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1. Introduction

Euclidean geometry was believed to solve all the
problems that could arise in society. Despite all these we
came to discover that there were some questions
Euclidean geometry could not answer. When we tried to
find out, it led us to non-Euclidean Geometry. Euclid, a
Greek mathematician who lived in approximately 300
B.C., is credited with collecting and organizing the
postulates and theorems that are studied in geometry
courses. The Parallel Postulate represents one of the most
controversial assumptions made by Euclid. Over the years,
Euclid’s Parallel Postulate has troubled mathematicians.
The thought that lines may intersect at possibly infinite. In
1795, the mathematician John Playfair devised an
alternative formulation of Euclid’s Parallel Postulate
called Playfair’s Axiom. Playfair’s Axiom is more useful
than Euclid’s Parallel Postulate, as it answers the
question, "How many lines can be drawn through a point
not on a line and, at the same time, parallel to that line?’
In most geometry courses, Euclid’s Parallel Postulate
and Playfair’'s Axiom are used interchangeably. A
development of geometry in which the Parallel Postulate
or Playfair’s Axiom do not hold is known as non-
Euclidean geometry. This work is part of spherical
geometry and one of it aims is to propose a method which
can help us to construct spherical objet from given
Euclidean one. It is well know that geometry aids in our
perception of the world. We can use it to de-construct our
view of objects into points, lines, circles, planes and
spheres. For example, some properties of triangles that we
know are that it consists of three straight lines and three

angles that sum to z. Can we imagine other geometries
that do not give these familiar results? The Euclidean
geometry that we are familiar with depends on Euclid’s
parallel postulate. Since it is a postulate and not a theorem,
it is assumed to be true without proof. If we alter that
postulate, new geometries emerge. This project explores
one model of that Non-Euclidean Geometry; the spherical
geometry.

In this work we solve the following problem: is there a
spherical pyramid homeomorphic to a prescribed Euclidean
given pyramid? We also show how our construction can
be use in engineering. Notably the existence of this
homeomorphism can be use in the frame work of
numerical metallurgy.

The main objective of this work is to prove the
existence of spherical analogue of a given regular
Euclidean pyramid with square basis. We prove their
existence and we also prove that there are homeomorphic
to their Euclidean counterpart. In other words we have
proven that the two geometric entities are topologically
equivalent. By compare their volume and area we show
that those entity are not isometric [2]. More precisely we
show that the volume and the area of spherical counterpart
is bigger than it Euclidean analogue.

More explicitly, let SABCD be a given regular
Euclidean pyramid with square basis ABCD. We denote
ASAB, ASBC, ASCD and ASDA the lateral faces of
SABCD. To construct the spherical analogue of SABCD
we define and homeomorphism from IR’ to IR® which
push each sides of SABCD on its circumscribed sphere.
We denote Ssag, Ssec, Sscp and Sspa respectively the image
of ASAB, ASBC, ASCD and ASDA. Then, Sspg U Sspe U
SscoW Sspa is the spherical analogue of our Euclidean
pyramid.
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2. Preliminary

A sphere is the surface generated by the revolution of a
semicircle about its diameter, which remains fixed. The
term sphere is used in a two-fold signification

1. As denoting the surface.

2. The solid bounded by the surface. These correspond
to the two-fold signification of the word circle in
plane Geometry, namely, the circumference, and
the area included within it. The centre of the
generating semicircle is called the centre of the
sphere. A radius of the sphere is any right line
drawn from the centre to a point in the surface. A
diameter of a sphere is any right line drawn through
the centre, and terminated both ways by the surface.

From the definition of a spherical surface it follows at
once

1. That every point in it is equally distant from the
centre of the generating semi- semicircle.

2. That any point P in space is outside, on, or inside
the surface, according as its distance from the
centre is greater than, equal to, or less than the
radius.

3. That spheres having equal radius are equal.

It is well know that

Proposition 2.1. Every section of a sphere made by a
plane is a circle.

From this theorem, we deduce the following properties:

i. If R be the radius of the sphere, r the radius of the
section, d the distance of the plane of section from
the centre of the sphere, r2= Rz - d2,

ii. IfR = d, r = 0. Hence the section will reduce to a
point, and the plane will touch the sphere.

iii. Two circles, whose planes are equally distant from
the centre, are equal.

Between elements of sphere, one of the most useful in

our work is the great circle.

Definition 2.1. Circle of the sphere whose plane passes
through the centre is called a great circle, and a circle
whose plane does not pass through the centre is called a
small circle.

The following well know theorem will be very
important in our construction.

Proposition 2.2. Only one great circle can be drawn
through two points on the surface of the sphere, unless
they are diametrically opposite.

