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1. Introduction 

Many nonlinear problems are naturally formulated as a 
fixed point problem for single valued or multi valued 
mapping. When a fixed point of nonexpansive mapping or 
contractive mapping exists, approximation technique is 
required. Following Picard’s iterative method which fails 
to converge in general for mappings which are not strictly 
contraction, other approximation techniques were 
introduced to approximate a fixed point. In the last forty 
years, numerous researchers have been attracted by this 
direction, and they developed iterative methods to 
approximate fixed point for not only nonexpansive 
mappings but also for some general class of nonexpansive 
mappings in linear Banach spaces and nonlinear domains 
too. Fixed point theory and hence approximation 
techniques have been extended to metric spaces(see, for 
example, [1-10] and their references).  

Let K  be a non-empty subset of a metric space (𝐸𝐸,𝑑𝑑) 
with metric 𝑑𝑑 . Then we denote the set of non-empty, 
closed and bounded subsets of E by 𝐶𝐶𝐶𝐶(𝐸𝐸). We say K  is 
proximal if for every x E∈ there exists 𝑦𝑦 ∈ 𝐾𝐾  such that 

{ }( , ) inf ( , ), .d x y d x z z K= ∀ ∈  
We denote the set of non-empty, proximal and bounded 

subsets of 𝐾𝐾 by 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐾𝐾). We see that in CAT (0) space 
or uniformly convex Banach space 𝐸𝐸  every non-empty, 
closed and convex subset of 𝐸𝐸  is proximal [11]. For 

𝐴𝐴,𝐶𝐶 ∈ 𝐶𝐶𝐶𝐶(𝐸𝐸), we define the Hausdorff distance between 
the two sets 𝐴𝐴 and 𝐶𝐶 by 

 ( , ) sup ( , ), sup ( , ) ,
x B x A

D A B Max d x A d x B
∈ ∈

 
=  

 
 

where { }( , ) inf ( , ),d x A d x a a A= ∀ ∈ . Furthermore, as 
Kuratowski in [12] presented that (𝐶𝐶𝐶𝐶(𝐸𝐸),𝐷𝐷)  is metric 
space if (𝐸𝐸,𝑑𝑑) is metric space and (𝐶𝐶𝐶𝐶(𝐸𝐸),𝐷𝐷) is complete 
if (𝐸𝐸,𝑑𝑑) is complete. 
Definition 1.1. Let : 2ET K →  be nonself multi valued 
mapping. Then the set of fixed points of 𝑇𝑇 is defined by  

 { }( ) : .F F T x K x Tx= = ∈ ∈  

For a single valued mapping : ,T K E→  the set of fixed 
points is defined by 

 { }( ) : .F F T x K x Tx= = ∈ =  

In particular, investigations have been made on 
nonlinear hyperbolic spaces. 
Definition 1.2. [13] A hyperbolic space is a triple
( , , ),E d W  where the pair ( , )E d a metric space and 

[ ]: 0,1W E E E× × →  is a mapping satisfying the 
following  

a) ( , ( , , )) (1 ) ( , ) ( , );d z W x y d z x d z yλ λ λ≤ − +   
b) ( ( , , ), ( , , )) ( , )d W x y W x y d x yλ γ λ γ= − ; 
c) ( , , ) ( , ,1 );W x y W y xλ λ= −  
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d) [ ]
( ( , , ), ( , , )) (1 ) ( , )

( , ), , , , , , 0,1
d W x y W z w d x z

d y w x y z w E
λ λ λ

λ λ γ
≤ − +

∀ ∈ ∈
. 

Every normed linear space, R-trees, the Hilbert balls 
with the hyperbolic metric, the Cartesian products of 
Hilbert balls, Hadamard manifolds and hence CAT(0) 
spaces are examples of hyperbolic spaces and the detailed 
concepts and examples can be found in [13,14,15,16,17]. 

The following is found in [7].  
A metric space 𝐸𝐸 is said to be convex if it satisfies part 

a) of definition 1.2, hence, even in convex metric space 𝐸𝐸, 
for all [ ], , 0,1x y E λ∈ ∈  the following hold; 

a) ( , ( , , )) ( , ) &d x W x y d x yλ λ=  
( , ( , , )) (1 ) ( , ).d y W x y d x yλ λ= −  

b) ( , ,0) , ( , ,1) &W x y x W x y y= =  
( , , ) ( , ,1 ) .W x x W x x xλ λ= − =  

Definition 1.3 [13] A hyperbolic space ( , , )E d W  is 
uniformly convex if for every 0r >  and ( ]0,2ε ∈  there 
exists a 0δ >  such that for all , , ,x y u E∈  

 
( , ) , ( , ) & ( , )

1( ( , , ), ) (1 ) .
2

d x u r d y u r d x y r

d W x y u r

ε

δ

≤ ≤ ≥

⇒ ≤ −
 

The modulus of uniformly convexity of the hyperbolic 
space ( , , )E d W  is the mapping 

 ( ) ( ] ( ]: 0, 0, 2 0,1 ,φ ∞ × →  

which gives ( , )rδ φ ε= for any 0 & (0,2].r ε> ∈  and we 
say that φ  is monotone if it is decreasing with respect to 
𝑃𝑃. 

