Topological Construction of Spherical Analogue of a Given Euclidean Pyramid

Joseph Dongho*, Siméon Kemmegne Fopossi
Department of Mathematics and Computer Science, University of Maroua, Maroua, Cameroon
*Corresponding author: josephdongho@yahoo.fr
Received April 12, 2019; Revised May 18, 2019; Accepted June 04, 2019

Abstract Given a regular Euclidean pyramid with square base, we use basic properties of great circle associated to its sides to prove the existence of its spherical counterpart. We also prove that its homeomorphic to its spherical counterpart.

2010 Mathematics Subject Classification: 51N10, 51N20, 51M09, 51M15, 51H05

Keywords: pyramid, euclidean pyramid, sphere, homeomorphism

1. Introduction

Euclidean geometry was believed to solve all the problems that could arise in society. Despite all these we came to discover that there were some questions Euclidean geometry could not answer. When we tried to find out, it led us to non-Euclidean Geometry. Euclid, a Greek mathematician who lived in approximately 300 B.C., is credited with collecting and organizing the postulates and theorems that are studied in geometry courses. The Parallel Postulate represents one of the most controversial assumptions made by Euclid. Over the years, Euclid’s Parallel Postulate has troubled mathematicians. The thought that lines may intersect at possibly infinite. In 1795, the mathematician John Playfair devised an alternative formulation of Euclid’s Parallel Postulate called Playfair’s Axiom. Playfair’s Axiom is more useful than Euclid’s Parallel Postulate, as it answers the question, ’How many lines can be drawn through a point not on a line and, at the same time, parallel to that line?’ In most geometry courses, Euclid’s Parallel Postulate and Playfair’s Axiom are used interchangeably. A development of geometry in which the Parallel Postulate or Playfair’s Axiom do not hold is known as non-Euclidean geometry. This work is part of spherical geometry and one of its aims is to propose a method which can help us to construct spherical objects from given Euclidean one. It is well known that geometry aids in our perception of the world. We can use it to de-construct our view of objects into points, lines, circles, planes and spheres. For example, some properties of triangles that we know are that it consists of three straight lines and three angles that sum to π. Can we imagine other geometries that do not give these familiar results? The Euclidean geometry that we are familiar with depends on Euclid’s parallel postulate. Since it is a postulate and not a theorem, it is assumed to be true without proof. If we alter that postulate, new geometries emerge. This project explores one model of that Non-Euclidean Geometry; the spherical geometry.

In this work we solve the following problem: is there a spherical pyramid homeomorphic to a prescribed Euclidean given pyramid? We also show how our construction can be used in engineering. Notably the existence of this homeomorphism can be used in the frame work of numerical metallurgy.

The main objective of this work is to prove the existence of spherical analogue of a given regular Euclidean pyramid with square basis. We prove their existence and we also prove that there are homeomorphic to their Euclidean counterpart. In other words we have proven that the two geometric entities are topologically equivalent. By compare their volume and area we show that those entity are not isometric [2]. More precisely we show that the volume and the area of spherical counterpart is bigger than it Euclidean analogue.

More explicitly, let SABCD be a given regular Euclidean pyramid with square basis ABCD. We denote ∆SAB, ∆SBC, ∆ASCD and ∆SDA the lateral faces of SABCD. To construct the spherical analogue of SABCD we define and homeomorphic from IR³ to IR³ which push each sides of SABCD on its circumscribed sphere. We denote S_{SAB}, S_{SBC}, S_{ASCD} and S_{SDA} respectively the image of ∆SAB, ∆SBC, ∆ASCD and ∆SDA. Then, S_{SAB} ∪ S_{SBC} ∪ S_{ASCD} ∪ S_{SDA} is the spherical analogue of our Euclidean pyramid.
2. Preliminary

A sphere is the surface generated by the revolution of a semicircle about its diameter, which remains fixed. The term sphere is used in a two-fold signification
1. As denoting the surface.
2. The solid bounded by the surface. These correspond to the two-fold signification of the word circle in plane Geometry, namely, the circumference, and the area included within it. The centre of the generating semicircle is called the centre of the sphere. A radius of the sphere is any right line drawn from the centre to a point in the surface. A diameter of a sphere is any right line drawn through the centre, and terminated both ways by the surface. From the definition of a spherical surface it follows at once
1. That every point in it is equally distant from the centre of the generating semi- semicircle.
2. That any point \(P \) in space is outside, on, or inside the surface, according as its distance from the centre is greater than, equal to, or less than the radius.
3. That spheres having equal radius are equal.

It is well know that

Proposition 2.1. Every section of a sphere made by a plane is a circle.

From this theorem, we deduce the following properties:

i. If \(R \) be the radius of the sphere, \(r \) the radius of the section, \(d \) the distance of the plane of section from the centre of the sphere, \(r^2 = R^2 - d^2 \).

ii. If \(R = d \), \(r = 0 \). Hence the section will reduce to a point, and the plane will touch the sphere.

iii. Two circles, whose planes are equally distant from the centre, are equal.

Between elements of sphere, one of the most useful in our work is the great circle.

Definition 2.1. Circle of the sphere whose plane passes through the centre is called a great circle, and a circle whose plane does not pass through the centre is called a small circle.

The following well know theorem will be very important in our construction.

Proposition 2.2. Only one great circle can be drawn through two points on the surface of the sphere, unless they are diametrically opposite.

Proposition 2.3. The locus of all the points of a sphere which are equidistant from two fixed points \(A, B \) of the sphere is the great circle, which is perpendicular at its middle point to the arc of the great circle \(AB \).

2.1. On existence of Circumscribe Sphere to a Given Pyramid

In this subsection we will prove the existence of circumscribe sphere to a given regular pyramid with square basis.

Let \(E \) be a dimension 3 Euclidean space and \(SABCD \) five non coplanar points of \(E \) such that \(ABCD \) form a square. \(SABCD \) is a regular pyramid if the following triangle \(\triangle SAD, \triangle SDC, \triangle SCB, \triangle SBA \) are equilateral.

Perpendicular bisector of real line segment \([X,Y]\) of the \(n \in \mathbb{N}^* \) dimensional Euclidean space \(E \) is the affine hyperplane \((XY)\) passing through the midpoint of \([X,Y]\) and perpendicular to \((XY)\).

Any two great circles of the sphere bisect each other. The figure formed by the shorter arcs joining three points on the surface of a sphere, no two of which are diametrically opposite, is called a spherical triangle. The portion of a sphere included between two halves of great circles is called a lune. Two triangles, which have a common side and whose other sides belong to the same great circles, are called columnar, triangles.
Theorem 2.1. Any regular pyramid with square base is writeable in a sphere with centre in the altitude.

Proof: Let ABCD be the basis of a pyramid SABCD and [OS], its altitude. Then the line segments [AB] and [DC] have common perpendicular bisector plane P.

