
American Journal of Applied Mathematics and Statistics, 2019, Vol. 7, No. 5, 171-177 
Available online at http://pubs.sciepub.com/ajams/7/5/3 
Published by Science and Education Publishing 
DOI:10.12691/ajams-7-5-3 

Optimal Design of Step Stress Partially Accelerated Life 
Test under Progressive Type-II Censored Data with 
Random Removal for Inverse Lomax Distribution 

Yasser M. Amer1,*, Rania M. Shalabi2 
1Cairo Higher Institutes, Mokattam, Cairo, Egypt 

2The Higher Institute of Managerial Science, Culture and Science City, 6th of October, Egypt 
*Corresponding author: yasseramer4@yahoo.com 

Received September 12, 2019; Revised October 24, 2019; Accepted November 08, 2019 

Abstract  Step Stress-Partially Accelerated Life Test SS-PALT under Type-II progressive censoring with 
Binomial or uniform removal assuming Inverse Lomax distribution has been presented. A comparison between both 
removals is shown. The Newton-Raphson method is applied to obtain maximum likelihood estimators MLE of the 
parameters and the optimal stress-change time which minimizes the generalized asymptotic variance. A simulation 
study is performed to illustrate the statistical properties of the parameters. 

Keywords: Partially accelerated life test, Binominal distribution, uniform distribution, Inverse Lomax distribution, 
optimal design, D-optimality, Monte Carlo Simulation 

Cite This Article: Yasser M. Amer, and Rania M. Shalabi, “Optimal Design of Step Stress Partially 
Accelerated Life Test under Progressive Type-II Censored Data with Random Removal for Inverse Lomax 
Distribution.” American Journal of Applied Mathematics and Statistics, vol. 7, no. 5 (2019): 171-177.  
doi: 10.12691/ajams-7-5-3. 

1. Introduction 

The engineers used the Partially accelerated life tests 
(PALTs) successfully to estimate the acceleration factor 
and thus extrapolating the accelerated data to normal 
conditions. In a PALT, items are tested at both normal  
and accelerated conditions. There are three Types of 
PALTs, these Types are step-stress, progressive-stress and 
constant-stress. Such testing conducted under stresses is 
called accelerated life test (ALT) or partially accelerated 
life test (PALT). In ALT, the units are put under stresses 
to get more failures in a short time. The main assumption 
in ALT is that the mathematical model relating the 
lifetime of the unit and the stress is known or can be 
assumed. In some cases, such model is neither known nor 
assumed. That is, ALT data cannot be extrapolated to 
normal use condition. So, in such cases, PALT is a more 
suitable test to be used to estimate the statistical model 
parameters.  

In a SS-PALT, test unit starts at normal use condition 
for a specified time. If it does not fail at that time, it is 
putted under stress. Stress is repeatedly increased until the 
test unit fails or the test is terminated based on a certain 
censoring scheme. As indicated by [1], the step-stress 
method can reduce the testing time and save a lot of 
manpower, material sources and money. Specifically,  
SS-PALT should be used for reliability analysis to save 
time and money especially when the test units are with 

high reliability and the mathematical model indicated 
above is unknown or cannot be assumed  Partially 
accelerated life tests (PALT) have been studied by several 
authors under step-stress scheme. For more details, see  
[2-16]. It is noted that no studies have been made on the 
step-stress PALT under progressive censoring. In this 
paper, we will combine progressive censoring and  
step-stress PALT to develop a step-stress PALT  
with Progressively Type-II Censored Data using the 
exponential distribution as a lifetime model. 

When the experimenter does not observe the lifetimes 
of all test units the censored sampling arises in a life test. 
There are two censoring schemes, Type-I censoring and 
Type-II censoring. Both of these two censoring schemes 
do not allow for units to be removed from the test at the 
points other than the final termination point. This 
allowance may be desirable when a compromise between 
reduced the time of experimentation and the observation 
of at least some extreme lifetimes is sought. Progressively 
censored sampling allows to the experimenter to save time 
and cost. The most popular one is the progressive type-II 
censoring scheme and it can be briefly described as 
follows. Suppose n identical units are put on a life testing 
experiment. The integer k < n is prefixed, and r1, ..., rk are 
k prefixed non-negative integers such that ∑ 𝒓𝒓𝒊𝒊 + 𝒌𝒌 =𝒌𝒌