Proposition _2.3. The locus of all the points of a
sphere which are equidistant from two fixed points 4, B
of the sphere is the great circle, which is perpendicular at
its middle point to the arc of the great circle AB.

2.1. On existence of Circumscribe Sphere
to a Given Pyramid

In this subsection we will prove the existence of
circumscribe sphere to a given regular pyramid with
square basis.

Let E be a dimension 3 Euclidean space and SABCD
five non coplanar points of E such that ABCD
form a square. SABCD is a regular pyramid if the
following triangle ASAD, ASDC, ASCB, ASBA are
equilateral.

Figure 1. Regular pyramid with square

Perpendicular bisector of real line segment [X,Y] of the
n e IN* dimensional Euclidean space E is the affine
hyperplane (XY)* passing through the midpoint of [X,Y]
and perpendicular to (XY ).

Figure 2. Perpendicular bisector

Any two great circles of the sphere bisect each other.
The figure formed by the shorter arcs joining three points
on the surface of a sphere, no two of which are
diametrically opposite, is called a spherical triangle. The
portion of a sphere included between two halves of great
circles is called a lune. Two triangles, which have a
common side and whose other sides belong to the same
great circles, are called columnar, triangles.

Figure 3. Circumscribe sphere to a pyramid SABCD
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Theorem 2.1. Any regular pyramid with square basis is
writable in a sphere with centre in the altitude.

Proof: Let ABCD be the basis of a pyramid SABCD and
[0S], its altitude. Then the line segments [AB] and [DC]
have common perpendicular bisector plan P.

As matter of the fact, P is perpendicular to the line
segment [AB] and passing through its midpoint and it is
perpendicular to the line (AB) since line (AB) || (DC) and
AB = DC, then it is also according to the Thales theorem,
perpendicular to [AD] and it passing through its midpoint.
Therefore, it is also its perpendicular bisector. Likewise
BC and AD have the same perpendicular bisector Q. Since
point OA = OC, OD = OB, SA = AB = SB = SC = SD, then

(0S) € PnQ. Therefore PNQ = {(0S)}. Let R be the

perpendicular bisector of [SA]. According to Thales
theorem, R is the perpendicular bisector of [SD], [SC] and

[SC]. Therefore, Q = (0S) NR is equidistance to point 4, B,

G, D, S. Itistherefore the center of the circumscribe sphere
to the pyramid SABCD.

- - 0OS e
—, j=——,k ==, then O;Q,Q,k .
oD ) oC oS (055, k)

Is direct orthonormal frame. Let e be the length basis’s
side and h the altitude of above pyramid.
Proposition 2.4. The centre of the circumscribe sphere of

. . i _2h2—e2 . S
pyramid SABCD is Q 0,0,T and it radius is

eZ

R= 1 h+—.
2 4h
Proof:

o Determination of the centre of circumscribe sphere.
After determine coordinate of points 4, B, C, D and S in the
frame R, we fine the component of vectorsQB, OC, OD,
QS where Q(x,y,2) is the centre of the circumscribe sphere.

We have QA = OB, if and only if QA% = QB2

i.e; x> +(0OC +y)?+z°= (OD +x)?+ y* + 72

ie;

0C? + 20C.y =0D? + 20D.x (1)

Likewise, QD = QA if and only if QD?= QA?i.e; y?
+(OD—x)* +22= (OC +y)* +x* +72°

i.e;
OD? - 20D.x=0C? + 20C.y 2
From (1) and 2, we deduce that 20D%2=20C?+ 40Cyy,
. oDb?-0c?
e y=———
20C

i.e y=0since OD = 0C.

It follow from, (2) that x = y because OC = OD.
Therefore, x = 0.

Elsewhere, QA = QS if and only if QA*= QS?i.e; X
+(OC+y)? +2°= X +y* +(0S-2)’,

i.e; OC?*+ 7%= (OS — z)?, therefore

,_0s?-oc?
208

2_pp2
Ever since, Q(0; O;OSZOEC ). But OS = h an according

to the Pythagoreans theorem in the right triangle ABC, we
have:

OC = E = Qe;
22
because AC =e.
2 2
Therefore 9(0;0;% ).

» Determination of the radius of the circumscribe sphere.
By definition, we have :

2
T 0s2-0c?) 0s2+0D?
208 20S

1 e? 2 g2
Thus R ==h+— because OS=hand OD“ = —.
2 4h 2

2.2. On Associated Spherical Pyramid

We suppose that SABCD is a real Euclidean pyramid.
Before we construct the spherical pyramid associated to
SABCD, we shall first recall some analogy between the
geometry of the sphere and the plane. In order to understand
the analogy between plane and spherical geometry, it is
necessary to observe that to right lines on the plane
correspond on the sphere great circles, and the circles on
the plane correspond circles on the sphere, which may be
either great or small. We have proven that our Euclidean
pyramid is inscribed in a sphere. Our pyramid has 8 sides
and each side define with the centre . a unique Euclidean
plan which intersect the sphere trough a great circle. It is
well know that any two great circles of the sphere bisect
each other. The sides of our spherical pyramid are defined
by section of those great circles with the sphere.