Authors in [9] proved that CAT(0) spaces are uniformly 
convex hyperbolic spaces. Thus, uniformly convex 
hyperbolic spaces are generalizations of both uniformly 
convex Banach spaces and CAT(0) spaces. 
Definition 1.4. [1,5,18] Let 𝐾𝐾 be a non-empty subset of a 
metric space𝐸𝐸. Then the mapping EKT 2: →  is said to  

a) be L-Lipschitzian if ( , ) ( , )D Tx Ty Ld x y≤  for some 
0L >  and for all , ;x y K∈  

b) be nonexpansive if ( , ) ( , )D Tx Ty d x y≤  for all
,x y K∈ , when 1;L =  
c) be Quasi nonexpansive if 𝐹𝐹(𝑇𝑇) ≠ ∅  and 
( , ) ( , )D Tx Tp d x y≤  for all ( ),p F T x K∈ ∈ ; 
d) satisfy condition(C) if  

 1 ( , ) ( , ) ( , ) ( , )
2

d x Tx d x y D Tx Ty d x y≤ ⇒ ≤ . 

 A single valued mapping :T K E→  is said to 
1) satisfy condition(C) if  

 1 ( , ) ( , ) ( , ) ( , );
2

d x Tx d x y d Tx Ty d x y≤ ⇒ ≤  

2) be nonexpansive if  

 ( , ) ( , )d Tx Ty d x y≤  for all ,x y K∈ , when 1;L =  

3) be Quasi nonexpansive if 𝐹𝐹(𝑇𝑇) ≠ ∅ and  

 ( , ) ( , )d Tx Tp d x p≤  for all ( ),p F T x K∈ ∈ . 

Thus, we see that every nonexpansive mapping satisfies 
condition(C), hence, the class of mappings satisfying 
condition(C) is an intermediate between the class of 
nonexpansive mappings and that of the class of quasi 
nonexpansive mappings. 
Example 1.1. [18] Let : [0,3]T →ℜ be defined by  

 
0, 3

( ) .
1, 3

x
T x

x
≠

=  =
 

Then the map 𝑇𝑇  satisfies condition(C) but is not 
nonexpansive mapping. 

We may have a more general class of mappings: the 
class of strictlypseudocontractive mappings and their 
generalizations. 
Definition 1.5. [8] Let K be non-empty subset of a 
hyperbolic space E  and let : 2ET K → be a multi valued 
mapping. Then 𝑇𝑇 is said to be  

a) inward mapping if for any 𝑃𝑃 ∈ 𝐾𝐾, 

 
:

.1, ,1 , , 1

w w x or
Tx

y W x w y K c
c

= 
 ⊆   = − ∈ ≥    

 

b) k-strictly pseudocontractive mapping if for all 
, ,x y K∈ there exists [0,1)k ∈  such that 

 

2 2

2

( , ) ( , )
1 14 ( , , ), ( , , ) ,
2 2

where , .

D Tx Ty d x y

kd W x v W u y

u Tx v Ty

≤ +

 
 
 
∈ ∈

. 

Thus, in particular, if 0k = , then 𝑇𝑇  is nonexpansive 
mapping. Moreover, if 𝑇𝑇  is single valued mapping we 
have u Tx=  and v Ty= . 

Fixed point and common fixed point iterative methods 
are applicable in many areas such as convex optimization, 
control theory, differential inclusions, economics and 
physics. Consequently, the existence as well as methods 
of approximating fixed point and common fixed point for 
single valued and multi valued, self (nonself), contractive 
and nonexpansive type of mappings in Banach Spaces and 
generalizations to general metric spaces have been 
extensively studied by numerous authors of the field. In 
particular, fixed point results in a CAT(0) space and 
generalizations to hyperbolic spaces, which can be applied 
to graph theory, Biology and computer science have been 
extensively investigated by several authors. 