As matter of the fact, P is perpendicular to the line segment [AB] and passing through its midpoint and it is perpendicular to the line (AB) since line (AB) || (DC) and \(AB = DC\), then it is also according to the Thales theorem, perpendicular to [AD] and it passing through its midpoint. Therefore, it is also its perpendicular bisector. Likewise BC and AD have the same perpendicular bisector Q. Since point \(OA = OC, OD = OB, SA = SB = SC = SD\), then (OS) \(P\) is perpendicular bisector of [SA], [SC] and [SC]. Therefore, \(Ω = (OS)\) is equidistance to point A, B, C, D, S. It is therefore the center of the circumscribe sphere to the pyramid SABCD.

Denote \(R = (i, j, k)\);

where \(i = \frac{OD}{OC}, j = \frac{OC}{OC}, k = \frac{OS}{OS}\), then \((0; i, j, k)\).

Is direct orthonormal frame. Let \(e\) be the length basis’s side and \(h\) the altitude of above pyramid.

Proposition 2.4. The centre of the circumscribe sphere of pyramid SABCD is \(Ω\left(0; 0; \frac{2h^2 - e^2}{4h}\right)\) and its radius is \(R = \frac{1}{2} h + \frac{e^2}{4h}\).

Proof:

\(\bullet\) Determination of the centre of circumscribe sphere.

After determine coordinate of points A, B, C, D and S in the frame \(R\), we fine the component of vectors \(\vec{AB}, \vec{BC}, \vec{DC}, \vec{SQ}\), \(Ω\) where \(Ω(x, y, z)\) is the centre of the circumscribe sphere.

We have \(ΩA = ΩB\), if and only if \(ΩA^2 = ΩB^2\) i.e; \(x^2 + (OC + y)^2 + z^2 = (OD + x)^2 + y^2 + z^2\) i.e;

\[OC^2 + 2OCy + OD^2 = 2ODx\] (1)

Likewise, \(ΩD = ΩA\) if and only if \(ΩD^2 = ΩA^2\) i.e; \(y^2 + (OD - x)^2 + z^2 = (OC + y)^2 + x^2 + z^2\) i.e;

\[OD^2 - 2ODx = OC^2 + 2OCy\] (2)

From (1) and 2, we deduce that \(2OD^2 = 2OC^2 + 4OCy,\) i.e; \(y = \frac{OD^2 - OC^2}{2OC}\)
i.e \(y = 0\) since \(OD = OC\).

It follow from, (2) that \(x = y\) because \(OC = OD\). Therefore, \(x = 0\).

Elsewhere, \(ΩA = ΩS\) if and only if \(ΩA^2 = ΩS^2\) i.e; \(x^2 + (OC+y)^2 + z^2 = x^2 + y^2 + (OS-z)^2\), i.e; \(OC^2 + z^2 = (OS - z)^2\), therefore \(z = \frac{OS^2 - OC^2}{2OS}\).

Ever since, \(Ω(0; 0; \frac{OS^2 - OC^2}{2OS})\). But \(OS = h\) an according to the Pythagoreans theorem in the right triangle ABC, we have:

\[OC = \frac{AC}{\sqrt{2}} = \frac{\sqrt{2} e}{2};\]

because \(AC = e\).

Therefore \(Ω(0; 0; \frac{2h^2 - e^2}{4h})\).

\(\bullet\) Determination of the radius of the circumscribe sphere.

By definition, we have:

\[R = \sqrt{OC^2 + \left(\frac{OS^2 - OC^2}{2OS}\right)^2} = \frac{OS^2 + OD^2}{2OS}.\]

Thus \(R = \frac{1}{2} h + \frac{e^2}{4h}\) because \(OS = h\) and \(OD^2 = \frac{e^2}{2}\).

2.2. On Associated Spherical Pyramid

We suppose that SABCD is a real Euclidean pyramid. Before we construct the spherical pyramid associated to SABCD, we shall first recall some analogy between the geometry of the sphere and the plane. In order to understand the analogy between plane and spherical geometry, it is necessary to observe that to right lines on the plane correspond on the sphere great circles, and the circles on the plane correspond circles on the sphere, which may be either great or small. We have proven that our Euclidean pyramid is inscribed in a sphere. Our pyramid has 8 sides and each side define with the centre \(Ω\) a unique Euclidian plane which intersect the sphere trough a great circle. It is well know that any two great circles of the sphere bisect each other. The sides of our spherical pyramid are defined by section of those great circles with the sphere.

2.2.1. Great Circles Equations Associated to Euclidean Pyramid

Proposition 2.5. Equations of the planes \(P_{Ω(A)}\) and \(P_{Ω(B)}\) passing respectively through \(Ω\), S, A and \(Ω\), S, C are: \(x = 0\).

Proof: Let \(M(x, y, z) \in IR^3\) \(P_{Ω(A)}\). We fine coordinates of \(\vec{AM}, \vec{AS}\) and \(\vec{AΩ}\). Since those Points are coplanar, we have: \(\langle \vec{AS} ∧ \vec{AΩ} \rangle, \vec{AM} = 0\) and then \((a - OS)OCx = 0\), since \(a - OS < 0\), where \(a = \frac{2h^2 - e^2}{4h}\). Thus, \(P_{Ω(A)}\):

\(x = 0\). Likewise, we prove that the plane passing trough A, S, Ω and S, C, Ω have the same equation.

Proposition 2.6. Equations of plans \(P_{Ω(D)}\) and \(P_{Ω(C)}\) passing through \(Ω\), S, D and \(Ω\), S, B is \(y = 0\).

Proof: Let \(M(x, y, z) \in IR^3\) \(P_{Ω(D)}\) we determine in the frame \(R\) the coordinates of vectors \(\vec{DS}, \vec{DC}\) and \(\vec{DM}\). Since \(D, S, Ω\) and M are coplanar, \(\langle \vec{DS} ∧ \vec{DM} \rangle, \vec{DM} = 0\).

\(i.e \ y = 0\); since \(a + OS \neq 0\).

Then \(P_{Ω(C)}\): \(y = 0\). Likewise, we show that plan \(P_{Ω(B)}\) and \(P_{Ω(S)}\) has the same equation.

Proposition 2.7.

\(2ax + 2ay - e\sqrt{2}z + a\sqrt{2}x = 0\) is the equation of the plan \(P_{Ω(AB)}\) passing through \(Ω\), A and B.
Let \(Two \) triangles, whose corresponding vertices are diametrically opposite, are called antipodal triangle.

After defined spherical angle, we need to give the expression of some of their trigonometric functions.

Proposition 2.12. Let \(\theta \) be an oriented angle between plans \((ABO)\) and \((A\Omega B)\). Then:

\[
\begin{align*}
\cos \theta &= \frac{2eh\sqrt{4h^4 + e^4}}{4h^4 + e^4} \\
\sin \theta &= \frac{\sqrt{2} - e^2}{4h^4 + e^4}
\end{align*}
\]

Where \(e \) is the basis side length and \(h \) the altitude of pyramid \(SABCD \) of Figure 1.

