follows a binomial distribution such that

p(r =)= " o pr

andfori=2,3,..,
P(Ri=hRiy=r1..Ri=h)

[n m— Z _11] e ilrj | ®
j=

n—m
n

m-—1

At the parameter k is known, the likelihood of the
sample of size n is given as

L(x,a,B,p) =L (X, By, uyR=r)P(R=r) (9)

Where,
P(R = r) = P(Rl = I"l, R2 = r21--'! Rm—l = rm—l)
= P(Rm—l =Mm-1Rm2=Tm2-Ry = rl)
X P(Rm_z = I’m_lem_g =Tm-3: Rl = rl)
x...P(Ry=1|Ry =1)P(Ry =1).
That is,
mz—l
f
P(R=r)= (n- m) i=
(n m-Yy" )'H (10)

m-1
(1 p)™-D(-m)= X (m-i)s).

i=1

The log-likelihood  function
l(x;, a, B, p) can be written as follows:

I(j,0.B,p)=INLy (X, @B)+INP(R=r). (1D

InL(x;,a, B, p) =

First partial derivatives are derived to obtain
the estimate of the parameters «, 6 and acceleration factor
B. The log likelihood which is associated with (10) is
given

I(xi,a 0,B,p) =mina+min®+myInp

25 Inx; ~(a+L ZIn[HXi]

i=1 1

+Zr, In[l (1+—j_a]—22'”(”" -7)

mo 0
—(a+1)§ln(1+—T+B(Xi_T)J
mzIll—9 ﬂllm_1
S -[uﬂ.a(xi_f»J e

+Inn(1—p)|:(m -1)(n-m)-

(n—m)!
(n m— 2_1 ,)H

The following likelihood equations are obtained by
equating the partial derivatives of I(x;, a, 0, B,p) with
respect to a, 6, B and p to zero:

W;‘.Zi'”[“_.j Z'"[“”ﬂ(gx"f)J

0 0
" riln(1+J n riln(1+] (13)
+21: X; +22: t+B(% 1) o

=1 (1+6j R [1+0 j -1
Xi T+ﬂ(xi—T)

Where, ¢ =
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a m ! 1
LT (a+1 .
< i

(% +9){(1-+Zja —1}

(14)

> (v + A ‘fw){(ﬁﬂﬂ&_fj_l}
=0

o _mp < %i-T
B B 2Z{r+ﬂ(xi—r)}

i=1

+(a+1)x 5 bi 0
(a+) Hz[(“ﬂ(xi—f))(”ﬁ(xi_T)+6J

i=1
(15)
_aﬁmé i (x —7)(r+B(x-7) " _
i=1 17 0
(H o+ B(% —T)H(“ v+ (% —T)] l}
=0
a_ S5 (meeem)- S mow)

op p 1-p
From Equation (16), p is estimated as follow
z.mflr-
p= i=1 | . an

m-1 .
(m=1)(n-m)=2 (m=i-1)(r)

There is no closed-from solution to this system of
equations (13-15), so we will solve for @ ® and B
iteratively, using the Newton-Raphson method, a tangent
method for root finding. In our case we will estimate
Q = (a, 0, B) iteratively

0,1=9;-Gg

(18

where g is the vector of normal equations for which we want

. ol al ol
= with =—, =—, and =,
g [91 92 93] 01 Py gz 20 03 0B
and G is the matrix of second derivatives
(09 om0y |
oa 060 Of
G_|%92 992 99, | (19)
da 00 op
993 093 04
| 0a 00 Op |

The Newton-Raphson algorithm converges, as our
estimates of a, @ and B change by less than a tolerated
amount with each successive iteration, to &, @ and .

The bias and the root of mean squared error (RMSE) of
an estimator Q of the parameter Q, easily obtained by

Bias(f!) = ﬁ%[fz - Q]
= (20)

and RMSE(fz) -

ﬁ%[s‘:_gf.

4.2. Parameter Estimation with the Uniform
Removals

The number of units removed from the test at each
failure time follows a uniform distribution and any
individual unit being removed is independent of others but
with the same probability p. that is, Ry~unif(0,n — m)
and for i=12..3. R;~unif (0,n—m—Y/_r;) and
Tm=M—M—7T1{—1T3 — " — T 1.

The number of units removed at each failure time
follows a uniform distribution such that

P(Ri=h)= (21)
(Ri=1) n-m+1
Andfori=2,3,..,m—1.

