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1. Introduction 

In the reliability context, the single-component  
stress-strength model is the probability ( ),R P X Y= >  
which represents the reliability of an item or system of 
random strength X  subject to random stress .Y  In the 
single-component stress-strength model, a system fails if 
and only if at any given time, the applied stress exceeds 
the strength. Single-component stress-strength models 
have great utility in the fields of genetics, psychology, 
engineering and in so many others. A lot of work has been 
done in the literature for the classical and Bayesian 
estimation of single-component stress-strength reliability. 
For a brief review, one may refer to Basu [1], Kelley et al. 
[2], Awad and Gharraf [3], Tyagi and Bhattacharya [4], 
Chaturvedi and Kumar [5], Chaturvedi and Pathak [6,7], 
Chaturvedi et al. [8] and others. Inferences have been 
drawn for single-component stress-strength reliability for 
some families of lifetime distributions by Chaturvedi  
and Pathak [9], Chaturvedi and Kumari [10,11,12] and 
Kumari et al. [13]. 

The reliability in a multicomponent stress-strength 
model was developed by Bhattacharyya and Johnson [14]. 

Panday and Uddin [15] assumed the parameters not 
involved in reliability as known using Bayesian estimation. 
Rao and Kantam [16] studied the estimation of reliability 
in a multicomponent stress-strenght model for log-logistic 
distribution and Rao [17] developed an estimation 
procedure for reliability in multicomponent stress-strength 
based on generalized exponential distribution. Recently, 
Rao et al. [18] studied the estimation of reliability in a 
multicomponent stress-strength model for Burr-XII 
distribution and Kizilaslan and Nadar [19] developed an 
estimation procedure for reliability in multicomponent 
stress-strength based on Weibull distribution. 

The multicomponent stress-strength system consists of 
k  independent and identical strengths component and a 
common stress, functions when  (1 )s s k≤ ≤  or more of 
the components simultaneously survive. This model 
corresponds to the s-out-of-k: G  system. Multicomponent 
stress-strength models have great applications range from 
communication and industrial systems to logistic and 
military systems. For example, in suspension bridges, the 
deck is supported by a series of vertical cables hung from 
the towers. Suppose a suspension bridge consisting of k  
number of vertical cable pairs. The bridge will only 
survive if a minimum s number of vertical cable through 
the deck is not damaged when subjected to stresses due to 
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wind loading, heavy traffic, corrosion etc. For extensive 
reviews of s -out-of- k  and related systems one may refer 
to Kuo and Zuo [20]. 

Let the random samples 1 2, , ,..., kY X X X  be independent, 
( )G y  be the continuous distribution function of ,Y  and 
( )F x  be the common continuous distribution function  

of 1 2, ,. , ... kX X X  The reliability in a multicomponent 
stress-strength model is given by [14]. 

( ), 1 2at least s of ,the exceed ,..., Ys k kR X X XP  =   (1.1) 

 [ ] [ ]1 ( ) ( ) ( ),
k i k i

i s

k
F y F y dG y

i

∞
−

= −∞




 
= −


∑ ∫  (1.2) 

where 1 2, ,..., kX X X  are identically independently 
distributed (iid) strength variables and subjected to 
common random stress, Y . The probability in (1.1) is 
termed as reliability in a multicomponent stress-strength 
model [14]. 

The random variable (rv) X follows the proportional 
hazard rate (PHR) model if the cumulative distribution 
function (cdf ) of X have the following form 

 ( ; ) 1 ( ) ; 0,F x H x xθ
θ  = − >   (1.3) 

where ( ) 1 ( )H x H x= −  is the survival function of the 
baseline rv and 0θ >  is power parameter. The probability 
density function (pdf) corresponding to the cdf (1.3) is 
given by 

 1( ; ) ( ) ( ) ; 0, 0,f x h x H x xθ
θ θ θ

−
 = > >   (1.4) 

where ( )h x  is the first derivative of ( )H x  with respect to 
.x  A rv X  following PHR model with power parameter 
θ  will be denoted by ~X  PHR(θ ). 