Proof: \(\theta \) is equal to angle between perpendicular the plans \((ABO)\) and \((A\Omega B)\). Equation of the perpendicular bisector to \([AB]\) is \(y = x \).

Indeed, let \(I \) be the midpoint of \([AB]\), then \(I = \left(\frac{-OD}{2} : \frac{-OD}{2} : 0 \right) \). Since \(AB \) is orthogonal to \(\overrightarrow{IM} \), if \(M \in P_{med}[AB] \), then \(\overrightarrow{AB} \cdot \overrightarrow{IM} = 0 \), i.e. \((x+\frac{OD}{2})-(y+\frac{OD}{2}) = 0 \). Thus \(y = 0 \).

Therefore \(P_{med}[AB]: y = x \).

Denote \(\Delta_1 = P_{med}[AB] \cap P_{\Omega[A]} \) and \(\Delta_2 = P_{med}[AB] \cap P_{\Omega[A]} \). The equation of plan \(P_{\Omega[A]} \) is: \(z = 0 \) and we have \(P_{\Omega[A]}: ax + ay - ODx + aOD = 0 \) where

\[
a = \frac{2h^2 - e^2}{4h} \quad \Delta_1: \begin{cases} y = x \\ z = 0 \end{cases}
\]

\[
\Delta_2: \begin{cases} y = x \\ ax + ay - ODx + aOD = 0 \end{cases}
\]

And then \(u_1 = 2 \) is direction of \(\Delta_1 \) and \(u_2 = \frac{2OD}{4a} \) that of \(\Delta_2 \). Yet \(u_1 \perp u_2 = u_1 u_2 \) and \(\| u_1 \| \| u_2 \| = u_1 u_2 |\sin \theta| \) where \(u_1 = \sqrt{4h^4 + 4a^2} \) and

\[
u_1 = \frac{2OD}{4a} \quad \Delta_2.\]

Somewhere else, \(u_1 \perp u_2 = 4OD + 4OD = 8OD \).

\[
\cos \theta = \frac{u_1 \cdot u_2}{|u_1||u_2|} = \frac{2OD OS}{\sqrt{OS^4 + 4OD^4}} = \frac{2eh\sqrt{4h^4 + e^4}}{4h^4 + e^4}.
\]

Besides, \(u_1 \wedge u_2 = \begin{pmatrix} 8a \\ -8a \\ 0 \end{pmatrix} = \begin{pmatrix} 8a \\ -8a \\ 0 \end{pmatrix} \). Therefore, the spherical angle.

Definition 2.2. Two triangles, whose corresponding vertices are diametrically opposite, are called antipodal triangle.

Proposition 2.11. The equation of the great circle \(P_{ABC} \) passing through point \(B, A \) and \(C: z = 0 \) in \(R \).

Proof: If \(M(x, y, z) \in R^3 \cap P_{ABC} \), then using coordinate of \(AB \), \(A \) and \(AC \) and the fact that points \(A, B, C \) and \(M \) are coplanar,

\[
i.e; (AB \wedge AC). \overrightarrow{AM} = 0. \quad \text{That} -2OD^2z = 0.
\]

Therefore, \(P_{ABC}: z = 0 \).

We recall that, when two arcs of circles intersect, the angle of the tangents at their points of intersection is called the angle of the arcs. It is also well know that; the angle of intersection of two great circles is equal to the inclination of their planes. We conclude that, the angle between two great circles is equal to the inclination of their planes. Therefore, we have a method to fine angle between two spherical line segments. Since the lateral surfaces of our spherical pyramid are deformed of their Euclidean counterpart. We need to define the spherical triangle. The special case of antipodal triangle we play a major role in this work. We recall its definition.
\[
\sin \theta = \frac{8|\mathbf{a}|\sqrt{2}}{2\sqrt{2\times (\mathbf{O}\mathbf{S}^2 + \mathbf{O}\mathbf{D}^2)}}
\]
\[
= \frac{\mathbf{O}\mathbf{D}^2 - \mathbf{O}\mathbf{S}^2}{\sqrt{\mathbf{O}\mathbf{S}^4 + \mathbf{O}\mathbf{D}^4}}.
\]

Since \(\theta \) is obtuse and negative, we have \(\cos \theta > 0 \) and \(\sin \theta < 0 \),
\[
\sin \theta = \frac{(\mathbf{O}\mathbf{S}^2 - \mathbf{O}\mathbf{D}^2)}{\sqrt{\mathbf{O}\mathbf{S}^4 + \mathbf{O}\mathbf{D}^4}}
\]
\[
= \frac{(2h^2 - e^2)(4h^4 + e^4)^{1/2}}{4h^4 + e^4}.
\]

Because \(\mathbf{O}\mathbf{D} > \mathbf{O}\mathbf{S} \).

Proposition 2.13. There exist an Euclidean rotation which transform plan \(\mathbb{P}_{0[AB]} \) to plan \(\mathbb{P}_{0[AB]} \).

Proof: The unit direct vector of line \((AB) \) is \(\mathbf{u} \)
\[
= \left(\begin{array}{c} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \\ 0 \end{array} \right).
\]

According to Rodrigues formulas the matrix of the rotation in the frame \(\mathcal{R} \) is
\[
R_{\tilde{u}[AB]} = \cos \theta \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right)
+ (1 - \cos \theta) \left(\begin{array}{ccc} a_1^2 & a_1a_2 & a_1a_3 \\ a_1a_2 & a_2^2 & a_2a_3 \\ a_1a_3 & a_2a_3 & a_3^2 \end{array} \right)
+ \sin \theta \left(\begin{array}{ccc} 0 & -a_3 & a_2 \\ -a_3 & 0 & -a_1 \\ a_2 & a_1 & 0 \end{array} \right).
\]

Where \(a_1, a_2, \) and \(a_3 \) are coordinates of \(\tilde{u} \) in \(\mathcal{R} \). Now
\[
\cos \theta \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right) = \left(\begin{array}{ccc} \cos \theta & 0 & 0 \\ 0 & \cos \theta & 0 \\ 0 & 0 & \cos \theta \end{array} \right)
\]
\[
(1 - \cos \theta) \left(\begin{array}{ccc} a_1^2 & a_1a_2 & a_1a_3 \\ a_1a_2 & a_2^2 & a_2a_3 \\ a_1a_3 & a_2a_3 & a_3^2 \end{array} \right)
= \left(\begin{array}{ccc} \frac{1}{2} - \cos \theta & \frac{1}{2} + \cos \theta & 0 \\ \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right)
\]
\[
= \left(\begin{array}{ccc} 0 & 0 & -\sqrt{2}\sin \theta \\ 0 & 0 & \frac{-\sqrt{2}\sin \theta}{2} \\ \frac{-\sqrt{2}\sin \theta}{2} & \frac{-\sqrt{2}\sin \theta}{2} & 0 \end{array} \right).
\]