𝒊𝒊=𝟏𝟏
𝒏𝒏 . 𝒓𝒓𝟏𝟏  of the surviving units are randomly selected and 
removed from the test. Similarly, at the time of the second 
failure, r2 units are chosen randomly from the remaining 
n−r1−2 units and they are removed, and so on. This 
experiment terminates when the mth failure occurs at time 
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𝒕𝒕(𝒎𝒎) , the remaining surviving units 𝒓𝒓𝒎𝒎 = 𝒏𝒏 −𝒎𝒎− 𝒓𝒓𝟏𝟏 −
𝒓𝒓𝟐𝟐 −⋯− 𝒓𝒓𝒎𝒎−𝟏𝟏 are all removed from the test. 

Extensive work has been done on various aspects of 
different progressive censoring schemes. [17] and [18] 
considered the progressive Type-II censoring scheme with 
fixed 𝒓𝒓𝟏𝟏, 𝒓𝒓𝟐𝟐, … , 𝒓𝒓𝒎𝒎 . But in some reliability experiments, 
the number of removals cannot be considered to be fixed. 
[19] and [20] considered progressive censoring with 
random (binomial) removals to estimate the unknown 
parameters of Weibull and Gompertz distribution using 
ordinary life testing. [21] used progressively Type-II 
censored data with binomial removals to estimate the 
parameters of exponential reliability model. [22] discuss 
step-stress partially-accelerated life test under progressive 
Type-II censoring with random removals. 

 The removals from the test are assumed to have 
binomial distributions. The lifetimes of the test units are 
considered to be exponential distributed. Recently, [23] 
provided Step Stress Partially Accelerated Life Test under 
Progressive Type-II Censored Data with Random 
Removal for Gompertz Distribution and the removals 
from the test are assumed to have binomial and uniform 
distributions. Also, [24] introduced the same on Frechet 
Distribution. 

In this paper, we will use SS-PAL under progressive 
Type-II censoring with random removals. The removals 
from the test are assumed to have binomial and uniform 
distributions. The lifetimes of the test units are considered 
to be Inverse Lomax distributed. Also, we will determine 
the optimal stress change time which minimizes the 
generalized asymptotic variance of the MLE of parameters. 
Section 2 presents the Inverse Lomax distribution and the 
assumptions of the partially accelerated model. Estimation 
of model parameters is given in Section 3; in Section 4 
and 5 simulation study results and conclusion are given. 

2. Inverse Lomax Distribution 

The Lomax or Pareto II (the shifted Pareto) distribution 
was proposed in [25]. This distribution has found wide 
applications especially in analysis of the business failure 
life time data, income and wealth inequality, size of cities, 
actuarial science, medical and biological sciences, 
engineering, lifetime and reliability modeling. In lifetime, 
the Lomax model belongs to the family of decreasing 
failure rate in [26]. 

The Inverse Lomax distribution (ILD) belongs to 
inverted family of distributions and found to be  
very flexible to analyze the situation where the  
non-monotonicity of the failure rate has been realized in 
[27]. If a random variable Y has Lomax distribution, then 

1x
y

=  has an Inverse Lomax distribution (ILD) [28]. 

(ILD) has an application in stochastic modeling of 
decreasing failure rate life components. Like other 
distributions belonging to the family of generalized Beta 
distribution, the (ILD) also has application in economics 
and actuarial sciences [29]. (ILD) was implemented on 
geophysical databases [30] on the sizes of land fires in the 
California state. [31], carried out research work regarding  
 

the statistical inference and Prediction on (ILD) through 
Bayesian inferences. [32] considered the (ILD) to possess 
the Lorenz ordering relationship between ordered statistics. 

The probability density function (PDF) and the 
cumulative distribution function (CDF) for (ILD) 
respectively are as follows: 

 ( )
1

2 1 0, , 0.f x x
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3. Model and Assumptions 

The following assumptions are used throughout the 
paper:  

1.  n identical and independent units are put on the life 
test. 

2.  The lifetime of each unit has an exponential 
distribution. 

3.  The test is terminated at the mth failure, where m is 
prefixed (𝑚𝑚 ≤ 𝑛𝑛). 

4.  Each of the n units is first run under normal use 
condition. If it does not fail or remove from the test 
by a pre-specified time τ. it is put under accelerated 
condition (stress). 