The family represented by ( )f ⋅  and ( )F ⋅  is well 
known in lifetime experiments as the PHR model [21]. 
Ahmadi et al. [22], Wang and Shi [23] and Wang [24], 
mentioned some of it's particular cases such as 
exponential, Pareto, Lomax, Burr XII and others. 

In this study, we consider the multicomponent stress-strength 
model which has k  independent and identical strength 
components and a common stress. We assume that the 
strength variables and stress variable follow PHR model. 
The system functions if  (1 )s s k≤ ≤  or more of the 
components simultaneously survive. The estimation of 
reliability for this system is obtained under the classical 
and Bayesian framework. The Lindley's approximation 
technique is carried out to obtain Bayesian estimates. 
Explicit expression for Bayes estimator of reliability  
is also obtained. Moreover, the asymptotic confidence 
interval (ACI) for reliability function is constructed. 

The rest of the paper is organized as follows: In Section 2, 
the maximum likelihood (ML) estimator and ACI of ,s kR  
are obtained. In Section 3, uniformly minimum variance 
unbiased (UMVU) estimator of ,s kR  is provided. In 
Section 4, Bayes estimator of ,s kR  is developed in both 
approximate and explicit forms under squared error loss 
function (SELF) [7]. In Section 5, simulation study is 

carried out to compare the estimates of ,s kR  by using 
Monte Carlo simulation technique and findings are 
illustrated by tables and plots. Finally, conclusions on the 
paper are provided in Section 6. 

2. ML Estimation of Rs,k 

This section deals with the ML estimation of ,s kR . 
Here, we assume that 1 2, ,..., ,kX X X Y  be independent; 

1 2, ,..., ~kX X X  PHR( 1θ ) and ~Y  PHR( 2θ ). Therefore 
from (1.1) and (1.3), ,s kR  is given by 
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where 
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In order to obtain the estimators of ,s kR , suppose n  
systems are put on life-testing experiment from the strength 
population and m  systems are from the stress population. 
In this case, we obtain the following observed data: 

1 2, ,...,i i ikX X X  and ,lY  1, 2,...,i n=  and 1,2,..., .l m=  
Then, the likelihood function of the observed sample is 
given by 
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(2.2) 

and the log-likelihood function is given by 
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From (2.3), the ML estimators of 1θ  and 2θ  are given 
by 

 1 2* * and ,nk m
S T

θ θ= =   (2.4) 

where *

1 1
ln 1 ( )

n k

ij
i j

S H x
= =

 = − − ∑ ∑  and  

 [ ]*

1
ln 1 ( ) .

m

l
l

T H y
=

= − −∑  

Hence, the ML estimator of ,s kR  is obtained from  
(2.1) and (2.4) by using the invariance property of ML 
estimators 
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To obtain the ACI interval for , ,s kR  we proceed as 
follows: 

The Fisher information matrix of 1 2( , )θ θ θ=  is given 
as 
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The ML estimator of , ,s kR  , ,s kR  is asymptotically 
normal with mean ,s kR  and variance 
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Therefore, an asymptotic 100(1 )%α−  confidence 
interval of ,s kR  is given by 

( ) ( )( ), , /2 , , /2 ,, ,s k s k s k s k s kR R z V R R z V Rα α∈ − −    (2.6) 

where /2zα  is the upper / 2thα  quantile of the standard 

normal distribution and ( ),s kV R  is the value of 

( ),s kV R  at the ML estimate of the parameteres. 

3. UMVU Estimation of Rs,k 

This section deals with the UMVU estimation of ,s kR . 

To find the UMVU estimator of ,s kR , ,
ˆs kR  say, it is 

enough to find UMVU estimator of φ  by using the 
linearity property of UMVU estimators. From (2.2), it is seen 
that * *( , )S T  is a complete sufficient statistics for 1 2( , ).θ θ  

Moreover, *
1~ ( , )S gamma nk θ  and *

2~ ( , )T gamma m θ . 
Let 
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where [ ]11ln 1 ( )S H x= − −  and [ ]1ln 1 ( ) .T H y= − −  
Obviously, ( , )S T  have exponential distribution with 
means 11/θ  and 21/θ , respectively. Then, ( , )s Tψ  is an 
unbiased estimator of φ . 