Consequently,
\[
R_{\tilde{u}[AB]} = \left(\begin{array}{ccc} 1 + \cos \theta & -1 + \cos \theta & -\sqrt{2}\sin \theta \\ 2 & 2 & 2 \\ \sqrt{2}\sin \theta & \sqrt{2}\sin \theta & \sqrt{2}\sin \theta \end{array} \right)
\]

Proposition 2.14. The image of frame \(R = (\mathbf{O}; \mathbf{i}, \mathbf{j}, \mathbf{k}) \) by \(R_{\tilde{u}[AB]} \) is frame \(R' = (\mathbf{O'}; \mathbf{i'}, \mathbf{j'}, \mathbf{k'}) \). Where \(\mathbf{O'} \)
\[
= \frac{1 + \cos \theta \mathbf{O} - \frac{1}{2} \mathbf{OS} \mathbf{O} + \frac{1}{2} \mathbf{OS} \mathbf{O} + \sqrt{2}\sin \theta \mathbf{O} \mathbf{D} + \sqrt{2}\sin \theta \mathbf{O} \mathbf{D}}{2}
\]
\[
= \left(\begin{array}{c} \frac{1 + \cos \theta}{2} \\ \frac{1 + \cos \theta}{2} \\ \frac{1 + \cos \theta}{2} \end{array} \right),
\]
\[
\mathbf{i'} = \frac{1 + \cos \theta}{2}, \quad \mathbf{j'} = \frac{1 + \cos \theta}{2}, \quad \mathbf{k'} = \frac{1 + \cos \theta}{2},
\]

are coordinates of \(\mathbf{O'}, \mathbf{i'}, \mathbf{j'} \) and \(\mathbf{k'} \) in the frame \(R \), and the basis \((\mathbf{i'}, \mathbf{j'}, \mathbf{k'}) \).

Proof: We have:
\[
\mathbf{i'} = R_{\tilde{u}[AB]} \mathbf{i} = \left(\begin{array}{c} \frac{1 + \cos \theta}{2} \\ \frac{1 + \cos \theta}{2} \\ \frac{1 + \cos \theta}{2} \end{array} \right)
\]
\[
\mathbf{j'} = R_{\tilde{u}[AB]} \mathbf{j} = \left(\begin{array}{c} \frac{1 + \cos \theta}{2} \\ \frac{1 + \cos \theta}{2} \\ \frac{1 + \cos \theta}{2} \end{array} \right)
\]
\[
\text{since} \quad \mathbf{i} = \left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right).
\]

Likewise,
\[
\mathbf{k'} = R_{\tilde{u}[AB]} \mathbf{k} = \left(\begin{array}{c} \frac{-\sqrt{2}\sin \theta}{2} \\ \frac{-\sqrt{2}\sin \theta}{2} \\ \frac{-\sqrt{2}\sin \theta}{2} \end{array} \right)
\]
\[
\text{since} \quad \mathbf{k} = \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right).
\]

Then,
Let $\vec{k} = R_{\theta}^{-1} [AB] \vec{k} = \begin{pmatrix} -\sqrt{2} \sin \theta \\ 2 \\ \frac{2 \sin \theta}{2 \cos \theta} \end{pmatrix}$ since $k = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

We shall determine coordinates of O' to conclude. Let $f_{w(A)}[AB]$, be the affine rotation to the vectorial rotation above, then $f_{w(A)}[AB] (A) = A$; i.e;

$$
\begin{cases}
0 = -\frac{1 + \cos \theta}{2} OD + d_1 \\
-OD = -\frac{1 + \cos \theta}{2} OD + d_2 \\
0 = \frac{\sqrt{2} \sin \theta}{2} OD + d_3
\end{cases}
$$

Where

$$(d_1;d_2;d_3) = f_{w(A)}[AB] (O) = O' \left(\begin{pmatrix} -\frac{1 + \cos \theta}{2} OD \\ -\frac{1 + \cos \theta}{2} OD \\ \frac{2 \sin \theta}{2} OD \end{pmatrix} \right).$$

R' is the direct orthogonal frame image of the frame R by an isometry.

3. Topological Relation between the Two Pyramids

In this section, we suppose that we are in three-dimensional Euclidean real space and we construct a homeomorphism between Euclidean pyramid and his spherical counterpart.

3.1. Cartesian Equation of SAD

Lemma 3.1.

$$P_{S[AD]} : hx - hy + c \frac{\sqrt{2}}{2} z - c \frac{\sqrt{2}}{2} h = 0$$

is the equation of the plan $P_{S[AD]}$ passing through points S, A and D in R.

Proof: Fine coordinates of points A, D and S; and for any $M(x;y;z) \in IR^3 \cap P_{S[AD]}$ determine the coordinates of vectors \vec{SA}, \vec{SD} and \vec{SM} in the frame R and compute $(\vec{SA} \wedge \vec{SD})$, $\vec{SM} = 0$. Therefore $OSx - OSy + ODz - ODOS = 0$ then

$$P_{S[AD]} : hx - hy + c \frac{\sqrt{2}}{2} z - c \frac{\sqrt{2}}{2} h = 0 .$$

Because $OS = c \frac{\sqrt{2}}{2}.$

Lemma 3.2.

$$\begin{pmatrix} x = \frac{\sqrt{2} c}{2h} z + \frac{\sqrt{2}}{2} c \\ y = 0 \\ z = 0 \end{pmatrix} \text{ and } \begin{pmatrix} x = \frac{\sqrt{2} c}{2h} z + \frac{\sqrt{2}}{2} c \\ y = 0 \\ z = 0 \end{pmatrix} \text{ are equations of Euclidean lines } (SD), (SA) \text{ and } (AD) \text{ respectively.}

\textbf{Proof:} In the frame R we have:

- $M(x;y;z) \in (SD)$ if and only if $SM \wedge SD = 0$. i.e;

$$\begin{pmatrix} Oy = 0 \\ Oy + OD(z - O) = 0. \\ Oy = 0 \end{pmatrix}$$

Thus

$$\begin{pmatrix} (SD) : M(x,y,z) \in IR^3 / x = -\frac{\sqrt{2} c}{2h} z + \frac{\sqrt{2}}{2} c; y = 0 \\ (SA) : M(x,y,z) \in IR^3 / x = 0; y = \frac{\sqrt{2} c}{2h} z - \frac{\sqrt{2}}{2} c \end{pmatrix}$$

and

$$\begin{pmatrix} (AD) : M(x,y,z) \in IR^3 / x = y + \frac{\sqrt{2} c}{2} ; z = 0. \end{pmatrix}$$

\textbf{Proposition 3.1.} Let Δ_{SAD} be the region bounded by the Euclidean triangle SAD.