Lim [19] was the first to introduce the delta 
convergence which is analogous to weak convergence in 
Banach spaces. 
Definition 1.6. [9] Let 𝐸𝐸  be a metric space and { }nx a 
bound sequence. Then for any point x E∈ , if we define 𝑃𝑃 by 

 ( , ) lim ( , ).n n
n

r x x Sup d x x
→∞

=  

Then the asymptotic radius { }( )nr x  of the sequence 

{ }nx  is given by { } { }( ) inf ( , ),n nr x r x x x E= ∈  and the 

asymptotic centre { }( )nA x  of { }nx  is given by  
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 { } { }{ } { }( ) : ( , ( ).n n nA x x E r x x r x= ∈ =  

Moreover, a sequence{ }nx  in a metric space 𝐸𝐸 is said 

to be ∆  convergent to the point x E∈  if { } { }( )nkA x x=  

for any subsequence { }nkx  of { }.nx  

Let K  be a non-empty subset of a metric space E . 
Then the infimum of ( , )nr x x over K  is the asymptotic 
radius of the sequence { }nx with respect to K  and is 
denoted by  

 { } { }{ }( , ) inf ( , ), .n nA K x r x x x K= ∈  

The set of asymptotic centre of { }nx  with respect to K  
is given by 

 { } { } { }{ }( ) : ( , ) ( , ), y K .n n nAK x x E r x x r y x= ∈ ≤ ∀ ∈  

If the point 𝑃𝑃 in the hyperbolic space E  is the unique 
asymptotic centre of every subsequence of a bounded 
sequences{ }nx , then the sequence{ }nx ∆  converges to 𝑃𝑃 
and we write it as 

0
lim n
n

x x
→

∆ − =  or nx x
→
∆ .  

Consequently, fixed point iterative methods for the 
finite family of single valued and multi valued mappings 
in uniformly convex Banach spaces as well as in CAT(0) 
spaces have been studied by various authors (see, 
[20,21,22] and their references). Results have also been 
extended to uniformly convex hyperbolic space which is 
more general than uniformly convex Banach space and 
CAT(0) space (see, [2] and references).  

In particular, approximation techniques for common 
fixed point of nonself mappings via metric projection have 
been constructed by numerous researchers of the field [10]. 
However Colao and Marino in [23] presented that the 
computation for metric projection is costly, and they 
introduced iterative method by using inward condition without 
metric projection calculation. Consequently, authors in 
[8,24-30] constructed iterative methods for approximating a 
common fixed point for family of nonself and inward 
mappings for single valued and multi valued mappings in 
Hilbert spaces, Banach spaces and CAT(0) spaces as well. 

We raise an open question that, can we construct 
iterative methods which approximate common fixed point 
for the finite family nonself mappings in a uniformly 
convex Hyperbolic space which is more general than 
complete CAT(0) spaces and uniformly convex Banach 
spaces? Thus, it is our purpose in this paper to 
approximate a common fixed point for the finite family of 
nonself mappings with inward conditions in uniformly 
convex hyperbolic spaces, which is a positive answer to 
our question. 

2. Preliminary Concepts 

We use the following notations and definitions; 
Definition 2.1. [31] A sequence { }nx  in K  is said to be 
Fejer monotone with respect to a subset F  of K  if  
 

 1, ( , ) ( , ), .n nx F d x x d x x n+∀ ∈ ≤ ∀  

Lemma 2.1. [32] Let E  be a metric space. Then, if
, ( )A B CB E∈ ) and a A∈ , then for every 0γ >  there 

exists b B∈  such that ( , ) ( , ) .d a b D A B γ≤ +  
Lemma 2.2. [33] Let E  be a metric space. Then if 
𝐴𝐴,𝐶𝐶 ∈ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐸𝐸)  and ,a A∈  then there exists b B∈ such 
that ( , ) ( , )d a b D A B≤ . 
Lemma 2.3. [34] Let E  be a uniformly convex 
hyperbolic space with monotone modulus of uniformity 
convexity and x E∈ , let { } { },n nx y  in E  be two 
sequences, if there exists 0r ≥  satisfying the conditions
lim sup ( , )n

n
d x x r

→∞
≤ ,  

 lim sup ( , )n
n

d y x r
→∞

≤   

and  

 ,lim ( ( , 1 ), ) ,n n n
n

d W x y x rλ
→∞

− =   

where { } [ ,1 ] (0,1)nλ ε ε⊂ − ⊂  and (0,1)ε ∈ . Then it 
holds that lim ( , ) 0n n

n
d x y

→∞
= .  

Definition 2.2. [24] Let F and K be two closed and 
convex non-empty sets in a metric space E and F K⊂ . 
Then for any sequence { }nx K⊂ , if the sequence { }nx  
converges strongly to an element \ ,x K F∈∂  where

nx x≠  implies that { }nx  is not Fejer-monotone with 
respect to the subset F K⊂ , and we say the pair (F, K) 
satisfies condition(S). 
Example 2.1. Let { }0 [ 1,1]F K= ⊂ = − . Then, the pair 
( , )F K  satisfies condition(S) with the metric induced by 
norm in E = ℜ . 
Definition 2.3 [35] The multi valued mapping : 2ET K →  
with non-empty set of fixed points F is said to  
satisfy condition(I) if there exists a non decreasing non 
negative function [ ) [ ): 0, 0,g ∞ → ∞ satisfying (0) 0,g =

and ( ) 0,g r >  ( )0,r∀ ∈ ∞  such that 

 ( , ) ( ( , )),n n nd x Tx g d x F F≥ ≠ ∅  holds. 