5.  At the ith failure a random number of the surviving 
units, 𝑅𝑅𝑖𝑖, 𝑖𝑖 = 1,2, . . 𝑚𝑚 − 1, are randomly selected 
and removed from the test. Finally, at the mth failure 
the remaining surviving units 𝑅𝑅𝑚𝑚 = 𝑛𝑛 −𝑚𝑚 −
∑ 𝑅𝑅𝑖𝑖𝑚𝑚−1
𝑖𝑖=1 are all removed from the test and the test is 

terminated.  
6.  The lifetime, say X, of a unit under SS-PALT can 

be rewritten as 

 
  

.
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In this paper, we will have assumed that, probability 
density function (PDF) of X is given by 
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In addition, the survival functions (SF) under normal 
and accelerate use conditions respectively is given by 

 ( )1 ,1 1 0 .S x x
x

αθ τ
−

 = − + < < 
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  (4) 

And 

 ( )
( )( )2 1 1 , .S x x
x

α
θ τ

τ β τ

−
 

= − + >  + − 
 (5) 
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4. Estimation of Parameters 

4.1. Parameter Estimation with the Binomial 
Removals 

 The number of units removed from the test at each 
failure time follows a binomial distribution and any 
individual unit being removed is independent of others but 
with the same probability 𝑝𝑝. that is, 𝑅𝑅1~𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑛𝑛 − 𝑚𝑚, 𝑝𝑝) 
and for  𝑖𝑖 = 1,2, . .3  , 𝑅𝑅𝑖𝑖~𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (𝑛𝑛 − 𝑚𝑚 − ∑ 𝑟𝑟𝑗𝑗𝑚𝑚

𝑗𝑗=1 , 𝑝𝑝)  and 
𝑟𝑟𝑚𝑚 = 𝑛𝑛 − 𝑚𝑚 − 𝑟𝑟1 − 𝑟𝑟2 − ⋯− 𝑟𝑟𝑚𝑚−1. 

Let (𝑥𝑥i , ri , u1i, u2i), i = 1,2, . . , m, denote the observation 
obtained form a progressively Type-II censored sample 
with random removals in a SS-PALT. Here x(1) ≤  …  ≤
 x(m ).  Given the pre-determined number of  
removals 𝑅𝑅 = (𝑅𝑅1 = 𝑟𝑟1, . . , 𝑅𝑅𝑚𝑚−1 = 𝑟𝑟𝑚𝑚−1), the conditional 
likelihood function of the observations 
𝑥𝑥 = {(𝑦𝑦𝑖𝑖 , 𝑟𝑟𝑖𝑖 , 𝑢𝑢1𝑖𝑖 , 𝑢𝑢2𝑖𝑖), 𝑖𝑖 = 1,2, . . , 𝑚𝑚}  takes the following 
form 
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From (1), (2) and (3) is inserted in (6) and simplify, we 
get 
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Where 𝐮𝐮𝟏𝟏𝟏𝟏 = �𝟏𝟏   𝐢𝐢𝐢𝐢 𝐱𝐱𝐢𝐢 ≤ 𝛕𝛕
𝟎𝟎   𝐢𝐢𝐢𝐢 𝐱𝐱𝐢𝐢 > 𝜏𝜏

�, 𝐮𝐮𝟐𝟐𝟐𝟐 = �𝟎𝟎   𝐢𝐢𝐢𝐢 𝐱𝐱𝐢𝐢 ≤ 𝛕𝛕
𝟏𝟏   𝐢𝐢𝐢𝐢 𝐱𝐱𝐢𝐢 > 𝜏𝜏

�. 

And ∑ 𝐮𝐮𝟏𝟏𝟏𝟏
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𝐢𝐢=𝟏𝟏 + ∑ 𝐮𝐮𝟐𝟐𝟐𝟐

𝐦𝐦𝟐𝟐
𝐢𝐢=𝟏𝟏 = 𝐦𝐦. 

The number of units removed at each failure time 
follows a binomial distribution such that 
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and for 𝐢𝐢 = 𝟐𝟐, 𝟑𝟑, . . ,𝐦𝐦 − 𝟏𝟏 
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At the parameter 𝒌𝒌  is known, the likelihood of the 
sample of size n is given as 
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That is, 

 
( ) ( )

( )
( )( )( ) ( )( )

1

1
1 1

1 1

1
1

1

!