Then

$$\Delta_{SAD} = \begin{pmatrix} M(x,y,z) \in IR^3 : \\ \left[\begin{pmatrix} \frac{\sqrt{2} h}{2} z - \frac{\sqrt{2}}{2} c \\ \frac{\sqrt{2} c}{2h} z + \frac{\sqrt{2}}{2} c \\ 0 \leq z \leq h \end{pmatrix} \right. \end{pmatrix}$$

is the equation of Δ_{SAD} in the frame R.

3.2. Expression of Associates Spherical Pyramid

\textbf{Proposition 3.2.}

$$\Delta_{SAD} = \begin{pmatrix} M(X,Y,Z) \in IR^3 : \\ \left[\begin{pmatrix} X \frac{f}{2} - Y \frac{f}{2} + Z \frac{\sqrt{2}}{2} g - c \frac{\sqrt{2}}{2} t = 0 \\ X + Y \frac{f}{2} \leq cZ \sqrt{2} + ctp \frac{\sqrt{2}}{2} + ctp \sqrt{2} \frac{\sqrt{2}}{2h} q \leq Z \leq tp + \frac{it}{2h} q \end{pmatrix} \right. \end{pmatrix}$$

Where: $\Gamma = 2h^2-cq^2 , g = 2hp^2-cp^2 , t = 1-c$; and $t = h-a$ is the expression of Δ_{SAD} in the frame R.

\textbf{Proof:} The first equation is just equation of plan $P_{S[AD]}$ in the frame R. It remain the associate constraint on X, Y and Z. By replacing expressions of x, y and z as functions of X, Y and Z in the proof of lemma 3.1 we obtain:
\[
\frac{c\sqrt{2}}{2h} \left(a - \frac{\sqrt{2}\sin \theta}{2} X + \frac{\sqrt{2}\sin \theta}{2} Y + Z \cosh \theta \right) + \frac{c\sqrt{2}}{2} \leq 1 - \cos \theta X + \frac{1 + \cos \theta}{2} Y - \frac{\sqrt{2}\sin \theta}{2} Z \leq 0
\]
\[
0 \leq \frac{1 + \cos \theta}{2} X + \frac{1 - \cos \theta}{2} Y + \frac{\sqrt{2}\sin \theta}{2} Z
\]
\[
-\frac{c\sqrt{2}}{2h} \left(a - \frac{\sqrt{2}\sin \theta}{2} X + \frac{\sqrt{2}\sin \theta}{2} Y + Z \cosh \theta \right) + \frac{c\sqrt{2}}{2} \leq 0 \leq a - \frac{\sqrt{2}\sin \theta}{2} X + \frac{\sqrt{2}\sin \theta}{2} Y + Z \cosh \theta \leq h.
\]

Therefore,
\[
\frac{\sqrt{2}}{2} \left(\frac{h \sin \theta + \frac{c}{2} \cos \theta}{h \cos \theta - \frac{c}{2} \sin \theta} \right) Z + \frac{c\sqrt{2}}{2} \left(a - \frac{h}{2} \right)
\]

From equations (6) + (7) we deduce that:
\[
|X + Y| \leq \frac{c\sqrt{2}}{2h} \left(a - \frac{\sqrt{2}\sin \theta}{2} X + \frac{\sqrt{2}\sin \theta}{2} Y + Z \cosh \theta \right)
\]
\[
\leq \frac{c\sqrt{2}}{2h} \left(a + \frac{2h \cos \theta - \sin \theta}{2} Z \right) + \frac{c\sqrt{2}}{2} \left(a - \frac{h}{2} \right)
\]

According to (9),
\[
(2h \cos \theta - \sin \theta)|X + Y|
\]
\[
\leq -c\sqrt{2} Z + \frac{(h - a)c\sqrt{2}}{2h} \sin \theta
\]
\[
+ \frac{c\sqrt{2}}{2} \left(1 - \frac{a}{h} \right)(2h \cos \theta - \sin \theta)
\]
\[
\leq -c\sqrt{2} Z + h \sqrt{2} \left(1 - \frac{a}{h} \right) \cos \theta + \frac{c\sqrt{2}}{2h} (h - a)(1 - c) \sin \theta.
\]

Combine (9) and (8), we obtain:
\[
0 \leq a + \frac{\sqrt{2}\sin \theta}{2} X + \frac{\sqrt{2}\sin \theta}{2} Y + Z \cosh \theta \leq h
\]
\[
0 \leq a(2h \cos \theta - c \sin \theta) + 2h Z + (a - h) \sin \theta
\]
\[
\leq h(2h \cos \theta - c \sin \theta).
\]

Then
\[-\cos \theta + \frac{(h - a + ac)}{2h} \sin \theta \leq Z \]
\[-\frac{(h - a)}{2h} \cos \theta + \frac{h(1 - c) + a(c - 1)}{2h} \sin \theta.
\]

This completes the proof.

Equation of circumscribe sphere in the frame R' is:
\[X^2 + Y^2 + Z^2 = R'^2.
\]

Let $M \in IR^3 - \{\Omega\}$, consider the half line $[\Omega M)$, and denote M a point of $[\Omega M) \cap S(\Omega, R)$. Existence of M' is due to the fact that for all $M \in IR^3 - \{\Omega\}$, Ω is inside the domain bounded by the sphere. Consider the mapping from $IR^3 - \{\Omega\}$ to the sphere, which associate a point M to point M' as is showing in the figure. This map is well defined by construction.

Figure 4. Image of point M

Lemma 3.3. In frame R'; for any $M(X, Y, Z) \in \triangle SAD$, we have: $Z \geq 0$.

Proof: It is enough to prove that A or D, verify the inequality.

R' is image of R by a rotation, and the vector $k \vec{e}$ is up oriented Therefore, the image $k' \vec{e}$ is also up directed. Furthermore, points A and D are in the plane generated by the basis $(i' \vec{e}, j' \vec{e})$, then the third component of A or D is positive.

Proposition 3.3. ΔSAD and S_{SAD} are close subset in of IR^3.

Proof: It is enough to prove that their complementary ΔSAD_{c} and $S_{SAD_{c}}$ of ΔSAD and S_{SAD} are open subset of IR^3.

Since $\Delta SAD \subset IR^3$, then $\Delta SAD_{c} \neq \emptyset$. Let $M_0 \in \Delta SAD_{c}$. Denote $r = d(M_0, \Delta SAD)$, then $r > 0$ because $M_0 \notin \Delta SAD$. Therefore $B(M_0, r) \subset \Delta SAD_{c}$; this imply that ΔSAD_{c} is open, therefore ΔSAD is close subset of IR^3.

In the same manner, we prove that S_{SAD} is close subset of IR^3.

Proposition 3.4. The map:
\[
f : \Delta SAD \rightarrow S_{SAD}
\]

\[
M(X, Y, Z) \rightarrow M'(X', Y', Z')
\]

With:
\[
X' = \frac{R}{\sqrt{X^2 + Y^2 + Z^2}} X
\]
\[
Y' = \frac{R}{\sqrt{X^2 + Y^2 + Z^2}} Y
\]
\[
Z' = \frac{R}{\sqrt{X^2 + Y^2 + Z^2}} Z
\]

is an homeomorphism.
Proof: We will prove that f_1 and its inverse f_1^{-1} are continuous since f_1 is well defined, because it is a restriction of a well-defined map. The image of the Euclidean line segments $[SA]$, $[SD]$, and $[AD]$ are spherical line segments.

