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Abstract  Similar to Fibonacci sequence and Lucas sequences that are recursively defined we define an integer 
sequence using the Euler totient function ϕ and study some of its properties. We also verify that the sequence we 
have defined has some properties similar to Fibonacci sequence, but even then it is not a Lucas sequence. 
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1. Introduction 

There have been various attempts in the recent literature 
to study properties related to integer sequences similar to 
Fibonacci sequence which is defined recursively by F0 = 1, 
F1 = 1 and Fn = Fn-1 +Fn-2 for n> 1. Fibonacci sequence has 
many interesting properties like even being consisting of 
very large terms after a few number of initial terms, the 
ratio of consecutive terms converges to a finite number. 
Another interesting property of Fibonacci sequence is that 
it has no perfect numbers in it (See [1]). A larger class of 
sequences is defined generalizing the Fibonacci sequence 
called Lucas sequences. They also share some of the 
important properties of Fibonacci sequences. In this  
article, we define an integer sequence via the arithmetical 
function. Euler ϕ function and try to obtain some 
properties of this sequence contrasting with the Fibonacci 
sequence 

2. Notations and Basic Results 

In what following, ϕ will denote the Euler totient 
function. Therefore, ϕ (n) is the number of positive 
integers < n that are co prime to n, n≥ 1. By τ (n), we 
mean the number of divisors of n. σ  (n) will denote the 
sum of divisors of n including n itself. n is said to be 
perfect if σ  (n) = 2n. Some examples for perfect numbers 
are 6 and 28.  

Now we state a classical result on convergence of real 
numbers called as the Stolz-Cesaro theorem:  
Theorem 2.1. [[3], Chapter 3, Theorem 1.2.2]  

Let ( )na  be a sequence of real numbers and ( )nb  a 
strictly monotone and divergent sequence. Then 
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The Fibonacci sequence, as we mentioned above in the 
introduction is defined recursively as F0 = 1, F1 = 1 and 
Fn = Fn-1 + Fn-2 for n ≥  2. For a fixed pair of integers  
(p, q), Lucas sequence is defined as choosing l0, l1 
arbitrary, and defining ln = pln-1 – qln-2. If we let p = 1 and 
q = -1, it becomes the definition of the Fibonacci 
sequence. 

It is known that Fibonacci sequence or Lucas sequence 
do not contain any perfect numbers [1]. 

3. ϕ-Integer Sequences and Some  
of Its Properties 

We now state a lemma which we are going to use 
frequently. 
Lemma 3.1. The ϕ function satisfies the following bounds: 

(1) ( ) 1 2n n for nφ ≤ − ≥  

(2) ( )2 1n n for nφ ≤ ≥  

(3) ( ) 1
2
nn for nφ ≥ ≥  

Proof. The statement (1) is obvious. To see (2) note that 
for every 2n, half of the number of numbers below or 
equal to that are even and so they are not co-prime to 2n. 
Hence a maximum of n of them only can be co-prime to 
2n. Hence statement (2) follows. The claim in (3) has been 
established by J. Browkin while trying to see the weaker 
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result ( )lim .
n

nφ
→∞

= ∞  This proof can be found, for 

example in [[4], Chapter 6, Theorem 4]. 
We now define a sequence ( )na  recursively as follows. 

Take 0 1a = . Define ( )1 , 1.n na a n nφ−= + ≥  Some initial 
values of na  are 1, 2, 3,5, 7, 11, 13, 19, 23, 29, 33 . . . 
This sequence is clearly a monotone increasing sequence 
and goes to ∞  with n. Let us call it as the phi-sequence. 
This sequence is in fact called as the totient summatory 
function in the literature. We now show na  can be 
restricted above by some polynomial in n. We summarize 
our claims in the next two propositions. 

Proposition 3.2. 2
2

1 32
2 2na n n≤ − +  for every n. 