1 .

!

−

=
− −
= =

−
− − − −

=

∑−
= =

− −

∑× −

∑ ∏

m
ri

i
m m

i ii i

m
m n m m i ri

i

n m
P R r p

n m r r

p

 (10) 

The log-likelihood function 𝒍𝒍𝒍𝒍𝒍𝒍(𝒙𝒙𝒊𝒊, 𝜶𝜶, 𝜷𝜷, 𝒑𝒑) =
 𝒍𝒍(𝒙𝒙𝒊𝒊, 𝜶𝜶, 𝜷𝜷, 𝒑𝒑) can be written as follows: 

 ( ) ( ) ( )1, , , ln , , .= + =i il x α β p L x α β lnP R r  (11) 

First partial derivatives are derived to obtain  
the estimate of the parameters 𝜶𝜶, 𝜽𝜽 and acceleration factor 
𝜷𝜷 . The log likelihood which is associated with (10) is 
given  
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The following likelihood equations are obtained by 
equating the partial derivatives of  𝒍𝒍(𝒙𝒙𝒊𝒊, 𝜶𝜶, 𝜽𝜽, 𝜷𝜷, 𝒑𝒑)  with 
respect to 𝜶𝜶, 𝜽𝜽, 𝜷𝜷 and 𝒑𝒑 to zero: 
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From Equation (16), 𝒑𝒑 is estimated as follow 
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There is no closed-from solution to this system of 
equations (13-15), so we will solve for 𝛂𝛂�, 𝛉𝛉�  and 𝛃𝛃� 
iteratively, using the Newton-Raphson method, a tangent 
method for root finding. In our case we will estimate 
𝛀𝛀 = (𝛂𝛂, 𝛉𝛉, 𝛃𝛃) iteratively 
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where g is the vector of normal equations for which we want 

[ ]1 32g g g g=  with 1 ,lg
α
∂

=
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θ
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β
∂
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and G is the matrix of second derivatives 
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 (19) 

The Newton-Raphson algorithm converges, as our 
estimates of 𝜶𝜶, 𝜽𝜽 and 𝜷𝜷  change by less than a tolerated 
amount with each successive iteration, to 𝛂𝛂�, 𝛉𝛉� and 𝜷𝜷�. 

The bias and the root of mean squared error (RMSE) of 
an estimator 𝛀𝛀�  of the parameter 𝛀𝛀, easily obtained by 
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 (20) 

4.2. Parameter Estimation with the Uniform 
Removals 

The number of units removed from the test at each 
failure time follows a uniform distribution and any 
individual unit being removed is independent of others but 
with the same probability p. that is, 𝑹𝑹𝟏𝟏~𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖(𝟎𝟎, 𝒏𝒏 −𝒎𝒎) 
and for i=1,2,..3. 𝑹𝑹𝒊𝒊~𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖 (𝟎𝟎, 𝒏𝒏 −𝒎𝒎 − ∑ 𝒓𝒓𝒋𝒋𝒊𝒊−𝟏𝟏

𝒋𝒋=𝟏𝟏 )  and 
𝒓𝒓𝒎𝒎 = 𝒏𝒏 −𝒎𝒎− 𝒓𝒓𝟏𝟏 − 𝒓𝒓𝟐𝟐 −⋯− 𝒓𝒓𝒎𝒎−𝟏𝟏. 

The number of units removed at each failure time 
follows a uniform distribution such that 

 ( )1 1
1 .

1
P R r

n m
= =

− +
 (21) 

And for 𝐢𝐢 = 𝟐𝟐, 𝟑𝟑, . . ,𝐦𝐦 − 𝟏𝟏. 
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where, the joint probability distribution of 𝑹𝑹 =
(𝑹𝑹𝟏𝟏 = 𝒓𝒓𝟏𝟏, . . , 𝑹𝑹𝒎𝒎−𝟏𝟏 = 𝒓𝒓𝒎𝒎−𝟏𝟏) and is given by 
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ii
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where 𝟎𝟎 ≤ 𝒓𝒓𝒊𝒊 ≤  𝒏𝒏 −𝒎𝒎 − ∑ 𝒓𝒓𝒋𝒋𝒊𝒊−𝟏𝟏
𝒋𝒋=𝟏𝟏  , 𝒊𝒊 = 𝟎𝟎, 𝟏𝟏, … ,𝒎𝒎 − 𝟏𝟏. 