2.2.1. Great Circles Equations Associated to Euclidean
Pyramid
Proposition 2.5. Equations of the planes Pg sajand Pg s
passing respectively trough Q, S, Aand Q, S, C are: x = 0.
Proof: Let M(x,y,z) € IR*N Pq sa- We fine coordinates of
AM , AS and AQ . Since those Points are coplanar,
we have: (A4S A 4Q). AM = 0 and then (a-0S)OCx = 0,
. 2h? —¢?

since a—0S < 0, where a= an
x = 0. Likewise, we prove that the plane passing trough A,
S, Qand S, C, Q have the same equation.
Proposition 2.6. Equations of plans Pgqsp; and Pg sg;
passing through Q, S,Dand Q, S, Bisy =0.
Proof: Let M(x,y,z) € IR®N Pqsop, We determine in the
frame R the coordinates of vectors DS, DQ and DM. Since
D, S, Q and M are coplanar, (DS ADQ ). DM = 0.

i.e y=0;sincea+ OS#0.

Then Pgsp;: y = 0. Likewise, we show that plan Pg [sg)
and Pgq [spy has the same equation.
Proposition 2.7.

2ax + 2ay — ev/2z + av/2e = 0 is the equation of the plan
Pqag Passing through Q, A and B.

. Thus, PQ'[SA]:
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Proof: Let M(x,y,2) € IR*N P pag),

We determine the coordinates in R of AM,AF andAQ.
Since A, B, Q and M are coplanar.

i.e a.0Cx + a.ODy — OD.OCz +a.0D.OC = 0. Then
ax+ay —ODz +a.0D = 0, because OD = OC. And then

Poas : 2ax + 2ay — ev2z + av2e = 0; because h=0S
and OD = 0C = ¢
Proposition 2.8.

—2ax + 2ay — ev/2z + av/2e = 0 is the equation of plan
Pq ap) passing through Q, A and D.
Proof: Let M(x,y,z) € IR*N Paapy. Using the coordinates
in the frame R of DA, DG and DM and the fact that points
A, D, Q and M are coplanar, (ﬁ /\m). DM = 0, we
deduce that Then

Po[AD] : —28X+2ay —ev/2Z +av/2e = 0.

Proposition 2.9.

2ax + 2ay + ev2z - av/2e = 0 is the equation of plan
Po e passing through Q, C and D
Proof: Let M(xy,z) € IR® N Paipcy. After determine
coordinates in the frame R of CD, CQ and CM, we use
the fact that points C, D, Q and M are coplanar, to

compute (CD ACQ ). CM = 0 and then obtain
2ax + 2ay +ev/2z —a/2e = 0.

Proposition 2.10.

—2ax + 2ay + ev/2z - av2e = 0 is the equation of plan
Po [sc) passing through point Q, C and B.
Proof: Let M(x,y,z) € IR3 N Pqpg Using coordinates in
the frame R of BM, BQ and BC, and the fact that B, 4, Q
and M are coplanar, i.e (BC ABQ ). BM = 0, we obtain:

~a0OCx +a0Dy + 0D?z-a0D? =0

2ax + 2ay +ev/2z —a/2e = 0.
Therefore
Po[BC] : —2ax+2ay + ev2z-av2e=0.

Proposition 2.11. The equation of the great circle Pagc
passing through points B, Aand Cis: z=0inR.
Proof: If M(x,y,z) € IR3 N Pupc, then using coordinate of

AM,AB and AC and the fact that points 4, B, C and M are
coplanar,

i.e; (AB AAC ). AM = 0. That —20D?z = 0.

Therefore, PABC: z= 0.

We recall that; when two arcs of circles intersect, the
angle of the tangents at their points of intersection is
called the angle of the arcs. It is also well know that; the
angle of intersection of two great circles is equal to the
inclination of their planes. We conclude that, the angle
between two great circles is equal to the inclination of
their planes. Therefore, we have a method to fine angle
between two spherical line segments. Since the lateral
surfaces of our spherical pyramid are deformed of their
Euclidean counterpart. We need to define the spherical
triangle. The special case of antipodal triangle we play a
major role in this work. We recall its definition.

Definition 2.2. Two triangles, whose corresponding
vertices are diametrically opposite, are called antipodal
triangle.