Definition 2.4. The mapping :T K E→ is said to be  
semi compact if every bounded sequence { }nx in K  
satisfying  

 lim ( , ) 0n n
n

d x Tx
→∞

=  

has a convergent subsequence. 
Furthermore, the multi valued mapping : ( )T K CB E→  

is semi compact if every bounded sequence { }nx in K
satisfying  

 lim ( , ) 0n n
n

d x Tx
→∞

=   

has a convergent subsequence.  
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3. Results and Discussion 

Mann Type of iterative method  
Let 1 2, ,... : Pr ( )( ( ))KT T T K ox E CB E→  be a finite 

family of nonself and nonexpansive multi valued 
mappings on a non-empty, closed and convex subset K of 
a complete uniformly convex hyperbolic space E . Then it 
is our objective to construct Mann type of iterative method 
for approximating a common fixed point of the family and 
determine conditions for convergence of the iterative 
method. We use inward condition instead of the 
computation for metric projection which is costly, that is 
computationally expensive in many cases and we prove 
both delta and strong convergence results of the iterative 
method.  
Lemma 3.1. Let 𝐾𝐾 be a non-empty, closed and convex 
subset of a complete metric space 𝐸𝐸  and let

1 2, ,... : Pr ( )NT T T K ox E→  be a finite family of multi 
valued mappings, for k ku T x∈ , define :ukh K →ℜ  by  

 { }( ) inf [0,1] : ( , ,1 ) .u kkh x W x u Kλ λ= ∈ − ∈  

Then for any x K∈ , ( ) [0,1]ukh x ∈  and ( ) 0ukh x =  if 

and only if ,ku K∈  whereas if [ ( ),1],ukh xβ ∈  then 

( , ,1 )kW x u Kβ− ∈ . Moreover, if kT  is inward mapping, 
then ( ) 1ukh x < , in addition, if ku K∉ , then  

 ( , ,1 ( )) ,k ukW x u h x K− ∈∂  

where K∂  is the boundary of 𝐾𝐾. 
The proof of this lemma follows from, lemma 2.1 and 

3.1 of Colao and Mariao and Tuffa and Zegeye in [8,23] 
respectively. 
Theorem 3.2. Let 1 2, ,... :NT T T K E→  be a family of 
nonself, nonexpansive and inward mappings on a  
non-empty, closed and convex subset K of a complete 
uniformly convex Hyperbolic space E  with monotone 

modulus of uniformly convexity, 
1

( )
N

k
k

F F T
=

=


  

non-empty and for each 𝑘𝑘, ( ) 1k k ModNT T += .  

Then the sequence { }nx  which is defined by Mann 
type of iterative method  

 

[ { } ]

[ ( ){ } ]
{ }

1 1 1 1

1

1

, max , ( ) , ,
0 1,

( , ,1 ),

max , , ,

( ) inf 0 : ( , ,1 ) .

n n n n n

n n n n

n n n n n

x K h x c
c

x W x T x

h x c

h x W x T x K

α α
α

α

α α

λ λ

+

+

 ∈ =
 < < <


= −
 =
 = ≥ − ∈

 (3.1) 

is well-defined and   

 { }lim ( , ) 0. 1,2,3,... .n l n
n

d x T x l N
→∞

= ∀ ∈  

Proof. By lemma 3.1, the sequence { }nx  is  
well-defined and in K , thus, to prove the theorem first we 

prove { }nx  is fejer monotone with respect to F,  
to do so, let p F∈ . Then since each nT  is nonexpansive 
we have 

 
1( , ) ( ( , ,1 ), )

( , ) (1 ) ( , )
( , ).

n n n n n

n n n n

n

d x p d W x T x p
d x p d x p

d x p

α
α α
+ = −

≤ + −

≤

 (3.2) 

Thus, the sequence { }nx  is fejer monotone with respect 

to ,F  hence, the sequence { }nx  is bounded. 

Also, the sequence { }( , )nd x p  is decreasing, hence  
it converges for all ,p F∈  thus, there exists 0r ≥   
such that lim ( , )n

n
d x p r

→∞
= , hence, lim sup ( , ) .n

n
d x p r

→∞
≤  

Moreover, since ( , ) ( , )n n nd T x p d x p≤ , taking lim sup
n→∞

 

both sides we have lim sup ( , ) .n n
n

d T x p r
→∞

≤  We also see 

that 1lim ( , ) ( ( , ,1 ), ) .n n n n n
n

d x p d W x T x p rα+
→∞

= − =  Thus, 

by lemma 2.3 we have lim ( , ) 0.n n n
n

d x T x
→∞

=  

 
1( , ) ( ( , ,1 ), )