It is clear that 𝑷𝑷(𝑹𝑹 = 𝒓𝒓)  does not depend on the 
parameters 𝜶𝜶, 𝜽𝜽 and 𝜷𝜷 , hence the maximum likelihood 
estimators can be derived directly by maximizing the 
equations (9) and then solving the equations (13-16). 

4.3. Fisher Information Matrix 
The asymptotic Fisher information matrix can be 

formulated as follows; 
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 (23) 

In relation to the asymptotic variance-covariance matrix 
of the ML estimators of the parameters, it can be 
approximated by numerically inverting the above Fisher's 
information matrix 𝑭𝑭. 
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4.4. D-optimality 
In this section we explore the choice of 𝝉𝝉 in a SS-PALT 

with Type-II progressive censoring. We propose one 
selection criterion which enable one to choose the optimal 
value of 𝝉𝝉 . The proposed criterion is based on the 
determinant of the Fisher's information matrix. 
Maximizing that determinant is equivalent to minimizing 
the generalized asymptotic variance (GAV) of the MLE of 
the model parameters. The GAV is the reciprocal of the 
determinant of the Fisher's information matrix F, for 
example, see [33]. That is, 

 ( ) 1ˆ ˆˆ, , .GAF
F

α θ β =  (24) 

So, the optimal value of 𝝉𝝉  is chosen such that the 
determinant of the Fisher's information matrix 𝑭𝑭  is 
maximized and then the GAV is minimized. This is called 
the D-optimality criterion. 

5. Simulation Study 

A simulation study is performed to obtain MLEs of 
𝛽𝛽, 𝜃𝜃 and 𝑝𝑝. Also, to study the properties of these estimates 

through the root of the mean squared errors (RMSEs),) 
and the confidence intervals for different sample sizes. 
Moreover, we will determine the optimal stress change 
time which minimizes the generalized asymptotic variance 
of the MLE of parameters. To perform the simulation 
study, we followed the same steps has been introduced in 
[24]; 

a)  First specify the value of n and m.  
b)  The value of the parameters are chosen to be 𝛼𝛼 =

2 , 𝜃𝜃 = 0.5 , 𝛽𝛽 = 2.3 , 𝜏𝜏 = 2, 𝑝𝑝 = 0.4. 
c)  Generate a random sample with size n and 

censoring size m with random removals,  𝑟𝑟𝑖𝑖 , 𝑖𝑖 =
1,2, … ,𝑚𝑚 − 1 from the random variable X given by 
(3).  

d)  Generate a group value 𝑅𝑅𝑖𝑖~𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (𝑛𝑛 − 𝑚𝑚 −
∑ 𝑟𝑟𝑗𝑗𝑚𝑚
𝑗𝑗=1 , 𝑝𝑝)  and also 𝑅𝑅𝑖𝑖~𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 (0, 𝑛𝑛 − 𝑚𝑚 − ∑ 𝑟𝑟𝑗𝑗𝑖𝑖−1

𝑗𝑗=1 ) 
where 0 ≤ 𝑟𝑟𝑖𝑖 ≤  𝑛𝑛 − 𝑚𝑚 − ∑ 𝑟𝑟𝑗𝑗𝑖𝑖−1

𝑗𝑗=1 , 𝑖𝑖 = 0,1, … ,𝑚𝑚 −
1 and 𝑟𝑟𝑚𝑚 = 𝑛𝑛 − 𝑚𝑚 − 𝑟𝑟1 − 𝑟𝑟2 −⋯− 𝑟𝑟𝑚𝑚−1. 

e)  For different sample sizes n= 20, 50, 80 and 100, 
compute the ML estimates.  

The bias and the root of mean squared error (RMSE) 
are obtained associated with the MLE of the parameters, 
optimal value of 𝜏𝜏  and also the Optimal GAV of the 
MLEs of the model parameters are obtained numerically 
for each sample size. 