Proof. By definition ( ) ( )2 1 1 ... 2na nφ φ= + + + . We now 
split this over even and odd indices. Thus 
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If k is even, then by lemma (3.1), ( )
2
kkφ ≤  and if k 

odd (or in fact for any k), ( ) 1k kφ ≤ − . Then 
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which is what we claimed. 

Proposition 3.3. 2
2 1

3 32
2 2na n n+ ≤ − +  for every n. 

Proof. Note that ( )2 1 2 22 1 2n n na a n a nφ+ = + + ≤ + . Now 
use the bound obtained in the above proposition to 
conclude.  

Fibonacci sequence is monotonically increasing to ∞  
with n. One of the key properties of Fibonacci sequence is 
that the ratio of consecutive terms converges to the 

number 1 5
2

φ +
=  = 1.6180339887 …. Though the terms 

are increasing by large leaps, the ratio of terms 1n

n

F
F
+  

surprisingly approaches a finite number. In the next result, 
we show that the sequence we defined above has the same 

property. That is, the limit of ratio of terms 1n

n

a
a
+

converges to a finite number. 

Theorem 3.4. The sequence of ratios 1n

n

a
a
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converges to 

1 as n →∞ . 
Proof. Since ( ) ( )1 1 ...na nφ φ= + + +  we have 

 ( )
( ) ( )

1 1
1 .

1 1 ...
n

n

na
a n

φ
φ φ

+ +
= +

+ +
 

By (1) and (3) in lemma (3.1), 

 

( )

1 1
1 2 31 ....

2 2 2 2
11 .

1 1 1 1 2
2

n

n

a n
a n

n
n n

+ ≤ +
+ + + +

= +
+ + + − − − − +

 

Write  xn =√1 +√2+…+√n and yn= n .Then  
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by theorem (2.1), we have n

n

x
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→∞  Thus 1n
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bounded above by a sequence which converges to 1. Also, 

since 1 1n

n

a
a
+ ≥ by definition, it is bounded below by the 

constant sequence (1). Hence by squeeze theorem for real 

number sequences, 1n

n

a
a
+  also converges to 1. 

We now prove that the sequence we have defined is not 
a Lucas sequence. 
Theorem 3.5. There do not exist integers r, s such that 

1 2n n na ra sa− −= − which works for every n. In other 
words no tail of the ϕ sequence is Lucas. 
Proof. On the contrary, suppose such r, s exists. Then 
since ( )1n na a nφ−= + we get 
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seen in the proof of theorem (3.4). So as n →∞ we get 
1r s− → . Since r, s fixed integers, r - s = 1. Thus 
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Therefore ( ) ( )1s n nφ φ− = .  Note that s is positive by 
this equation. If we let n - 1 to be a prime, then 

( )1 2n nφ − = − . Since n is even, ( ) .
2
nnφ ≤  If we take 

( ) ( )1 ,s n n cφ φ− = =  this means that 2
2
nn c− ≤ ≤ , which 

is not true for n > 4. So such an s cannot exist. The 
infinitude of primes proves our claim.  

We have already seen that Lucas sequences do not 
contain perfect numbers. Though we are unable to state 
such a result for our phi-sequence, we have experimental 
evidence to believe that such a statement holds for our 
sequence as well. We have tested it for all terms up to 106  
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(with the support of SageMath software) and could not 
locate a single perfect number. So we state it as a 
conjecture and leave it for future studies: 
Conjecture 3.6. The φ  sequence does not contain any 
perfect numbers. 

There are many other questions one may find 
interesting with these type of sequences. For example, the 

set 
( )
( )

1 : 1n

n

F
n

F
φ
φ

+  ≥ 
    

is dense in the set of all positive 

numbers (see [2]). Such a similar result can be discussed 
for our phi-sequence also. Further, we believe that similar 
properties may hold if we modify our sequence replacing 

the phi-function with τ  or σ . We plan to discuss these 
sequences in a sequel to this article. 
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