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1. Introduction and Definitions 

Let ∑  denote the class of functions of the form  

 1

2

1(z) k
k

k
f a z

z

∞
−

=
= + ∑  (1.1) 

Which are analytic in the unit disk { }:| z | 1 U\{0}U z= < = . 
Having a simple pole at the origin with residue 1. 
Furthermore, let *, ( )α α∑ ∑  and k∑ , 0 1α≤ <  

denotes the subclasses of ∑ which are univalent, 
meromorphically starlike and convex respectively. 
Definition 1 

Analytically, a function of the form (1.1) is in *( )α∑  
if and only if   
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Definition 2 
Similarly, ( ).kf α∈∑  If and only if f  is of the form 

(1.1) and satisfies 
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Definition 3 
For c∈ , the set of natural numbers with 2,c ≥  an 

absolutely convergent series defined as  
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Is known as the polylogarithm. This class of functions 
was invented by Liebniz and Bernouli [1]. For more 
works on polylogarithm and meromorphic functions see 
[2-7]. 

We state here a linear operator derived as follow; 
Let f(z) :cΨ →∑ ∑ which is defined by the 

following Hadamard product by f(z ( )) )* (cc z f zξΨ =
Where 

 

2

1

1 1( ) ( )
(

.
1)

k
c c c

k
z z Li z z

z k
ξ

∞
−

=
= = +

+
∑  (1.5) 

Define ( ) :cD f z →∑∑  as  

 
1

1( ) ( ) .
2

c c cD f z f z a 
= Ψ − 
 

 (1.6) 

Definition 4 
Let (z)f  be defined as in (1.1) and D f(z)c as stated in 

(1.6) then the function (z)f  then the function (z)f in (1.1) 
is said to be in class ( )c λ∑  if the following geometric 

condition are satisfy; 
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Using subordination we write (1.7) as 
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Where ( )cD f z  is as defined in (1.6)  

2. Coefficient Inequality 

Theorem 2.1 
Let ( )f z  of the form (1.1) a function ( )f z  is said to 

be in the class ( )c λ∑  iff the following bound is satisfy: 
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Proof 
Assume that (2.1) holds true then from (1.8) we have  
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Proving (2.1) Conversely, suppose ( ) ( ).
c

f z λ∈∑  

We have to show that condition (2.1) is true. Thus we 
have  
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Which is equivalent to  
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Notice that since ( ) | |z zℜ < we similarly have  
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We choose the value z on the real axis and letting
1z −→ , we have  
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Which proves our assertion. The result is sharp here for 
the function; 
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Theorem 2.2 
The class is closed under convex combination. 
Let 1 2( ), ( ) ( )

c
f z f z λ∈∑ then for 0 1τ≤ < , then we 

have 1 2(1 ) ( ) ( ) ( )cf z f zτ τ λ− + ∈∑ . 

Proof 

By hypothesis 1
1

2

1( ) ,k
k

k
f z a z

z

∞
−

=
= + ∑ and 

 1
2

2

1( ) .k
k

k
f z b z

z

∞
−

=
= + ∑  

Then 

 [ ] 1
1 2

2

1(1 ) ( ) ( ) (1 ) .k
k k

k
f z f z a b kz

z
τ τ τ τ

∞
−

=
− + = + − +∑   

Thus we have from (2.1) the following  
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This complete our proof. 

3. Integral Means Inequalities  

Let ( )f z  and g( )z  be analytic in U, (z)f  is said to be 
subordinate to g(z)  written as 

 ( ) ( ), .f z g z z U∈  (3.1) 

If there exists a Schwarz function (z)w which is 
analytic in U with (0) 0,| ( ) | 1w w z= < , z U∈  such that

( ) ( ( )).f z g w z=  Furthermore, if the function g(z) is 
univalent in U, then we have the following equivalence , 
see [8] ( ) ( ) (0) (0) and  ( ) ( )f z g z f g f U g U⇔ = ⊂ . 
Theorem 3.1 [9]  

If f(g) and g(z) are analytic in U with ( ) ( )f z g z , 

then for 0µ > , and iz re θ= , 0 1r< < . Then 
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iz re θ=  and  0 1r≤ < . Then  
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 Using theorem 3.1 we have to show that  
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Notice that (0) 0w = and from theorem 2.1 we can write  

 

1

1

( )
( 1)( 1)

| |
( 1)( 1)

| | 1.

k k
kc

k

kc
k

w z a z
k k

a
k k

z

λ
λ

λ
λ

∞

=
∞

=

=
+ − +

≤
+ − +

≤ <

∑

∑  

This proves our theorem. 

4. Convolution Property 

 Let ( )f z  , ( ) ( )cg z λ∈∑ and  
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is also in ( )c λ∑ . 

Theorem 4.1 
Suppose (z),f  g(z) ( )c λ∈∑ then the Hadamard 

product or convolution of the functions f and g belongs to 
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by Cauchy-Schwarz inequality, we have  
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Thus it suffices to show that  
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result. 
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