( , ) (1 ) ( , )
(1 ) ( , )

n n n n n n n

n n n n n n n

n n n n

d x x d W x T x x
d x x d T x x

d T x x

α
α α

α

+ = −

≤ + −

= −

(3.3) 

Thus, 

 

1lim ( , )

lim ( ( , ,1 ), )

lim ( , ) (1 ) ( , )

lim (1 ) ( , ) 0.

n n
n

n n n n n
n

n n n n n n n
n

n n n n
n

d x x

d W x T x x

d x x d T x x

d x T x

α

α α

α

+
→∞

→∞

→∞

→∞

= −

≤ + −

= − =

 (3.4) 

By induction we have  

 lim ( , ) 0, 1,2,.. .n i n
n

d x x i N+
→∞

= ∀ =   

 ( , ) ( , ) ( , );n n i n i n n i n i n i n id x T x d x x d x T x+ + + + + +≤ +  

 
1

( , )
( , ) ( , )

2 ( , ) ( , )
( , ) 2 ( , ).

n n i n

n n i n i n i n i n i n

n n n n i n i

n n i n i n i n

d x T x
d x T x d T x T x

d x x d x T x
d x T x d x x

+

+ + + + +

+ + +

+ + +

≤ +

≤ +

≤ +

 (3.5) 

Thus, from equations (3.3) to (3.5) we have  

 
{ }

{ }

lim ( , ) 0, 1,2,.. ,

1, 2,..

n n i n
n

n i l

d x T x i N

l N T T

+
→∞

+

= ∀ ∈

∃ ∈ ∋ =
 

and vice versa, thus, we have 

 lim ( , ) 0, 1,2,... .n l n
n

d x T x l N
→∞

= ∀ =  

Corollary 3.3. If 1 2 ,.. : ,NT T T T K E= = = = →  then the 
iterative method in theorem 3.2 is reduced to the  
following  
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[ { } ]

[ ( ){ } ]
{ }

1 1 1 1

1

1

, max , ( ) , ,
0 1, ( , ,1 ),

max , , ,

( ) inf 0 : ( , ,1 ) .

n n n n

n n n n

n n n n

x K h x c
c x W x Tx

h x c

h x W x Tx K

α α
α α

α α

λ λ

+

+

 ∈ =


< < < = −
 =
 = ≥ − ∈

 (3.6) 

In this case, the sequence { }nx  is well-defined and 
satisfies  

 lim ( , ) 0.n n
n

d x Tx
→∞

=  

Theorem 3.4. In theorem 3.2, if 
1
(1 )n

n
α

∞

=
− < ∞∑  and (F,K) 

satisfies condition(S), then the sequence { }nx converges 
strongly to some element p of .F   
Proof. The sequence { }nx  is bounded, that is, there exists

, 0x E m∈ ≥  such that ( , ) ,nd x x m n≤ ∀ ,   

 
( , ) ( , ) ( , )

2 ( , )
n n n n n n

n

d x T x d x p d p T x
d x p

M

≤ +

≤

≤

 

for some 0.M ≥   

 1( , ) (1 ) ( , ),n n n n n nd x x d x T xα+ ≤ −  

thus, we have  

 1
1 1

( , ) (1 ) ( , ) .n n n n n n
n n

d x x d x T xα
∞ ∞

+
= =

≤ − < ∞∑ ∑   (3.7) 

Hence, the sequence { }nx  is strongly Cauchy, hence 
Cauchy, in a complete metric space it converges. Thus, the 
sequence { }nx  converges to some element .q K∈  We 
need to show .p F∈   

Moreover, ( , ) 0nd x x →  as n →∞  and since for every 
[ ( ),1)unh xβ ∈  we have ( , ,1 ) .nW x T x Kβ− ∈  Since 

lim 1n
n
α

→∞
=  there exists a sub sequence { }nkx  of { }nx  

such that lim ( ) 1u nn jjj
h x

→∞
= . Suppose { }n jβ  is a 

sequence of real numbers such that 1n jβ <  and the limit 

lim 1n jj
β

→∞
= , then ( ) ( )n u n u nj n j n jj j

h x h xβ < , hence, we 

must have ( , ,1 ( ))n n n n u nj j j j n jj
W x T x h x Kβ− ∉ and its 

limit is x  which is in 𝐾𝐾, thus, x K∈∂ , and assuming that 
( F, K) satisfies condition(S) we have x F∈ . 

Thus, the sequence { }nx  converges strongly to some 

element
1

( )
N

k
k

p F T
=

∈


. 