The UMVU estimator of φ , φ̂  say, can be obtained by 
using Lehmann-Scheffe Theorem and is given by 
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The integral in (3.1) is considered in two cases, i.e., 
* *( )i j t s+ >  and * *( )i j t s+ < . 

When * *( ,)i j t s+ >  the integral (3.1) can be expressed as 
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Similarly, when * *( ,)i j t s+ <  the double integral in 
(3.1) can be expressed as 
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Proceeding on the similar lines as earlier, we get 

 
1

0

1ˆ 1 ( 1) ( 1) ( 1, 1).
m

l l

l

m
nk C B l nk

l
φ

−
−

=

−
= − − −

 
 
 

+ −∑ (3.3) 

Therefore, ,s kR  can be obtained by using (2.1), (3.2) 
and (3.3) as 

 ,
0

ˆˆ ( 1) .
k k i

j
s k

i s j

k k i
R

i j
φ

−

= =

  
  
 

−
= −


∑∑  (3.4) 

4. Bayesian Estimation of Rs,k 

This section deals with the Bayesian estimation of  
,s kR . To obtain the Bayes estimator of , ,s kR  we have 

considered two independent non-informative priors, 
1( )π θ  and 2( )π θ  say, where 

 1 1 2 2
1 2

1 1( ) ; 0 and ( ) ; 0.π θ θ π θ θ
θ θ

= > = >  (4.1) 

Looking at (2.2) and (4.1), the joint posterior density of 
1 2( , )θ θ  comes out to be 

[ ]

* *
1 1

1 2 1 2

1 2

1 1 1

( ) ( )( , | ,y)
( ) ( )

1 ( ) 1 ( ) .

x
nk m

nk m

n k m

ij l
i j l

S T
nk m

H x H y
θ θ

π θ θ θ θ− −

= = =

=
Γ Γ

 − − ∏ ∏ ∏
(4.2) 

Therefore, the Bayes estimator of ,s kR  under SELF is 
given by 
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4.1. Lindley's Approximation 
In this section, we consider the Lindley's approximation 

technique for the estimation of ,s kR . To find the  

Bayes estimator of , ,s kR  ,
L
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

 say, using the Lindley's 
approximation technique, consider the posterior 
expectation ( )I x  is expressible in the form of ratio of 
integral as given below 
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where 1 2( , )ρ θ θ  is the log of joint prior of 1θ  and 2θ , 
given by 
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If n  and m  are sufficiently large, according to Lindley 
[25], ( )I x  can be approximately evaluated as 
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4.2. Explicit Expression for Bayes Estimator 
Following Kotz et al. [26] and Ventura and Racugno [27], 

we obtain the posterior pdf of ,s kR  by mean of a one-to-one 

transformation of the type ( )1 2 ,: ( , ) , .s kU Rθ θ λ→  So, 

putting 
[ ]
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1 2
;

( )i j
θ

φ
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+ +

 1 2( )i jλ θ θ= + + , taking into 

account that the Jacobian of the transformation is 
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, 

by (4.2) the joint pdf of ( , )φ λ  is 
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Consequently, we can obtain the posterior pdf of φ  
marginalizing (4.8) with respect to λ , i.e., 
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where 
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*
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The Bayes estimator of φ , Eφ


 say, without using 
Lindley's approximation technique, under SELF can be 
easily obtained by using a result of Gradshteyn and 
Ryzhik ([28], p.286, section 3.197(3)), as 
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where 2 1( , , , )F ⋅ ⋅ ⋅ ⋅  denotes the well-known hypergeometric 
function [see, for example, Gradshteyn and Ryzhik  
([29], p.1005, Eq. 9.111)]. 

Therefore, ,
E
s kR


 can be obtained by using (2.1) and 
(4.10) as 
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4.3. MCMC Method 

It is seen that the marginal densities of 1θ  and 2θ   

are gamma distribution with parameters *( , )nk S  and 
*( , )m T , respectively. To obtain the Bayes estimate  

of ,
MCMC
s kR  under SELF the following algorithm is  

used: 
(1) Set i=1 
(2) Generate ( )

1
iθ  from *( , )gamma nk S  

(3) Generate ( )
2
iθ  from *( , )gamma m T  

(4) Compute ( )
,
i

s kR  at ( ) ( )
1 2,i iθ θ  

(5) Set i=i+1 
(6) Repeat steps 2-5, N  times and get the posterior 

sample ( )
,
i

s kR , 1, 2,...,i N= . 