After defined spherical angle, we need to give the
expression of some their trigonometric functions.
Proposition 2.12. Let 6, be an oriented angle between
plans (AOB) and (AQB). Then:

2ehv/4h* +e*
c0sf=—F——
4h* 1 et
(Zh2 —ez)\/4h4 +et
sin@ =
4h* 1 et

Where e is the basis side length and h the altitude of
pyramid SABCD of Figure 1.

Proof: 0 is equal to angle between perpendicular the plans
(AOB) and (AQB) Equation of the perpendicular bisector

to [AB] isy = x.
Indeed, let I be the midpoint of [AB], then
I(—OTD;—OTD;OJ. Since AB is orthogonal to M, if

M €Pumed[AB], then AB. TM=0,
i.e; (x+ %) - (y+ %) =0.Thusy=0.
Therefore Ppeg[AB]: y = .
Denote A; = Preg[AB] N Popagjand Az = Preg[AB] N P [ag)-
The equation of plan Poup is: z = 0 and we have P ag:
ax+ay-0Dz+a0D = 0 where

2 2

- =X

a:2h—e'A1:{y
z=0

y=X
Az .
ax+ay—-0ODz+aOD =0
2 20D
And then u;| 2 | is direction of A, and u,| 20D | that of
0 4a

—A —

A,. Yet U7 ;= uyuycosd and Il uy* w5l =ujuy|sind|

where u; = V4 + 4 = 24/2 and

2yJ0s* + oD*

oS
Somewhere else, u;.u;=40D+40D=80D.

u, = V40D? + 40D? + 16a? =

Uy Uy
UpUp
20D0S

\20s* + 20D*

_ 2eh 4n* 1 ¢
an* et .
8a 8a

-8a =| —8a |. Therefore,
40D -40D 0

cosd =

Besides, U AU, =
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8|a|x/§
2yJ0s* +oD*
Zﬁxi
0S
~ 0D?-052

~ Jos*+op*

Since O is obtuse and negatif, we have cosf > 0 and

sind <0,
(osZ—ODﬂVos4+0D4
0s* +op*
(2h2 _¢? )\/4h4 e

4h* +e*

lsin6| =

sin@ =

Because 0D > OS.

Proposition 2.13. There exist an Euclidean rotation which
transform plan Py, 45 to plan Pq,[4B].

N

2
Proof: The unit direct vector of line (AB) is G| /2 |.
2

0

According to Rodrigues formulas the matrix of the
rotation in the frame R is

100
0 01
2
d dqady a3
+(1-cos)| aqa, a3 ayag

a3 axas a32

0 —az ay
+sind| a3 0 —a |
- & 0

Where a,  a, and a; are coordinates of i in R. Now

1 00 cosd O 0
cosd|0 1 0|=| O cosd O
0 01 0 0 cos@

af  aa, a3
(1-cost)| aa, a?  ayag
aag 3y a3

1 cos@ 1 cosé

=2 2422200
2 2 2 2
1 cos® 1 cosé
2 2 2 2
0 0 0

J2sing
2

Consequently,

1+cosf® —1+cosé —\/Esine

—a3 &
0 -
y 0
0 —J2sing
2
0 —J2sino
2
J2sing 0
2

2

—1+cos® 1+cos® —/2sin@

2 2

R@,[AB] - 2

2 2

cosé

2

J2sing  f2sing
2

- —

Proposition 2.14. The image of frame R = (0; 7,7 , k) by

R.5 (48] is the directed frame R’ = (0’;i’,j’ , k’). Where

—1+cosé

2

o —1+2cos€OD , i

oD

oD

J2sing
2

J2sing
2
J2sing
2
cosé

Pt

frame R, and the basis (7, J, k).

Proof: We have:

1'= R@,[AB]T =

Likewise,

I'=Rine)) =

Then,

1+ cosé —1+cosé
2 2
—1+cosé -,| 1+cosf
— | , and
2 2
J2sin6 J2sing
2 2

, are coordinates of O’, 7,j'and K in the

-

1+ cosé
2 1
-1+cos@ | . -
———|sincei | 0 |.
0
J2sing
2
-1+ cosé
2 0
l+cos@ | . -
> sincej| 1 |.
0
J2sin6
2
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_x/Esine
2
0
A - \/ESiI'IH . -
k =R@’[AB]k = 5 sincek | O |.
cosé 1

We shall determine coordinates of O’to conclude.

Let foy [4B] ° be the affine rotation to the vectorial
rotation above, then fue,[AB (A)=A;
i.e;
0= —1+cosé OD +d,
2
—op="1%0p . g,
0o J2sing 0D +d,
2
Where

(dy;dp;d3) = T ag) (0)

_ O,(—1+20059 oD, —1+2cos6' oD, \/Ezlne ODJ'

R’ is the direct orthogonal frame image of the frame R by
an isometry.