Theorem 3.5. Let 1 2, ,... : Pr ( )NT T T K ox E→ be the 
family of nonself, multi valued, nonexpansive and inward 
mappings on a non-empty, closed and convex subset K  of 
a complete uniformly convex hyperbolic space  
 

𝐸𝐸  with monotone modulus of uniformly convexity, 

1
( )

N

k
k

F F T
=

=


non-empty, ( ) 1k k ModNT T +=  and for every 

point 
1

( )
N

k
k

p F F T
=

∈ =


, { }( )KT p p= . Let { }nx  be a 

sequence of Mann type defined by the iterative method  

 

{ }

( )

{ }

1 1 1 1 11

1

1 11 2

, max , ( ) , 0,

( , ,1 ),

1max , ,
( 1)

( ) inf 0 : ( , ,1 ) .

u

n n n n n n n

n n u nn

u n n nn

u T x h x

x W x u u T x

h x
n

h x W x u K

α α α

α

α α

λ λ

+

+ ++

 ∈ = >

 = − ∈ ∋


   = − 
+   

 = ≥ − ∈

 (3.8) 

Then the sequence{ }nx  is well-defined, furthermore, if 

(F,K) satisfies condition (S), then the sequence { }nx  

converges strongly to some 𝑝𝑝 of 
1

( )
N

k
k

F F T
=

=


. 

Proof. By lemma 3.1 the sequence { }nx  is well-defined 
and is in K , thus, to prove the theorem first we prove that 
{ }nx  is fejer monotone with respect to 𝐹𝐹 , to do so, let
p F∈ . Then since each nT  is nonexpansive we have

( , ) ( , )n n nd u p D T x p≤  and { }nT p p=  by lemma 2.1 and 
lemma 2.2, there exists a sequence satisfying equality; 

 

1( , ) ( ( , ,1 ), )
(1 ) ( , ) ( , )
(1 ) ( , ) ( , )

(1 ) ( , ) ( , )
( , ).

n n n n

n n n n

n n n n n n

n n n n

n

d x p d W x u p
d x p d u p
d x p D T x T p

d x p d x p
d x p

α
α α
α α
α α

+ = −

≤ − +

≤ − +

≤ − +

=

(3.9) 

Thus, the sequence { }( nx  is fejer monotone with 
respect to 𝐹𝐹.  

Since ( , )nd x p  is decreasing and bounded below it 
converges, and hence { }nx  and { }nu  are bounded, thus, 

{ }( , )n nd x u  is bounded. 
Also, from the method of proof of theorem 3.2 we  

have 

 1( , ) (1 ) ( , ).n n n n nd x x d x uα+ ≤ −  

Again, since 2
11

( 1)
n

n
α ≥ −

+
 we get   

 
2

1 1

1(1 ) .
( 1)

n
n n n

α
∞ ∞

= =
− ≤ < ∞

+
∑ ∑  

Since nα α>  and α  is positive we have   

 
1 1
(1 ) ( , ) (1 ) .n n n n

n n
d x u Kα α

∞ ∞

= =
− ≤ − < ∞∑ ∑  

From the proof of theorem 3.2 we have 
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 1( , ) ( ( , ,1 ), )
(1 ) ( , ).

n n n n n n

n n n

d x x d W x u x
d x u

α
α

+ = −

≤ −
 (3.10) 

Thus, the sequence{ }nx  is strongly Cauchy, hence, it is 
Cauchy and Cauchy sequence converges in the complete 
space ,E  thus, there exists x K∈ such that ( , ) 0nd x x →  
as n →∞  and for each nx  there corresponds { }nu .  
Since the coefficient [ ( ),1)uh xβ ∈  and u Tx∈   
we have ( , ,1 ) .W x u Kβ− ∈  Also since lim 1n

n
α

→∞
=  there 

exists a subsequence { }nkx  of the sequence { }nx  such 

that lim ( ) 1,u nn jjj
h x

→∞
=  suppose the sequence { }n jβ  is 

sequence of real numbers 1n jβ <  and lim 1n jj
β

→∞
= , in 

particular, ( ) ( ),n u n u nj n j n jj j
h x h xβ <  hence, the sequence 

( , ,1 ( )) .n n n u nj j j n jj
W x u h x Kβ− ∉  Thus, we have 

  

lim ( ( , ,1 ( )), )

lim ( ) ( , )

lim (1 ( )) ( , ) 0,

n n n u nj j j n jjj

n u n nj n j jjj

n u n nj n j jjj

d W x u h x x

h x d x x

h x d u x

β

β

β

→∞

→∞

→∞

−

≤ +

− =

 

thus, the limit is 𝑃𝑃 which is in 𝐾𝐾, thus, x K∈∂ , since the 
pair ( F, K) satisfies condition(S) we have x F∈ . 

Thus, the sequence { }nx  converges strongly to some 

element
1

( )
N

k
k

p F T
=

∈


. 