Let us prove that f_1 is bijective.

a) f_1 is injective.

Let $M(X,Y,Z)$, $M_0(X_0,Y_0,Z_0)$ $\in \Delta_{SAD}$ such that $f_1(M) = f_1(M_0)$. Let us prove that $M = M_0$. If $M = M_0$, $f_1(M) = f_1(M_0)$ imply that

$$\begin{align*}
\frac{R}{\sqrt{X^2 + Y^2 + Z^2}} &= \frac{X}{\sqrt{X_0^2 + Y_0^2 + Z_0^2}} \quad (E1) \\
\frac{R}{\sqrt{X^2 + Y^2 + Z^2}} &= \frac{Y}{\sqrt{X_0^2 + Y_0^2 + Z_0^2}} \quad (E2) \\
\frac{R}{\sqrt{X^2 + Y^2 + Z^2}} &= \frac{Z}{\sqrt{X_0^2 + Y_0^2 + Z_0^2}} \quad (E3)
\end{align*}$$

To prove that $M = M_0$, it is enough to justify that:

$$\sqrt{X^2 + Y^2 + Z^2} = \sqrt{X_0^2 + Y_0^2 + Z_0^2}.$$

By subtracting the members of $(E1)$ and $(E2)$, we obtain:

$$\frac{X - Y}{\sqrt{X^2 + Y^2 + Z^2}} = \frac{X_0 - Y_0}{\sqrt{X_0^2 + Y_0^2 + Z_0^2}}. \quad (E4)$$

Extracting $X - Y$ in $(E4)$ and replacing it in (3), we obtain:

$$\begin{align*}
\left(\frac{R}{\sqrt{X^2 + Y^2 + Z^2}} \right) - &\left(\frac{R}{\sqrt{X_0^2 + Y_0^2 + Z_0^2}} \right) \\
&= \frac{X_0 - Y_0}{\sqrt{X_0^2 + Y_0^2 + Z_0^2}} \quad (4)
\end{align*}$$

Since $M_0 \in \Delta_{SAD}$, then:

$$\begin{align*}
\left(\frac{R}{\sqrt{X^2 + Y^2 + Z^2}} \right) - &\left(\frac{R}{\sqrt{X_0^2 + Y_0^2 + Z_0^2}} \right) \\
&= \frac{X_0 - Y_0}{\sqrt{X_0^2 + Y_0^2 + Z_0^2}} \quad (E5)
\end{align*}$$

But it follows from (3), that:

$$\frac{X_0 - Y_0}{\sqrt{X_0^2 + Y_0^2 + Z_0^2}} = Z = \frac{\sqrt{X^2 + Y^2 + Z^2}}{\sqrt{X_0^2 + Y_0^2 + Z_0^2}}. \quad (E6)$$

Replacing $(E6)$ in $(E5)$, we obtain:

$$\begin{align*}
-f &\frac{\sqrt{X^2 + Y^2 + Z^2}}{2} \left(\frac{X}{\sqrt{X_0^2 + Y_0^2 + Z_0^2}} \right) Z_0 = \frac{\sqrt{X^2 + Y^2 + Z^2}}{2} \left(\frac{X_0}{\sqrt{X_0^2 + Y_0^2 + Z_0^2}} \right) Z_0 \\
+ f &\frac{\sqrt{X^2 + Y^2 + Z^2}}{2} \left(\frac{X}{\sqrt{X_0^2 + Y_0^2 + Z_0^2}} \right) Z_0 = f \frac{\sqrt{X^2 + Y^2 + Z^2}}{2} Z_0 = 0.
\end{align*}$$

With $f = 2hq + cp$ and $t = a - h$.

This implies that:

$$\frac{c\sqrt{2}}{2} (a - h) \left(1 - \frac{\sqrt{X^2 + Y^2 + Z^2}}{\sqrt{X_0^2 + Y_0^2 + Z_0^2}} \right) = 0.$$

But $a \neq h$, because if $a = h$ the $\Omega = S$, which is a contradiction. Therefore $\frac{c\sqrt{2}}{2} (a - h) \neq 0$. Thus:

$$\begin{align*}
1 - &\frac{\sqrt{X^2 + Y^2 + Z^2}}{\sqrt{X_0^2 + Y_0^2 + Z_0^2}} = 0 \quad \text{and then}
\end{align*}$$

$$\begin{align*}
\sqrt{X^2 + Y^2 + Z^2} &= \sqrt{X_0^2 + Y_0^2 + Z_0^2}.
\end{align*}$$

b) f_1 is surjective.

Let $M(X',Y',Z') \in S_{SAD}$ and $M(X,Y,Z) = [\Omega M] \cap P_{SAD}$. We have $\Omega \cap \Omega M' \neq \emptyset$.

Because Ω, M, and M' are collinear. Thus,

$$\begin{align*}
\begin{cases}
X' \\
Y' \\
Z'
\end{cases} \in \begin{cases}
\Omega M \\
\Omega M'
\end{cases} \Leftrightarrow \begin{cases}
YZ' - ZY' = 0 \\
-ZX' + ZX' = 0 \leftrightarrow X = X' \quad Z = Z'.
\end{cases}
\end{align*}$$

Replacing expression of X and Y in equation of P_{SAD}, we obtain:

$$\begin{align*}
\frac{Y' - X'}{Z'} &= \sqrt{\frac{\text{hcsin} \theta + \frac{c}{2} \cos \theta}{\text{hcos} \theta - \frac{c}{2} \sin \theta}} Z + \frac{c \sqrt{2} (a - h)}{2 \text{hcos} \theta - \text{csin} \theta} \quad (11)
\end{align*}$$

i. e.

$$\begin{align*}
Z \left(\frac{Y' - X'}{Z'} - \sqrt{\frac{2 \text{hcsin} \theta + c \cos \theta}{2 \text{hcos} \theta - \text{csin} \theta}} \right) &= \frac{c \sqrt{2} (a - h)}{2 \text{hcos} \theta - \text{csin} \theta} \quad (12)
\end{align*}$$

i. e;

$$\begin{align*}
Z &= \frac{c \sqrt{2} (a - h) Z}{(2 \text{hcos} \theta - \text{csin} \theta) (Y' - X') - \sqrt{2} (2 \text{hcsin} \theta + c \cos \theta) Z} \quad (13)
\end{align*}$$

Thus

$$\begin{align*}
X &= \frac{X'}{Z'}
\end{align*}$$

$$\begin{align*}
Y &= \frac{Y'}{Z'}
\end{align*}$$

Likewise:

$$\begin{align*}
Y &= \frac{Y'}{Z'}
\end{align*}$$

Then

$$\begin{align*}
Y &= \frac{Y'}{Z'}
\end{align*}$$
To conclude that f_1 is surjective, we will show that $f_1(M) = M, M \in \Delta_{SAD}$.