3. Topological Relation between the Two
Pyramids

In this section, we suppose that we are in three
dimensional Euclidean real space and we construct a
homeomorphism between Euclidean pyramid and his
spherical counterpart.

3.1. Cartesian Equation of SAD

Lemma 3.1.

E. 2

P[AD] hx — hy+cTz c—h 0

is the equation of the plan Psap) passing through points S,
AandDinR.

Proof: Fine coordinates of points 4, D and S; and for any
M(x;y;z) € 1IR3 N PS,[AD] determine the coordinates of

vectors SA, SD and SM in the frame R and compute
(SA ASD).SM = 0. Therefore OSx—OSy +ODz —ODOS =

Bz, 2

0 then PS[AD] hx-hy +c—z c—h 0.. Because OS

=h and OD:C7.
Lemma 3.2.
—~J2c 2 J2c 2c
(sD): " " on P (sA)Y T an P2 and
y=0 x=0

are equations of Euclidean lines (SD),

= D
(AD):{X y+0
z=0

(SA) and (AD) respectively.
Proof: In the frame R we have:
* M(x;y;z) € (SD) if and only if SM ASD =0. i.e;

—0Sy =0
OSx+0D(z-0S)=0.

—-ODy =0
Thus
(SD):{M(x,y,z)eIR3/x=—@z+£c;y=0}

2h 2

* In the same manner, we prove that
(SA):{M(x,y,z)eIR3/x:0;y:% —% c}

and
(AD): {(M(x,7,2) €IR*x =y + L ;2= 0},

Proposition 3.1. Let Asap, be the region bounded by the
Euclidean triangle SAD.
Then

hx — hy+cgz c%h 0

V2 2

cC—z-C—
2h 2
<X+y

2.\

c—z+c—
2

0<z<h

Asap = M (x,y,2) € IR3:

is the equation of As4pin the frame R.

3.2. Expression of Associates Spherical
Pyramid

Proposition 3.2.

Asap
Xi—Yi Zﬂg cﬁt—o
2 2 2 2
|X +Y|f
—IM(X,Y,Z)eIR3:
( ) s-cZ\/E+ctp\/§+ctq£i
h-
—-ap+ q<Z<tp+—q

Where: f = 2hp-cq; g = 2hg+cp; i = 1-c; and t = h-a is the
expression of Ag,p in the frame R’.

proof: The first equation is just equation of plan Psap in
the frame R'. It remain the associate constraint on X, Y and
Z. By replacing expressions of x, y and z as functions of X,
Yand Z in the proof of lemma 3.1 we obtain:
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2 2sing . /2sing 2
oh a-— 5 X+ 5 Y +Zcosé —T
(6)
_1-cosd,  1tcosd,, «/Esmez <0
2 2 2
0< 1+cosé X +1—cos¢9Y N \/ESIHH 7
2 2 2 %)
P —C\/E a— \/Esme X 4 \/Esmb?Y + 7080 |+ cV2
2h 2 2 2
03a—¢im9X+J%m9Y+ZmWSh. (8)
Therefore,
ﬁ(hsin9+;cos6’) g(a—h)
Y-X= 7+—2 C)

hcosH—%sin@ hcos@—%sine

From in equations (6) + (7) we deduce that:

a— «/Esiné? X
2 2 2
|X +Y| < —E \/_ . +—
+ 252|n6Y + Zcosé
a+2—hz
B V2 2hcosf —csind | | 2
2h N a-h '
2hcosé —csing
According to (9),
Thus

(2hcos¢9—csin¢9)|x +Y|

(h—a)cV2

< —c\/EZ +~—~——5sin@
2h

+¥(1—%j(2hcos@ —csing)

<

sin@

<2z + hcﬁ(l—%jcost%%(h —a)(1-c)siné.

Combine (9) and (8), we obtain:

\/E(hsin6+;cos¢9j
J2sing c z
O<a+ zm hcosH—EsinH +Zcosf <h
c\/E(a—h)
L 2hcosé@ —csing
i.e;

0<a(2hcos#—csind)+2hZ +(a—h)sing
<h(2hcos@—-csing).
Then

(h—a+ac)
—acose+Tsm9 <Z

h(1-c)+a(c-1)
2h

sind.

<(h-a)cosd +

This completes the proof.

Equation of circumscribe sphere in the frame R’ is:
X2+Y2472=R2,

Let M e IR3 -{Q}, consider the half line [QAM), and
denote M a point of [AM) N S(,R). Existence of M is
due to the fact that for all M e IR3 -{Q}, Q is inside the
domain bounded by the sphere. Consider the mapping
from IR3 -{Q} to the sphere, which associate a point M to
point M’ as is showing in the figure. This map is well
defined by construction.