Corollary 3.6. Let 1 2, ,... :NT T T K E→  be a finite family 
of nonself, single valued, nonexpansive and inward 
mappings on a non-empty, closed and convex subset K  of 
a complete uniformly convex hyperbolic space E with 
monotone modulus of uniformly convexity, such that 

1
( )

N

k
k

F F T
=

=


 non-empty, ( ) 1k k ModNT T +=  and for all

1
( )

N

k
k

p F F T
=

∈ =


. Let { }nx  be a sequence of Mann type 

defined by the iterative method  

 

{ }

( )

{ }

1 1 1 1

1

1 1 1 2

, max , ( ) , 0,
( , ,1 ),

1max , ,
( 1)

( ) inf 0 : ( , ,1 ) .

n n n n n

n n n n

n n n n n

x K h x
x W x T x

h x
n

h x W x T x K

α α α
α

α α

λ λ

+

+ + +

 ∈ = >


= −
    = −  +  
 = ≥ − ∈

 (3.11) 

Then the sequence{ }nx  is well-defined, furthermore, if 

(F,K) satisfies condition(S), then the sequence { }nx  

converges strongly to some 𝑝𝑝 of 
1

( )
N

k
k

F F T
=

=


. 

Proof. From the method of proof of theorem 3.4, we put
,n n nu T x=  hence, the proof can be made in similar 

fashion. 
Furthermore, strong convergence result can be obtained 

with suitable conditions on the mappings such as 
condition (I). 
Definition 3.1. The finite family of mappings { } 1

N
i iT =

where : 2E
iT K →  with the intersection of sets of fixed 

points 
1

( )
N

k
k

F F T
=

=


 is said to satisfy condition (I) if 

there exists a non decreasing non negative function 
[ ) [ ): 0, 0,g ∞ → ∞ , (0) 0, ( ) 0,g g r= > ( )0,r∀ ∈ ∞  such 

that the following holds 

 ( , ) ( ( , )), .n i n nd x T x g d x F F≥ ≠ ∅  (3.12) 

Theorem 3.7. Let 1 2, ,... : ( )NT T T K prox E→  be a family 
of nonself, multi valued, nonexpansive and inward 
mappings satisfying condition (I) on a non-empty, closed 
and convex subset 𝐾𝐾  of a complete uniformly convex 
Hyperbolic space E with monotone modulus of uniformly 

convexity, 
1

( )
N

k
k

F F T
=

=


 non-empty, ( ) 1k k ModNT T +=  

and for all
1

( )
N

k
k

p F F T
=

∈ =


, { }( )KT p p= . Let { }nx   

be a sequence of Mann type defined by the iterative 
method  

 

{ }

( ){ }
{ }

1 1 1 1 11

1

1 11

, max , ( ) , 0,

( , ,1 ), ,

max , ,

( ) inf 0 : ( , ,1 ) .

u

n n n n n n n

n n u nn

u n n nn

u T x h x

x W x u u T x

h x

h x W x u K

α α α

α

α α

λ λ

+

+ ++

 ∈ = >

 = − ∈


=


= ≥ − ∈

  

Then the sequence { }nx  is well-defined and in 𝐾𝐾,  

and if { } [ ,1 ] (0,1)nα ε ε⊆ − ⊂ for 0ε > , then the 

sequence { }nx  converges strongly to some fixed point 
element 𝑝𝑝 of  

 
1

( ).
N

k
k

F F T
=

=


 
(3.13) 

Proof. From the method proof of theorem 3.2 we  
have lim ( , ) lim ( , ) 0n n n n n

n n
d x T x d x u

→∞ →∞
≤ = , hence, we 

have { }lim ( , ) 0, 1, 2,... .n l n
n

d x T x l N
→∞

= ∀ ∈  Furthermore, 

since the mappings satisfy condition (I), there exists  
a non decreasing function [ ) [ ): 0, 0,g ∞ → ∞  satisfying 

the conditions ( )(0) 0, ( ) 0, 0,g g r r= > ∀ ∈ ∞  such that
( , ) ( ( , )),n i n nd x T x g d x F F≥ ≠ ∅ , hence, we have  

 liminf ( , ) 0.n
n

d x F
→∞

=   
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Thus, the monotonicity 1( , ) ( , )n nd x F d x F+ ≤  gives 
lim ( , ) 0,n

n
d x F

→∞
=  hence, for n m>  and for all p F∈   

we have 
 ( , ) ( , ) ( , ) 2 ( , ).n m n m md x x d x p d p x d x p≤ + ≤  

Taking infimum over all p F∈  we get 

 ( , ) 2 ( , ) 0, , ,n m md x x d x F n m≤ → →∞  

hence, the sequence { }nx is Cauchy sequence, thus, it 
converges to some .q K∈  Moreover, we have  

 
( , ) ( , ) ( , ) ( , )

2 ( , ) ( , ) 0, .
l n n l n l n l

n n l n

d q T q d x q d x T x d T x T q
d x q d x T x n

≤ + +

≤ + → →∞
(3.14) 