P(Ri =fIRiy=fig.. R =1)

3 1

- i-1 1

”—m—Z,-zfj +

where, the joint probability distribution of R =
(Ry=r714,..,Ry_4 =1,,,_1) and is given by

P(R=r)= 1m_1 (22)

n-m->. T+l

where0 <r; < n—m-Yir; ,i=0,1,..,m—1

It is clear that P(R = 1) does not depend on the
parameters a, 8 and B, hence the maximum likelihood
estimators can be derived directly by maximizing the
equations (9) and then solving the equations (13-16).

4.3. Fisher Information Matrix

The asymptotic Fisher information matrix can be
formulated as follows;

M
da 00 op
F=- 69_2 69_2 8g_2 (23)
da 00 op
%3 M3 %3
da 00 OB )o_g

In relation to the asymptotic variance-covariance matrix
of the ML estimators of the parameters, it can be
approximated by numerically inverting the above Fisher's
information matrix F.
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4.4. D-optimality

In this section we explore the choice of T in a SS-PALT
with Type-1l progressive censoring. We propose one
selection criterion which enable one to choose the optimal
value of . The proposed criterion is based on the
determinant of the Fisher's information matrix.
Maximizing that determinant is equivalent to minimizing
the generalized asymptotic variance (GAV) of the MLE of
the model parameters. The GAV is the reciprocal of the
determinant of the Fisher's information matrix F, for
example, see [33]. That is,

GAF (&,é,ﬁ) " (24)

So, the optimal value of T is chosen such that the
determinant of the Fisher's information matrix F is
maximized and then the GAV is minimized. This is called
the D-optimality criterion.

5. Simulation Study

A simulation study is performed to obtain MLEs of
B, 6 and p. Also, to study the properties of these estimates

through the root of the mean squared errors (RMSESs),)
and the confidence intervals for different sample sizes.
Moreover, we will determine the optimal stress change
time which minimizes the generalized asymptotic variance
of the MLE of parameters. To perform the simulation
study, we followed the same steps has been introduced in
[24];

a) First specify the value of n and m.

b) The value of the parameters are chosen to be a =

2,0=05,8=23,1=2,p=04.

c) Generate a random sample with size n and

censoring size m with random removals, r;,i =
1,2, ..., m — 1 from the random variable X given by
(3).
d) Generate a group value R,~bino(n—m—
TLi7,p) and also R;~unif (0,n—m —¥/_}7)
where 0<rn<n—-m-— ;';1173,1' =01,.. m—
landn, =n—m-—-nr —1ry — - —1p_1.

e) For different sample sizes n= 20, 50, 80 and 100,

compute the ML estimates.

The bias and the root of mean squared error (RMSE)
are obtained associated with the MLE of the parameters,
optimal value of 7 and also the Optimal GAV of the
MLEs of the model parameters are obtained numerically
for each sample size.

Table 1. Simulation study results with Binomial Removals for « =2,0 =0.5,=2.3,7=2,p=0.4

N " Estimates The root of mean squared error The bias . F1)
0 a I RMSEj RMSE, RMSEj Bias; Bias, Biasg

9 0.541 2.015 2.274 0.199 0.159 0.179 0.041 0.015 -0.026 2.103 1.110

20 19 0.537 2.040 2.303 0.198 0.159 0.173 0.037 0.04 0.003 2.148 1.225
9 0.552 2.035 2.283 0.197 0.155 0.172 0.052 0.035 -0.017 2.146 1.107

19 0.547 2.021 2.274 0.193 0.153 0.172 0.047 0.021 -0.026 2.188 1.243

50 29 0.544 2013 2.269 0.194 0.152 0.173 0.044 0.013 -0.031 2.206 1.233
39 0.554  2.017 2.263 0.190 0.149 0.169 0.054 0.017 -0.037 2.144 1311

49 0481  1.955 2.274 0.175 0.149 0.167 -0.019 -0.045 -0.026 2.178 1.365

9 0.489  1.953 2.264 0.172 0.146 0.165 -0.011 -0.047 -0.036 2.176 1111

19 0483 1943 2.260 0.169 0.144 0.164 -0.017 -0.057 -0.04 2123 1.228

29 0480  1.940 2.260 0.169 0.145 0.165 -0.02 -0.06 -0.04 2.137 1.479

39 0.487  1.940 2.253 0.169 0.143 0.164 -0.013 -0.06 -0.047 2.247 1.572

80 49 0489 1945 2.256 0.168 0.142 0.163 -0.011 -0.055 -0.044 2.130 1.535
59 0.512  1.947 2.235 0.168 0.138 0.162 0.012 -0.053 -0.065 2.102 1.609