Figure 4. Image of point M

Lemma 3.3. In frame R’; for any M(X;Y ;Z) € Agsap, We

have: Z > 0.

Proof: It is enough to prove that A or D, verify the inequality.
R’ is image of R by a rotation, and the vector kis up

oriented Therefore, the image K is also up directed.
Furthermore, points A and D are in the plan generated by the

basis (7,7’), then the third component of A or D is positive.
Proposition 3.3. Asapand Ssapare close subset in of IR3.
Proof: It is enough to prove that their complementary
AS,p and S§up of Agyp  and Ssap are open subset of IR3.
Since Asap © IR3, thenAg,, # 0. Let M, € AS,p . Denote r
= d(Mo,Asap), then r > 0 because My & Asap. Therefore
B(Mo,r) © Acsup; this imply that Acsap is open, therefore
Asapis close subset of IR3.
In the same manner, we prove that Ss4p is close subset
of IR3,
Proposition 3.4. The map:

¢ Asap = Ssap
LM (X,Y,Z2) > M(X',Y",2")

R

N\ N
VX24v2172

R

VX2 4Y247°

Z’=;Z

VX24v2172

X' =

With: < Y'= Y is an homeomorphism.
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Proof: We will prove that fi and its inverse fl—l are
continuous f is well defined, because it is a restriction of
well-defined map. The image of the Euclidean line
segments [SA], [SD], and [AD] are spherical line segments.

e Let us prove that f; is bijective.

a) f1 is injective.

Let M(X;Y ;Z), Mo(Xo;Y0;Zo) € Asap Such that fi(M) =
f1(My). Let us prove that M = M. f;(M) = f;(M,) imply that

R R

X = Xo (E1)
IX24v217%2  XE+YE+Z3
R v- Ry (e2).
Ux24v2172 (X2 +v@+22
R 7 R 7, (E3)

Vx24v2422 X2 +v2+ 22

To prove that M = My, it is enough to justify that:
VXT+Y2 472 = X2+ YE + Z2.
By subtracting the members of (E1) and (E2), we obtain:

X-Y  Xo-Y
x21v2172  ([xZ+v@+22

(E4)

Extracting X - Y in (E4) and replacing it in (3), we

obtain:
( p_gj VX2 +Y2 472
2\ gy 23 @
+«/§(hq+%jz%(a—h)=o.
Since My € Asap, then:
( p_gj VX24y2 172
_\/E(thrCijZ C\/E(a—h)

0=

X o 2 (E5)
hp— 2

P 2

+\/§[hq +%jz +¥(a—h):0.

But it follows from (3), that:

[(2 .v2, 52
7 VX HYTHZT S

0
IXG+Y§+ 28

Replacing (E6) in (E5), we obtain:
V2| VX2 +y24 722 —Cﬁt VX24y2472

_fYe Zo
2\ IXxE+Y§+28 2\ xG+vg+zd
Zo+ t=0.

NARY GAEEY L NA
0
2\ xG+Y§+28 2

(E6)

With: f=2hg+cpandt=a—h.
This implies that:

cV2 \/X2+Y2+Z2

(a-h)| 1Y HZ g
2 JXG+YE+28

But a # h, because if a = h the Q = S, which

is a contradiction. Therefore %(a—h)io. Thus:

VX2 4y2472

1-————_ =0 and then

IXE+YE+28

IX24v2477 = X2 +v@+ 22,

b) fiis surjective.
Let M'(X:Y;Z) € Ssap and M(X;Y ;Z) = [QM) N Pgap.

_>
Wehave A7 A QM = 0
Because Q, M and M are collinear.

Thus,
' " r_ X!
X\ (X vzi-zv'=0  [x_-X'5
Y Al Y |2001-XZ'+ZX =0 '
v
Z Z, XY'—YX'ZO Y:?Z

Replacing expression of X and Y in equation of Psp, we
obtain:

Y'-X 7 _
7

ﬁ(hsim%;cosej c\/E(a—h)

2hcosd —csing

hcosg — % sin@

i.e
S[Y=x J2(2hsing +ccosd) | cv2(a-h) (19)
z' 2hcos® —csind | 2hcosd —csind’
i.e;
zZ- cV2(ah)z .(13)
(2hcosd —csin@) (Y’ — X ")~ /2 (2hsing + ccos) Z'
Thus
xzéz
- cv2(a-h)Xx" 19
(2hcosd - csind) (Y’ — X ') ~+/2(2hsind + ccosd) Z*
Likewise:
y=Yy (15)
7
Then
Y:%Z
C\/E(a—h)Y' (16)

) (2hcosd — csind) (Y’ - X ') —+/2(2hsinG + ccosd) Z*
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To conclude that f; is surjective, we will show that
f1(M] = M'. M e ASAD-