Since iT q  is closed we have q F∈ which completes 
the proof. 
Theorem 3.8. Let 1 2, ,... : ( )NT T T K CB E→  be a family 
of nonself, multi valued, nonexpansive and inward 
mappings satisfying condition (I) on a non-empty, closed 
and convex subset 𝐾𝐾  of a complete uniformly convex 
hyperbolic space 𝐸𝐸 with monotone modulus of uniformly 

convexity, 
1

( )
N

k
k

F F T
=

=


 non-empty, ( ) 1k k ModNT T +=  

and for all 
1

( )
N

k
k

p F F T
=

∈ =


, { }( )KT p p= . Let { }nx  be 

a sequence of Mann type defined by the iterative method 
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( ){ }
{ }

1 1 1 1 11

1

1 11

, max , ( ) , 0,

( , ,1 ), ,

max , ,

( ) inf 0 : ( , ,1 ) .

u

n n n n n n n

n n u nn

u n n nn

u T x h x

x W x u u T x

h x

h x W x u K

α α α

α

α α

λ λ

+

+ ++

 ∈ = >

 = − ∈


=


= ≥ − ∈

 

Then the sequence{ }nx  is well-defined and in 𝐾𝐾, and if 

{ } [ ,1 ] (0,1)nα ε ε⊆ − ⊂  holds for some 0ε > , then the 

sequence{ }nx  converges strongly to some element 𝑝𝑝 of  

 
1

( ).
N

k
k

F F T
=

=


 (3.15) 

Proof. Since lemma 3.1 is applicable if Pr ( )ox E  is 
replaced by ( ).CB E Thus, the proof can be made in 
similar way. 
Theorem 3.9. Let :T K E→  be a nonself, single  
valued and inward mapping satisfying both condition (C) 
and condition (I) on a non-empty, closed and convex 
subset 𝐾𝐾  of a complete uniformly convex hyperbolic 
space 𝐸𝐸 with monotone modulus of uniformly convexity 
and ( )F F T=  is non-empty. Let { }nx be a sequence of 
Mann type defined by the iterative method 
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( ){ }
{ }

1 1 1 1

1

1 1 1

, max , ( ) , 0,
( , ,1 ),
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x W x T x

h x

h x W x T x K

α α α
α

α α

λ λ

+
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∈ = >


= −
 =
 = ≥ − ∈

 

Then the sequence { }nx  is well-defined and in 𝐾𝐾, and 

if { } [ ,1 ] (0,1)nα ε ε⊆ − ⊂ holds for some 0ε > , then the 

sequence { }nx  converges strongly to some element 𝑝𝑝 of  

 ( ).F F T=  (3.16) 

Proof. Let p F∈ . Then since  

 1 ( , ) 0 ( , ) ( , ) ( , ).
2 n nd p Tp d p x d Tx Tp d x p= ≤ ⇒ ≤  

We have, 

 
1( , ) ( ( , ,1 ), )

( , ) (1 ) ( , )
( , ) ( , ) ( , ).

n n n n n

n n n n n n

n n n n n

d x p d W x T x p
d x p d T x T p
d x p d x p d x p

α
α α
α α

+ = −

≤ + −

≤ + =

(3.17) 

Hence, from method of proof of theorem 3.2 and 3.8 we 
have the sequence { }nx  is Cauchy sequence, hence it 
converges to some point .q K∈  It suffices to show that 

( ).q F T∈   
But 

 
( , ) ( , ) ( , ) ( , )

2 ( , ) ( , ) 0, .
n n n n

n n n

d q Tq d x q d x Tx d Tx Tq
d x q d x Tx n

≤ + +

≤ + → →∞
 

Since T q q=  we have q F∈  which completes the proof. 
The results can be extended to the class of quasi 

nonexpansive mappings too. 

4. Conclusion 

Authors constructed Mann type of iterative methods to 
approximate common fixed point for the finite family  
of nonself and nonexpansive mappings with inward 
condition by lowering the computation for metric 
projection, which doesn’t exist in general Banach spaces 
and more general nonlinear spaces, even in Hilbert spaces, 
it requires additional computational techniques. Our 
theorems extended many results in the literature, in 
particular, we extended the result of [8,25-30] to a 
common fixed point for the family of nonexpansive and 
Suzi type of mappings to uniformly convex hyperbolic 
space which is more general than uniformly convex 
Banach spaces and CAT(0) spaces. We also extended 
many results to nonself single valued and multi valued 
mappings. Authors proved strong convergence result which 
is stronger than that of delta and weak convergence results. 

Open questions. Finally we propose open questions for  
a) the possibility to extend results of this work to more 

general classes of contractive mappings. 
b) the possibility to lower condition (I) and condition(S) 

by imposing weaker conditions. If so, under what suitable 
conditions? 
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