P_{SAD}, P_{SAD}, and P_{SAD} are bounds plans of regions S_{SAD} and Δ_{SAD} therefore, for all $M \in S_{SAD}, (\Omega M) \cap \Delta_{SAD}$ is one point set. It follows by construction that $M \in \Delta_{SAD}$.

Denote:

$$Q_{M} = \frac{\sqrt{2}(a-h)}{(2\cos \theta - \sin \theta)(Y' - X')} - \sqrt{2}(2\cos \theta + \sin \theta)Z'.$$

We shall prove that $f_1(M) = M$. We have

$$f_1(M) = \left(\frac{RX}{\sqrt{X^2 + Y^2 + Z^2}}, \frac{RY}{\sqrt{X^2 + Y^2 + Z^2}}, \frac{RZ}{\sqrt{X^2 + Y^2 + Z^2}} \right).$$

But

$$\frac{RZ}{\sqrt{X^2 + Y^2 + Z^2}} = \frac{X}{\sqrt{X^2 + Y^2 + Z^2}} = X'.
$$

And

$$\frac{RY}{\sqrt{X^2 + Y^2 + Z^2}} = Y'.
$$

i.e. $f_1(M) = M'$; then f_1 is surjective.

$$f_1^{-1} : S_{SAD} \rightarrow \Delta_{SAD}
$$

$$M(X, Y, Z) \rightarrow (Q_M X, Q_M Y, Q_M Z)
$$

We shall now prove that f_1 is bi-continuous.

c) f_1 is continuous.

Let $M_0(X_0, Y_0, Z_0) \in \Delta_{SAD}$, and $\epsilon > 0$, we shall fine γ_ϵ such that

$$||M - M_0|| \leq \gamma_\epsilon \Rightarrow ||f_1(M) - f_1(M_0)|| \leq \epsilon.$$

We have:

$$f_1(M) - f_1(M_0) = R\left(\frac{X}{\sqrt{X^2 + Y^2 + Z^2}} - \frac{X_0}{\sqrt{X_0^2 + Y_0^2 + Z_0^2}}, \frac{Y}{\sqrt{X^2 + Y^2 + Z^2}} - \frac{Y_0}{\sqrt{X_0^2 + Y_0^2 + Z_0^2}}, \frac{Z}{\sqrt{X^2 + Y^2 + Z^2}} - \frac{Z_0}{\sqrt{X_0^2 + Y_0^2 + Z_0^2}} \right) = R\left(\frac{X}{\Omega M} - \frac{X_0}{\Omega M_0}, \frac{Y}{\Omega M} - \frac{Y_0}{\Omega M_0}, \frac{Z}{\Omega M} - \frac{Z_0}{\Omega M_0} \right).$$

Thus, denoting:

$$k = \frac{R}{\|\Omega M\|}||\Omega M|| = \|\Omega M\|;$$

$$k_{M_0} = ||\Omega M_0||$$

we obtain:

$$\left| \left| f_1(M) - f_1(M_0) \right| \right| = \left| \left| k_{M_0} X - k_{M_0} X_0 \right| \right|^2 + \left(k_{M_0} Y - k_{M_0} Y_0 \right)^2 + \left(k_{M_0} Z - k_{M_0} Z_0 \right)^2.$$
Since Q, $Q_0 \in \mathbb{R}$, then one of them is bigger than other. Without change the generality

Suppose that $Q \leq Q_0$, thus $\frac{Q}{Q_0} \leq 1$.

Since $Z > 0$, then

$$\frac{Q}{Q_0} \left\| X - X_0 \right\| \leq \left\| X - X_0 \right\|;$$

$$\frac{Q}{Q_0} \left\| Y - Y_0 \right\| \leq \left\| Y - Y_0 \right\|$$

$$\frac{Q}{Q_0} \left\| Z - Z_0 \right\| \leq \left\| Z - Z_0 \right\|$$

Therefore

$$\left\| f_i^{-1}(M) - f_i^{-1}(M_0) \right\| = Q_0 \sqrt{\left(X - X_0 \right)^2 + \left(Y - Y_0 \right)^2 + \left(Z - Z_0 \right)^2}$$

$$= \frac{Q_0}{Q} \left\| M_0M \right\|$$

It is enough to take $\gamma = \frac{Q}{Q_0}$. From $a), b), c)$ and $d)$ we conclude that f_i is an homeomorphism from Δ_{sad} to S_{sad}.

Remark 3.1. Using the same methods, we prove that f_2, f_3 and f_4 which transform faces $\Delta_{sad}, \Delta_{sbc}$ and Δ_{sca} of Euclidean pyramid to their spherical counterpart S_{sad}, S_{sbc} and S_{sca} respectively.

3.2. On Homeomorphism between Euclidean Pyramid and Is Spherical Counterpart

Theorem 3.1.

The map $f: \mathbb{R}^3 \rightarrow \mathbb{R}^3$

$$f_i(M) = \begin{cases} f_i(M) & \text{if } M \in \Delta_i, i \in \{1, 2, 3, 4\} \\ f_i^{-1}(M) & \text{if } M \in S_i, i \in \{1, 2, 3, 4\} \\ M & \text{if } M \notin S_i \cup S_i, i \in \{1, 2, 3, 4\} \end{cases}$$

is an homeomorphism transforming the Euclidean pyramid $SABCD$ to its spherical counterpart S_{SAD}.

Proof. We shall prove that f is bijective, continuous with its inverse.

a) Let us prove that f is injective.

Let $M, M_0 \in \mathbb{R}^3$ such that $f(M) = f(M_0)$. We wish to prove that $M = M_0$.

- If there is $i \in \{1, 2, 3, 4\}$ such that $M \in \Delta_i$, then $f(M) = f_i(M) = f(M_0)$. Without change the generality, suppose that $i = 1$. Let us prove that necessarily, $M \in \Delta_1$. Suppose that $M \notin \Delta_1$. Then, either $\exists j \in \{2, 3, 4\}$ such that $M \notin S_j \backslash \{S,A,D\}$, or $\exists j \in \{2, 3, 4\}$ such that $M \in \Delta_1 \backslash \{\Delta_1\}$, or $M \notin \Delta_1 \cup S_j \backslash \{S,A,D\}$.

- If $M \in S_j \backslash \{S,A,D\}$, then $f_i(M) = f_i^{-1}(M) = f(M)$, this is absurd because $f_i(M) \in S_{sad}$ and $f_i^{-1}(M) \in \Delta_1 \backslash \{S,A,D\}$.

However, equality hold only for points S, A and D; hence:

$$S_{sad} \cap \Delta_j = \{S, A, D\} \text{ if } j = 1$$

$$S_{sad} \cap \Delta_j = \{S, A\} \text{ if } j = 2$$

Thus, $S_{sad} \cap \Delta_j \setminus \{S, A, D\} = \emptyset \forall j$.