69 0.530  1.953 2.223 0.168 0.135 0.161 0.03 -0.047 -0.077 2.133 1.650

79 0.530  1.980 2.250 0.167 0.134 0.155 0.03 -0.02 -0.05 2.151 1.763

9 0.533  2.024 2291 0.167 0.134 0.147 0.033 0.024 -0.009 2.142 1.100

19 0.525  2.028 2.303 0.165 0.133 0.145 0.025 0.028 0.003 2113 1.202

29 0.537  2.046 2.309 0.164 0.131 0.141 0.037 0.046 0.009 2114 1.253

39 0.570  2.072 2.302 0.163 0.125 0.135 0.07 0.072 0.002 2.196 1.338

49 0.562 2.067 2.305 0.161 0.124 0.134 0.062 0.067 0.005 2.130 1.429

100 59 0.542 2.055 2.313 0.157 0.123 0.132 0.042 0.055 0.013 2.219 1.588
69 0.542 2.052 2.310 0.156 0.123 0.133 0.042 0.052 0.01 2.239 1.636

69 0.524 2.058 2.334 0.150 0.121 0.126 0.024 0.058 0.034 2.135 1.709

79 0.530 2.061 2.331 0.153 0.120 0.127 0.03 0.061 0.031 2.116 1.774

89 0.536 2.056 2.320 0.149 0.118 0.125 0.036 0.056 0.02 2.216 1.810

99 0.548 2.060 2.312 0.149 0.116 0.124 0.048 0.06 0.012 2.195 1.825
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Table 2. Simulation study results with uniform Removals fora =0.5,0 =1.5,4=1.3,7=3
Estimates The root of mean squared error The bias F1]
n m — - T -
@ 7 B RMSE, RMSE; RMSEj Biasg Bias; Biasg
20 9 1.567 0.580 1.313 0.147 0.111 0.119 0.067 0.08 0.013 3.107 1.113
19 1.569 0.586 1.317 0.146 0.111 0.117 0.069 0.086 0.017 3.137 1.114
9 1568  0.577 1.309 0.144 0.109 0.117 0.068 0.077 0.009 3.138 1.196
19 1569  0.566 1.297 0.142 0.107 0.117 0.069 0.066 -0.003 3.118 1.230
50 29 1571  0.573 1.302 0.140 0.105 0.114 0.071 0.073 0.002 3.112 1.319
39 1.568 0.592 1.324 0.139 0.105 0.110 0.068 0.092 0.024 3.114 1.339
49 1.568 0.591 1.323 0.139 0.104 0.109 0.068 0.091 0.023 3.146 1.235
9 1.562 041 1.328 0.136 0.103 0.108 0.062 -0.09 0.028 3.185 1.116
19 1567  0.586 1.319 0.135 0.102 0.107 0.067 0.086 0.019 3.149 1.216
29 1552 0.572 1.320 0.132 0.101 0.107 0.052 0.072 0.02 3.110 1.295
80 39 1506 0.532 1.274 0.122 0.103 0.105 0.006 0.032 -0.026 3.125 1.349
49 1504  0.525 1321 0.120 0.100 0.105 0.004 0.025 0.021 3.107 1.453
59 1515 0.526 1.311 0.122 0.098 0.104 0.015 0.026 0.011 3.143 1.467
69 1.521 0.529 1.308 0.120 0.096 0.109 0.021 0.029 0.008 3.133 1.510
79 1.512 0.546 1.334 0.118 0.096 0.099 0.012 0.046 0.034 3.111 1.594
9 1.512 0.551 1.339 0.117 0.096 0.097 0.012 0.051 0.039 3.165 1.269
19 1507  0.543 1.336 0.119 0.094 0.096 0.007 0.043 0.036 3.111 1.302
29 1517  0.546 1.329 0.114 0.093 0.098 0.017 0.046 0.029 3.128 1.469
39 1495 0.528 1.328 0.111 0.092 0.095 -0.005 0.028 0.028 3.079 1.547
49 1502  0.609 1.407 0.110 0.091 0.080 0.002 0.109 0.107 3.172 1.610
100 59 1.498  0.607 1.409 0.109 0.093 0.079 -0.002 0.107 0.109 3.135 1.721
69 1.512 0.640 1.428 0.108 0.088 0.073 0.012 0.14 0.128 3.209 1.786
69 1.523 0.633 1.410 0.106 0.085 0.073 0.023 0.133 0.11 3.150 1.815
79 1.527 0.634 1.407 0.106 0.084 0.072 0.027 0.134 0.107 3.163 1.286
89 1523 0.626 1.403 0.104 0.083 0.072 0.023 0.126 0.103 3.109 1.250
99 1523 0.625 1.402 0.103 0.082 0.071 0.023 0.125 0.102 3.102 1.284
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