Table 1. Simulation study results with Binomial Removals for  𝜶𝜶 = 𝟐𝟐 , 𝜽𝜽 = 𝟎𝟎. 𝟓𝟓 , 𝜷𝜷 = 𝟐𝟐. 𝟑𝟑 , 𝝉𝝉 = 𝟐𝟐, 𝒑𝒑 = 𝟎𝟎. 𝟒𝟒 

n m 
 Estimates The root of mean squared error The bias 

𝝉𝝉 |𝑭𝑭−𝟏𝟏| 
𝜃𝜃� 𝛼𝛼� 𝛽̂𝛽 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝜃𝜃�  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝛼𝛼�  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝛽𝛽�  Bias𝜃𝜃�  Bias𝛼𝛼� Biasβ� 

20 
9 0.541 2.015 2.274 0.199 0.159 0.179 0.041 0.015 -0.026 2.103 1.110 

19 0.537 2.040 2.303 0.198 0.159 0.173 0.037 0.04 0.003 2.148 1.225 

50 

9 0.552 2.035 2.283 0.197 0.155 0.172 0.052 0.035 -0.017 2.146 1.107 

19 0.547 2.021 2.274 0.193 0.153 0.172 0.047 0.021 -0.026 2.188 1.243 

29 0.544 2.013 2.269 0.194 0.152 0.173 0.044 0.013 -0.031 2.206 1.233 

39 0.554 2.017 2.263 0.190 0.149 0.169 0.054 0.017 -0.037 2.144 1.311 

49 0.481 1.955 2.274 0.175 0.149 0.167 -0.019 -0.045 -0.026 2.178 1.365 

80 

9 0.489 1.953 2.264 0.172 0.146 0.165 -0.011 -0.047 -0.036 2.176 1.111 

19 0.483 1.943 2.260 0.169 0.144 0.164 -0.017 -0.057 -0.04 2.123 1.228 

29 0.480 1.940 2.260 0.169 0.145 0.165 -0.02 -0.06 -0.04 2.137 1.479 

39 0.487 1.940 2.253 0.169 0.143 0.164 -0.013 -0.06 -0.047 2.247 1.572 

49 0.489 1.945 2.256 0.168 0.142 0.163 -0.011 -0.055 -0.044 2.130 1.535 

59 0.512 1.947 2.235 0.168 0.138 0.162 0.012 -0.053 -0.065 2.102 1.609 

69 0.530 1.953 2.223 0.168 0.135 0.161 0.03 -0.047 -0.077 2.133 1.650 

79 0.530 1.980 2.250 0.167 0.134 0.155 0.03 -0.02 -0.05 2.151 1.763 

100 

9 0.533 2.024 2.291 0.167 0.134 0.147 0.033 0.024 -0.009 2.142 1.100 

19 0.525 2.028 2.303 0.165 0.133 0.145 0.025 0.028 0.003 2.113 1.202 

29 0.537 2.046 2.309 0.164 0.131 0.141 0.037 0.046 0.009 2.114 1.253 

39 0.570 2.072 2.302 0.163 0.125 0.135 0.07 0.072 0.002 2.196 1.338 

49 0.562 2.067 2.305 0.161 0.124 0.134 0.062 0.067 0.005 2.130 1.429 

59 0.542 2.055 2.313 0.157 0.123 0.132 0.042 0.055 0.013 2.219 1.588 

69 0.542 2.052 2.310 0.156 0.123 0.133 0.042 0.052 0.01 2.239 1.636 

69 0.524 2.058 2.334 0.150 0.121 0.126 0.024 0.058 0.034 2.135 1.709 

79 0.530 2.061 2.331 0.153 0.120 0.127 0.03 0.061 0.031 2.116 1.774 

89 0.536 2.056 2.320 0.149 0.118 0.125 0.036 0.056 0.02 2.216 1.810 

99 0.548 2.060 2.312 0.149 0.116 0.124 0.048 0.06 0.012 2.195 1.825 
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Table 2. Simulation study results with uniform Removals for 𝜶𝜶 = 𝟎𝟎. 𝟓𝟓 , 𝜽𝜽 = 𝟏𝟏. 𝟓𝟓 , 𝜷𝜷 = 𝟏𝟏. 𝟑𝟑 , 𝝉𝝉 = 𝟑𝟑 

n m 
 Estimates The root of mean squared error The bias 

𝝉𝝉 |𝑭𝑭−𝟏𝟏| 
𝛼𝛼� 𝜃𝜃� 𝛽̂𝛽 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝛼𝛼�  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝜃𝜃�  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝛽𝛽�  Biasα� Biasθ� Biasβ� 