Psqa, Psap and Ppaa are bounds plans of regions Ssap and
Asap therefore, for all M'eSsap, (AM) N Asap is one point

set. It follow bay construction that M € Agap.
Denote:

cv2(a-h)

) (2hcosd - csin@) (Y’ = X ') = /2 (2hsing + ccosd) 2"

We shall prove that f;(M) = M. We have

f(M)— RX RY RZ

! N \/xz 2 2'\/ 2 2 2'\/ 2 2 2 |
+Y" +Z X"+Y"+Z X"+Y"+Z

But

RX RQy X'
IX24v2472 Qi X2+ QR ¥ 21 Qf 22
) RQy X'
_|QM-|\/X 21y24772

RX '

=————Decause Q' >0

X124y 124 72
— X 'because VX 2+Y?+Z? =R

since M eSsap
In the same manner, we prove that

RY -
VX2 4y2472

And —RE 7

VX2 4Y2 472
i.e; fi(M) = M’; then fi is surjective.
i Ssap = Asap
L UM(X,Y,Z) > (Qu X,QuY.QuZ)

We shall now prove that f; is bi-continuous.
c) fis continuous.

Let Mo(Xo;Y0;Z0) € Asap, and € > 0, we shall fine y.such
that

[|IM - Mo|| < ye= ||i(M) - fi(Mo)||< &.
We have:

f1(M)- f1(MO)

X _ Xo X Xo
Vx2eviaz? eezz || Jam] Jlam
=R ! - % R
X2 ev2 iz \/X§+Y02+Z§ Jlom]| e

z Zo X L
Vx?ay? 22 \/x§+Y02+z§ ”QM” ”QMOH

Thus, denoting:

o i -[]

Jo o]

km, = 11QM,]|| we obtain:

(kng X~k xo)2
o) =k [ +(kmoY - kMYO)

+(kmgZ K zo)

ButinR’, VM € Asp, we have: Z > 0. Sinceky, ky, €
IR, then one is bigger than another. Without change the

[ (M)t (m

kM_OS]_.
M

general case, suppose that ky, < ky, then

Therefore, kMTO”x - X ||g|| X — Xo”?

k
T -volsly o

and
k
klMOHz - Zo|<|Z -2y
thus,
[ (M)~ tu(Mo)]
R _ 2 v \2 5 \2
—‘ma‘ \/(X Xo) +(Y =Yo) +(Z~2)
- = MM ],
‘QMO‘

Consequently:

HQMo\

HM MH | (

M) -1 (Mo

o
—— and then f; is

)” <eé.

It we be enough to take ye =

continuous.
d) Let us prove that f1? is continuous.
Let Mo(Xo;Y0;Z0) € Ssap, and € > 0, we shall fine yeo

such that [|M - Mo|| < ye= [|f1* (M) - f1* (Mo)||s «.
We have

Hfl )- (M O)H
=@ ~QoX0,QY ~Q0Y0,QZ - QoZo )|
= \/(QX ~QoXo)* +(QY ~QpYo)* +(QZ - QuZo )’

2 2 2
Q Q Q
- X — X ~y_y, ~7-71.
QO\/(QO J J{Qo O} +[Qo Oj
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Since Q, Qo € R, then one of them is bigger than other.
Without change the generality

Suppose that Q < Qo, thus Qg <1.
0
Since Z > 0, then

¢ -alslx - Xal;
Sl ol <l -]
and Q%”z ~Zo|l<)Z - 2o,
Therefore
H ft (M)~ fl_l(Mo)H

=Q0\/(X ~Xo )2 +(Y Yo’ +(2-2o )
o]

It is enough to take ye :Qi. From a),b),c) and d) we
0

conclude that f; is an homeomorphism from Asapto Ssap.
Remark 3.1. Using the same methods, we prove that £, f3
and fi which transform faces Asap, Aspgc and Asca of
Euclidean pyramid to their spherical counterpart Ssas, Ssac
and Ssca respectively.

3.2. On Homeomorphism between Euclidean
Pyramid and Is Spherical Counterpart

Theorem 3.1.
The map f: IR? — IR3
fi(M)if M eA;,i €{1,2,3,4}
M =1 7 (M)if M S;,i £{1,2,3,4)
M if not
is an homeomorphism transforming the Euclidean
pyramid SABCD to is spherical counterpart.
Proof: We shall prove that f is bijective, continuous with
its inverse.
a) Let us prove that f is injective.