- If $M \in \Delta_j \backslash \{\Delta_j\}$, then $f(M) = f_j(M)$, $\forall j \in \{2, 3, 4\}$. Thus, $f_i(M) = f(M_0) \forall j \in \{2, 3, 4\}$.

This last equality is absurd; because, if not two points will be equal whenever there are on two disjoints spherical triangles, since $f_i(M) \in S_1$ and $f(M_0) \in S_1 \setminus \{S_1\}$ ($\forall j \neq 1$).

- If $\forall j \in \{2, 3, 4\}, M \notin \Delta_j \cup S_j$, then $f_j(M) = M = f_i(M)$, this is absurd because $f_i(M) \in S_1$ and $M \notin \Delta_1 \cup S_1$, i.e. $M \notin S_1$.

In the same manner, we prove that $i \in \{2, 3, 4\}$, if $M \in \Delta_1$, then it will be the same to M.

Thus, we will have $f(M) = f(M_0) \forall i \in \{1, 2, 3, 4\}$ and then $M = M_0$ because $\forall i, f_i$ is an homeomorphism.

- $\forall i \in \{1, 2, 3, 4\}$, using the above method, we prove that if we have $M \in S_1$, then we will have necessarily $M \in S_1 \cup \Delta_1$, and in this case we will have $f(M) = f_i^{-1}(M) = f_i^{-1}(M) = f(M)$, and then $M = M_0$ because $\forall i, f_i^{-1}$ is an homeomorphism.

Therefore f is injective.

- $\forall i \in \{1, 2, 3, 4\}$, We also follow the above method to show that if we have $M \in S_1 \cup \Delta_1$, then we will have necessarily $M \in S_1 \cup \Delta_1$ and in this case we will have $f(M) = f_i(M) = M$, then f is injective.

b) Let us prove that f is surjective.

Let $M \in \mathbb{R}^3$, we shall find $M \in \mathbb{R}^3$ such that $f(M) = M$.

- If $\exists i \in \{1, 2, 3, 4\}$ such that $M \in \Delta_i$, then $f(M) = M \cap (\Theta(M))$.

- If $\exists i \in \{1, 2, 3, 4\}$ such that $M \in S_i \cup \Delta_1$, $M = M_0$.

- $\forall i \in \{1, 2, 3, 4\}$, $M \in S_i \cup \Delta_1$, $M = M_0$.

It follow from (a) and (b), that f a bijection.

c) Let us prove that f is continuous.

Let $M_0 \in \mathbb{R}^3$ and $\varepsilon > 0$, we seek $\gamma > 0$ such that $\forall M \in \mathbb{R}^3, \|M - M_0\| < \gamma \Rightarrow \|f(M) - f(M_0)\| < \varepsilon$.

Since $\Delta_1 \cup \Delta_2 \cup \Delta_3 \cup \Delta_4$ and $S_1 \cup S_2 \cup S_3 \cup S_4$ are continuous surfaces and $\forall i,j \in \{1, 2, 3, 4\}, \Delta_i \cap \Delta_j \cap S_i \cup S_j = \emptyset$, $S_i \cap S_j = \emptyset$, $S_i \cap S_j = \emptyset$. Thus, $\forall M \in \mathbb{R}^3$, there is a sequence of points of S, a sequence of T, a sequence of points of U, and a sequence of points of V, such that $\|M - M_0\| \leq \|M - M_0\|$ with $i < k - 1; i > k; \|M - S\| \leq \|M - M_0\| \leq \|M - M_0\|$.

1case: If $M_0 \in \Delta_i$, then $\|f(M) - f(M_0)\| = \|f(M) - f(M_0)\|$. As f_i is continuous on Δ_i, for $\varepsilon > 0$, $\exists \gamma > 0$ such that $\|M - M_0\| < \alpha \Rightarrow \|f(M) - f(M_0)\| < \varepsilon$. It will be enough to take $\gamma = \alpha$ and the result is proved.

2case: If $\exists i,j \in \{1, 2, 3, 4\}$ such that $i \neq j$ and $M \in \Delta_i, M_0 \in \Delta_j$, then there is (M) S and $(K) \subset T$ such that:

$$\|M - M_0\| \leq \|M - M_0\|; \|M - S\| \leq \|M - M_0\|; \|S - K_1\| \leq \|M - M_0\|; \|K_i - K_{i+1}\| \leq \|M - M_0\|.$$
\[\| f(M) - f(M_0) \| \leq \| f(M) - f(M_1) \| \]
\[+ \sum_{i=1}^{k-1} \| f(M_i) - f(M_{i+1}) \| + \| f(M_k) - f(S) \| \]
\[+ \| f(S) - f(M_{k+1}) \| + \sum_{i=k+1}^{k+p-1} \| f(M_i) - f(M_{i+1}) \| \]
\[= \| f_i(M) - f_i(M_1) \| + \sum_{i=1}^{k-1} \| f_i(M_i) - f_i(M_{i+1}) \| \]
\[+ \| f_i(M_k) - f_i(S) \| + \| f_j(S) - f_j(M_{k+1}) \| \]
\[+ \sum_{i=k+1}^{k+p-1} \| f_j(M_i) - f_j(M_{i+1}) \| . \]

As \(f \) and \(f_i \) are continuous, then, for \(\varepsilon > 0 \) such that
\[\frac{\varepsilon}{k + p + 1} > 0 \]
it exist \((\alpha_i) \in \mathbb{IR}_+^* \) such that
\[\| M - M_1 \| \alpha_1 \rightarrow \| f_i(M) - f_i(M_1) \| < \frac{\varepsilon}{k + p + 1} \]
\[\| M_t - M_{t+1} \| < \alpha_t \rightarrow \| f_i(M_t) - f_i(M_{t+1}) \| < \frac{\varepsilon}{k + p + 1} t e [2 \ldots k] \]
\[\| M_k - S \| < \alpha_{k+1} \rightarrow \| f_i(M_k) - f_i(S) \| < \frac{\varepsilon}{k + p + 1} \]
\[\| S - M_{k+1} \| < \alpha_{k+2} \rightarrow \| f_j(S) - f_j(M_{k+1}) \| < \frac{\varepsilon}{k + p + 1} \]
\[\| M_t - M_{t+1} \| < \alpha_t \rightarrow \| f_j(M_t) - f_j(M_{t+1}) \| < \frac{\varepsilon}{k + p + 1} t e [k+1 \ldots k + p + 1] \]

Taking \(\gamma = \min \{ \alpha_i, i \in [1 \ldots k+p+1] \} \), then \(\| M - M_0 \| < \gamma \Rightarrow || f(M) - f(M_0) || < \varepsilon \).

In the same manner, we prove the other cases.

c) **Continuity of** \(f^{-1} \).

References