20 
9 1.567 0.580 1.313 0.147 0.111 0.119 0.067 0.08 0.013 3.107 1.113 

19 1.569 0.586 1.317 0.146 0.111 0.117 0.069 0.086 0.017 3.137 1.114 

50 

9 1.568 0.577 1.309 0.144 0.109 0.117 0.068 0.077 0.009 3.138 1.196 
19 1.569 0.566 1.297 0.142 0.107 0.117 0.069 0.066 -0.003 3.118 1.230 
29 1.571 0.573 1.302 0.140 0.105 0.114 0.071 0.073 0.002 3.112 1.319 
39 1.568 0.592 1.324 0.139 0.105 0.110 0.068 0.092 0.024 3.114 1.339 
49 1.568 0.591 1.323 0.139 0.104 0.109 0.068 0.091 0.023 3.146 1.235 

80 

9 1.562 0.41 1.328 0.136 0.103 0.108 0.062 -0.09 0.028 3.185 1.116 
19 1.567 0.586 1.319 0.135 0.102 0.107 0.067 0.086 0.019 3.149 1.216 
29 1.552 0.572 1.320 0.132 0.101 0.107 0.052 0.072 0.02 3.110 1.295 
39 1.506 0.532 1.274 0.122 0.103 0.105 0.006 0.032 -0.026 3.125 1.349 
49 1.504 0.525 1.321 0.120 0.100 0.105 0.004 0.025 0.021 3.107 1.453 
59 1.515 0.526 1.311 0.122 0.098 0.104 0.015 0.026 0.011 3.143 1.467 
69 1.521 0.529 1.308 0.120 0.096 0.109 0.021 0.029 0.008 3.133 1.510 
79 1.512 0.546 1.334 0.118 0.096 0.099 0.012 0.046 0.034 3.111 1.594 

100 

9 1.512 0.551 1.339 0.117 0.096 0.097 0.012 0.051 0.039 3.165 1.269 
19 1.507 0.543 1.336 0.119 0.094 0.096 0.007 0.043 0.036 3.111 1.302 
29 1.517 0.546 1.329 0.114 0.093 0.098 0.017 0.046 0.029 3.128 1.469 
39 1.495 0.528 1.328 0.111 0.092 0.095 -0.005 0.028 0.028 3.079 1.547 
49 1.502 0.609 1.407 0.110 0.091 0.080 0.002 0.109 0.107 3.172 1.610 
59 1.498 0.607 1.409 0.109 0.093 0.079 -0.002 0.107 0.109 3.135 1.721 
69 1.512 0.640 1.428 0.108 0.088 0.073 0.012 0.14 0.128 3.209 1.786 
69 1.523 0.633 1.410 0.106 0.085 0.073 0.023 0.133 0.11 3.150 1.815 
79 1.527 0.634 1.407 0.106 0.084 0.072 0.027 0.134 0.107 3.163 1.286 
89 1.523 0.626 1.403 0.104 0.083 0.072 0.023 0.126 0.103 3.109 1.250 
99 1.523 0.625 1.402 0.103 0.082 0.071 0.023 0.125 0.102 3.102 1.284 

 
6. Conclusion 

This paper presented the SS-PALT under Type-II 
progressive censoring with Binomial or uniform removals 
assuming (ILD). Comparison between both removals is 
shown. The Newton-Raphson method is applied to  
obtain MLE estimators of the parameters and the optimal 
stress-change time which minimizes the GAV.  

The numerical study for obtaining the optimum plan for 
binomial removal is tabulated in Table 1 for different 
sample size and Table 2 describes uniform removal for 
possible values of the parameters. We derive the MLE of 
the parameters. Also, we compute the RMSE associated 
with the MLE. The above results it is easy to find that for 
the fixed values of the parameters, the error and optimal 
time decrease with increasing sample size n. Performance 
of testing plans and model assumptions are usually 
evaluated by the properties of the maximum likelihood 
estimates of model parameters. From the numerical results, 
we can conclude that both the average value of 𝜏𝜏 and the 
average value of GAV for Type-II progressive censoring 
are getting close to those of complete sample with the 
bigger m and close faster for bigger n. Hence from the 
numerical result, we can conclude that estimates of 
binomial or uniform are stable with relatively small 
RMSE with increasing sample size. Therefore, the test 
design obtained here is a robust design and work well for 
binomial or uniform removal. 
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