Then the Bayes estimate of ,
MCMC
s kR  under SELF is 

given by 
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R R
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−

= +
=

− ∑
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 (4.12) 

5. Simulation Study 

This section deals with some experimental results to 
examine the behavior of the proposed methods for 
different parametric values and sample sizes. Simulation 
study is carried out by using Monte Carlo simulation 
technique and comparisons are made on the basis of  
mean squared errors (MSEs) of different estimates. 
Throughout the simulation, we have considered exponential 
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distribution by taking ( ) 1 , 0.xH x e x−= − >  All the 
computations are done on statistical software-R. 

In order to obtain the , ,MCMC
s kR  we ran a MCMC chain. 

We generate 30000 iteration and to diminish the effect of 
the starting distribution, we discard first 5000 observations 
and focus on the remaining. 

We have generated 3000 random samples each of size 
n  from strength and of size m  from the stress 
populations for different vales of 1θ  and 2θ . For 1θ =2 
and 2θ =1(1)4, we have computed ,s kR , average values of 

,s kR , ,
ˆs kR , ,

L
s kR


, , ,,E MCMC
s k s kR R
 

 and their corresponding 
MSEs. We have also computed the ACI and length of the 
ACI. For different values of n  and ( , )s k =(1,3), (2,3), 

these results are reported in Table 1. Under the same  
set-up for 1θ =3, 2θ =1(1)4 and different values of n , m  
and ( , )s k =(1,4), (2,4), the results are presented in Table 2. 

In order to compare the performances of different 
estimators of, ,s kR  graphically, for different values of n , 
m , we have conducted the simulation experiment based 
on the above mentioned procedure. For 1θ =2 and 2θ
=1(1)4, we have computed the MSEs and the biases 
corresponding to the different estimators of ,s kR . For 
different values of ,n  m  and ( , )s k =(1,3), obtained 

MSEs and biases have scaled by multiplying 210 , 
thereafter these results are plotted in Figure 1-3, 
respectively. 

Table 1. Estimates of Rs,k 

1

1,3

2

R
θ =

↓
 2θ ↓  n ↓  m ↓  ,s kR ↓  ,

ˆs kR ↓  ,
L
s kR ↓


 ,
E
s kR ↓


 ,
MCMC
s kR ↓


 ACI ↓  
Length of 

ACI ↓  

0.5428571 1 

10 10 0.5554(0.0127) 0.5445(0.0138) 0.546(0.0115) 0.5463(0.0116) 0.5463(0.0116) (0.3435,0.7672) 0.4237 

20 20 0.5452(0.0059) 0.5395(0.0062) 0.5407(0.0056) 0.5408(0.0056) 0.5408(0.0056) (0.3920,0.6985) 0.3065 

20 30 0.545(0.0045) 0.5419(0.0046) 0.5429(0.0043) 0.5429(0.0043) 0.5429(0.0043) (0.4116,0.6784) 0.2668 

30 30 0.5458(0.0042) 0.542(0.0044) 0.5428(0.0041) 0.5429(0.0041) 0.5429(0.0041) (0.4199,0.6717) 0.2518 

0.75 2 

10 10 0.7524(0.0089) 0.7523(0.0099) 0.736(0.0087) 0.7364(0.0087) 0.7364(0.0087) (0.5666,0.9381) 0.3715 

20 20 0.7497(0.0046) 0.7496(0.0049) 0.7413(0.0045) 0.7414(0.0045) 0.7414(0.0045) (0.6153,0.8842) 0.2688 

20 30 0.7487(0.0036) 0.7497(0.0037) 0.7434(0.0036) 0.7435(0.0036) 0.7435(0.0036) (0.6316,0.8658) 0.2342 

30 30 0.7487(0.0032) 0.7485(0.0034) 0.743(0.0032) 0.743(0.0032) 0.743(0.0032) (0.6381,0.8593) 0.2212 