Let M, M e IR3 such that iM) = AIM). We wish to
prove that M = M.

e Ifthereisi € {1,2,3,4} suchthat M € A; then fiM) =
filM) = fiM). Without change the generality, suppose that
i = 1. Let us prove that necessarily, M' € A;. Suppose that
M & Aq. Then, either 3 j € {1,2,3,4} such that M' € §;
\{S,4,D}, or 3j €{2,3,4} such that M' € A;\{A1}, or M' & A,
U S;Vj €{1,2,3,4}.

* If M e S;\{SA,D}, then AM) = f1(M) = fi(M), this is
absurd because fi(M) e Ssap and (M) e A;\{S,AD}.

However, equality hold only for points S, A and D; because:

Ssap~Aj ={S.AD}if j=1

SSADmAj Z{S,A}lf J =2

SSAD('\AJ' :{S,D}lf J :3

Ssap A ={S}if j=4.

Thus, Ssap N AJ \{S,A,D} =0 VJ

o If M'e Aj\{A;}, then f(M) = f(M), Vj €{2,3,4}. Thus,
f,(M) = (M) vj €{2,3,4}.

This last equality is absurd; because; if not two
points will be equal whenever there are on two
disjoints spherical triangles, since fi(M) e S; and
M) S\{SH0 #1). o

* Ifvj €{1,2,3,4}, M ¢ AjU S, then (M) = M = f,(M),
this is absurd because f,(M) €S;and M’ ¢ AUS;, ie; M ¢
S

In the same manner, we prove thati €{2,3,4},if M € A,
then it will be the same to M.

Thus, we will have fi(M) = fi(M) Vi € {1,2,3,4} and
then M = M because Vi, f; is an homeomorphism.

* Vi € {1,2,3,4}, using the above method, we prove that
if we have M e S;, then we will have necessarily
M e S;and in this case we will have (M) = fri(M) =
(M) = f{lM), and then M = M’ because Vi, fi'1 is an
homeomorphism.

Therefore fis injective.

* Vi € {1,2,3,4}, We also follow the above method to
show that if we have M ¢ S; U A;, then we will have
necessarily M' ¢ S;u A;and in this case we will have f{M)
=M= f{M) =M, and then f is injective.

b) Let us prove that fis surjective.

Let M € IR3, we shall fine M e IR3such that (M) = M.

V' If 3i e {1,2,3,4} such that M € A;, then {M} = SN

(QM).
\If 3i e {1,2,3/4} such that M €S, {M} = P; N
(QM).

v OIfVie{l234IM ¢S UA, M=M.

It follow from (a) and (b), that fa bijection.

c) Let us prove that fis continuous.

Let My € IR*and ¢ > 0, we seek y > 0 such that
VM e IR®, [IM = Mo|| < 7 =[[f(M) — f(Mo)|| < &.

Since A; UA, UA; WA, and S; US, US; US, are
continuous surfaces and Vi,j € {1,2,3,4}, AiNA;, ANS;,
SiNS;are non-empty set, since S belong to them. Then it
exist (k,p) € IN*, (1,J) € P(N*) x P(N*), and (S,T,U,V) €
(POIR®)", where I={i e IN/ 1 <i<k},IJ={j e IN/k+
1<j<k+p},S={MieA,iel},T={Mje A;,jeI},U
={MieS;,iel}andV={Mje S;, j € J}; such that M e
IR®, there is a sequence of points of S, a sequence of T, a
sequence of points of U, and a sequence of points of V ,
such that ||M; Miall < M — M| with
i<k-—1i>Kk; [[Mc= 9| <|M— M| and ||Mys1— S|| <
M = M|
1stcase: If M, Mo € A, then |[fIM) - fAiMo)|| = ||fi(M) -
filMo)|]. As f; is continuous on A;, then for £ > 0, 3a > 0
such that ||[M - My|| < a =||fi(M) - filMo)|| < . It will be
enough to take y = e and the result is proved.
2"case: If 3ij €{1,2,3,4} such that i #j and M e A,
Mg € A, then there is (My) c S and (K;) < T such that:
[IMi = Misal| < [[M = Molf; [[Mk= S|| < [[M = Mo|; [IS = Kyl <
IM = Moll; [|K; = Kisaf| < [M = Mg||. But
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f(M)_f(M ) <[ f(M)=f(My) Taking y = min{a;, i € [1..k+p+1]}, then |[M-My|| <
0/l = 1
i = IHM)-H(Mo)| < e
= In the same manner, we prove the other cases.
+Z“f (M i+l ||+||f )-f (S)” c) Continuity of f1.
fI1IR >IR3
”f = My | .—Z+1 ||f .+1)|| fFAM)if Med;,ie{l1,2,3,4)}
M - fl(M) lf Me Si!i & {112:314}
=[lfi(m)- 1 || lef fi (Mo, MY ot
The continuity of f~!is proving as that of f.
+||fi('V'k Hf Mk+1)”
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