0.847619 3 

10 10 0.8419(0.0055) 0.8464(0.0059) 0.8248(0.0061) 0.825(0.006) 0.825(0.006) (0.6925,0.9912) 0.2987 

20 20 0.8449(0.0028) 0.8472(0.0029) 0.836(0.003) 0.8361(0.003) 0.836(0.003) (0.7396,0.9502) 0.2106 

20 30 0.8462(0.002) 0.8488(0.0021) 0.8403(0.0021) 0.8404(0.0021) 0.8404(0.0021) (0.7553,0.9372) 0.1819 

30 30 0.8457(0.0018) 0.8473(0.0019) 0.8397(0.0019) 0.8397(0.0019) 0.8397(0.0019) (0.7597,0.9317) 0.1720 

0.9 4 

10 10 0.8954(0.0034) 0.9015(0.0035) 0.88(0.004) 0.8798(0.004) 0.8798(0.004) (0.7787,1.0122) 0.2335 

20 20 0.8968(0.0016) 0.9(0.0016) 0.8887(0.0018) 0.8887(0.0018) 0.8887(0.0018) (0.8153,0.9784) 0.1631 

20 30 0.8976(0.0013) 0.9006(0.0013) 0.8922(0.0014) 0.8922(0.0014) 0.8922(0.0014) (0.8274,0.9678) 0.1404 

30 30 0.8983(0.0011) 0.9004(0.0011) 0.8928(0.0012) 0.8928(0.0012) 0.8928(0.0012) (0.8324,0.9642) 0.1318 

2,3R ↓            

0.3142857 1 

10 10 0.3291(0.0083) 0.3139(0.0082) 0.3279(0.0078) 0.3279(0.0078) 0.327990.0078) (0.1592,0.4990) 0.3398 

20 20 0.3219(0.0039) 0.3142(0.0038) 0.3215(0.0038) 0.3215(0.0038) 0.3215(0.0038) (0.2020,0.4417) 0.2397 

20 30 0.3192(0.0029) 0.3145(0.0029) 0.32(0.0028) 0.32(0.0028) 0.32(0.0028) (0.2158,0.4227) 0.2070 

30 30 0.3198(0.0025) 0.3147(0.0025) 0.3196(0.0025) 0.3196(0.0025) 0.3196(0.0025) (0.2220,0.4175) 0.1955 

0.5 2 

10 10 0.5154(0.0106) 0.5041(0.0113) 0.5073(0.0096) 0.5076(0.0096) 0.5076(0.0096) (0.3133,0.7175) 0.4042 

20 20 0.5072(0.0057) 0.5014(0.0059) 0.5034(0.0054) 0.5034(0.0054) 0.5034(0.0054) (0.3622,0.6523) 0.2901 

20 30 0.5035(0.004) 0.5003(0.0041) 0.5019(0.0039) 0.5019(0.0039) 0.5019(0.0039) (0.3773,0.6297) 0.2524 

30 30 0.5063(0.0039) 0.5024(0.004) 0.5038(0.0038) 0.5038(0.0038) 0.5038(0.0038) (0.3872,0.6255) 0.2383 

0.6190476 3 

10 10 0.6285(0.0107) 0.6224(0.0117) 0.6162(0.0099) 0.6166(0.0099) 0.6166(0.0099) (0.4304,0.8266) 0.3962 

20 20 0.6221(0.0053) 0.6189(0.0056) 0.6159(0.0051) 0.616(0.0051) 0.616(0.0051) (0.4785,0.7657) 0.2872 

20 30 0.6181(0.0039) 0.6168(0.0041) 0.6147(0.0038) 0.6147(0.0038) 0.6147(0.0038) (0.4928,0.7434) 0.2506 

30 30 0.6202(0.0038) 0.618(0.0039) 0.616(0.0037) 0.6161(0.0037) 0.6161(0.0037) (0.5021,0.7382) 0.2361 

0.7 4 

10 10 0.7012(0.0091) 0.6988(0.01) 0.6867(0.0088) 0.6871(0.0088) 0.687(0.0088) (0.5152,0.8871) 0.3720 

20 20 0.7019(0.0046) 0.7006(0.0049) 0.6944(0.0045) 0.6945(0.0045) 0.6945(0.0045) (0.5681,0.8356) 0.2675 

20 30 0.6995(0.0035) 0.6997(0.0037) 0.695(0.0035) 0.6951(0.0035) 0.6951(0.0035) (0.5829,0.8162) 0.2334 

30 30 0.7012(0.0031) 0.7004(0.0032) 0.6962(0.0031) 0.6963(0.0031) 0.6963(0.0031) (0.5913,0.8112) 0.2199 
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Table 2. Estimates of Rs,k 

1

1,4

3

R
θ =

↓
 2θ ↓  n ↓  m ↓  ,s kR ↓  ,

ˆs kR ↓  ,
L
s kR ↓


 ,
E
s kR ↓


 ,
MCMC
s kR ↓


 ACI ↓  
Length of 

ACI ↓  

0.5428571 1 

10 10 0.4832(0.0117) 0.4676(0.0122) 0.4756(0.0106) 0.4759(0.0107) 0.4759(0.0107) (0.2771,0.6893) 0.4122 

20 20 0.4748(0.0059) 0.4668(0.006) 0.4712(0.0056) 0.4713(0.0056) 0.4713(0.0056) (0.3272,0.6223) 0.2950 

20 30 0.4718(0.0042) 0.467(0.0043) 0.4703(0.0041) 0.4703(0.0041) 0.4703(0.0041) (0.3451,0.5985) 0.2534 

30 30 0.4722(0.0039) 0.4656(0.0045) 0.4699(0.0037) 0.4699(0.0038) 0.4699(0.0037) (0.3512,0.5931) 0.2419 

0.75 2 

10 10 0.6898(0.0114) 0.684(0.0128) 0.674(0.0108) 0.6745(0.0108) 0.6745(0.0108) (0.4877,0.8920) 0.4043 

20 20 0.6863(0.0055) 0.6831(0.0058) 0.6782(0.0053) 0.6783(0.0053) 0.6783(0.0053) (0.5393,0.8333) 0.2940 

20 30 0.6836(0.0042) 0.6822(0.0043) 0.6786(0.0041) 0.6787(0.0041) 0.6787(0.0041) (0.5567,0.8105) 0.2538 

30 30 0.6864(0.0038) 0.6836(0.0035) 0.6809(0.0037) 0.681(0.0037) 0.681(0.0037) (0.5655,0.8073) 0.2418 

0.847619 3 

10 10 0.7987(0.0071) 0.7996(0.008) 0.7802(0.0074) 0.7805(0.0073) 0.7805(0.0073) (0.6258,0.9715) 0.3456 

20 20 0.7992(0.0039) 0.7996(0.0041) 0.7896(0.004) 0.7897(0.004) 0.7897(0.004) (0.6754,0.9230) 0.2476 

20 30 0.7986(0.0029) 0.7997(0.003) 0.7923(0.0029) 0.7924(0.0029) 0.7924(0.0029) (0.6919,0.9052) 0.2133 

30 30 0.8007(0.0027) 0.8004(0.0031) 0.7943(0.0027) 0.7943(0.0027) 0.7943(0.0027) (0.6995,0.9020) 0.2026 

0.9 4 

10 10 0.8609 (0.005) 0.8651(0.0054) 0.8428(0.0057) 0.8428(0.0056) 0.8428(0.0056) (0.7180,1.0038) 0.2858 

20 20 0.8639(0.0025) 0.8661(0.0026) 0.8545(0.0027) 0.8545(0.0027) 0.8545(0.0027) (0.7634,0.9645) 0.2011 

20 30 0.8652(0.0018) 0.8675(0.0019) 0.8589(0.0019) 0.8589(0.0019) 0.8589(0.0019) (0.7794,0.9510) 0.1716 

30 30 0.8664(0.0016) 0.8683(0.0017) 0.86(0.0017) 0.86(0.0017) 0.86(0.0017) (0.7850,0.9478) 0.1628 

1,4R ↓            

0.3142857 1 

10 10 0.3074(0.0078) 0.2906(0.0073) 0.3059(0.0073) 0.306(0.0073) 0.306(0.0073) (0.1441,0.4707) 0.3265 

20 20 0.296 (0.0035) 0.2877(0.0034) 0.2956(0.0034) 0.2956(0.0034) 0.2955(0.0034) (0.1826,0.4094) 0.2267 

20 30 0.2926(0.0024) 0.2873(0.0023) 0.2931(0.0023) 0.2932(0.0023) 0.2931(0.0023) (0.1962,0.3891) 0.1929 

30 30 0.2926(0.0022) 0.2862(0.002) 0.2924(0.0021) 0.2925(0.0022) 0.2924(0.0021) (0.2007,0.3846) 0.1840 

0.5 2 

10 10 0.4907(0.012) 0.4759(0.0126) 0.4826(0.0109) 0.4829(0.0109) 0.4829(0.0109) (0.2869,0.6944) 0.4075 

20 20 0.4812(0.0058) 0.4736(0.0059) 0.4774(0.0055) 0.4775(0.0055) 0.4775(0.0055) (0.3350,0.6273) 0.2923 

20 30 0.4778(0.0041) 0.4732(0.0041) 0.4761(0.0039) 0.4761(0.0039) 0.4761(0.0039) (0.3522,0.6034) 0.2511 

30 30 0.4816(0.0038) 0.4805(0.0055) 0.4791(0.0036) 0.4791(0.0036) 0.4791(0.0036) (0.3614,0.6017) 0.2403 

0.6190476 3 

10 10 0.6098(0.0116) 0.6(0.0128) 0.5969(0.0107) 0.5974(0.0107) 0.5974(0.0107) (0.4027,0.8170) 0.4142 

20 20 0.6056(0.006) 0.6005(0.0063) 0.5991(0.0058) 0.5992(0.0058) 0.5992(0.0058) (0.4558,0.7554) 0.2996 

20 30 0.6049(0.0047) 0.6022(0.0048) 0.6012(0.0045) 0.6013(0.0045) 0.6012(0.0045) (0.4759,0.7339) 0.2580 

30 30 0.6019(0.0038) 0.5985(0.0037) 0.5976(0.0037) 0.5977(0.0037) 0.5977(0.0037) (0.4784,0.7254) 0.2470 

0.7 4 

10 10 0.6966(0.0103) 0.6917(0.0115) 0.6807(0.0097) 0.6812(0.0097) 0.6812(0.0097) (0.5003,0.8930) 0.3927 

20 20 0.6893(0.0057) 0.6865(0.006) 0.6812(0.0056) 0.6813(0.0056) 0.6813(0.0056) (0.5467,0.8318) 0.2851 

20 30 0.6892(0.0039) 0.6881(0.0041) 0.6842(0.0039) 0.6842(0.0039) 0.6843(0.0039) (0.5662,0.8122) 0.2460 

30 30 0.6885(0.0036) 0.6856(0.0039) 0.6831(0.0036) 0.6831(0.0036) 0.6831(0.0036) (0.571,0.806) 0.235 

 

Figure 1. MSEs and Biases of R1,3, for n = m=10 
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Figure 2. MSEs and Biases of R1,3, for n = m=20 

 

Figure 3. MSEs and Biases of R1,3, for n = m=30 

6. Conclusions 
The Table 1 - Table 2 and Figure 1 - Figure 3, illustrate 

the following: 
(1) Minimum MSE is depicted by the Bayes estimators 

of ,s kR , 
(2) both the Bayes estimators of ,s kR  depicting the 

same behavior of MSEs and biases, 
(3) the MSEs and biases of the estimates decreases 

when the sample size increases, 
(4) all the estimates come close to each other when the 

sample size increases, 
(5) when ,s kR  is around 0.5 the corresponding MSEs 

are maximum, 
(6) when ,s kR  is small or large the corresponding 

MSEs are minimum for all estimates, and 
(7) length of the ACI decreases as sample size increase. 
Here, we have studied the multicomponent system, 

which has k  independent and identical strength components 
and each component is exposed to a common random 
stress, where the underlying distribution of stress and 
strength variables is assumed to be PHR model. Using 
Monte Carlo simulation technique UMVU, ML and Bayes 

estimates are obtained and compared on the basis of their 
corresponding MSEs. Further this paper give the clear 
picture of comparison of classical and Bayesian methods 
of estimation for the members of PHR family of distributions. 
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