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1. Introduction 

All the rings considered in this paper are with identity 
and they have characteristic zero. 

A derivation on a ring is a function which generalizes 
certain features of the traditional derivative operator. On 
the other hand the term integration is connected to the 
computation of an integral. 

In the present work properties are studied of the 
differential ideals of a ring R and of the iterated skew 
polynomial rings over R defined with respect to a finite set 
of commuting derivations of R. The concept of the 
integration of R associated to a given derivation of R is 
also introduced and some fundamental properties of it are 
studied. This new concept generalizes basic features of the 
indefinite integrals. 

The paper is organized as follows: The next section 
contains the information about derivations and the 
differential simplicity of a ring needed for the good 
understanding of the rest of the work, whereas the main 
results are presented in Section 3. The article closes with 
the conclusions and some hints for future research on the 
subject, which are contained in Section 4. 

2. Derivations and Differential Simplicity 
of Rings 

We start by recalling the following definitions: 
2.1. Definition: Let R be a ring. Then a map  

d: R→R is called a derivation of R, if and only if, d(x+y) 
= d(x) + d(y) and d(xy) = xd(y) + d(x)y, for all x, y in R. 

Observe that d(1) = d(1.1) = 2d(1), therefore d(1) = 0. 
The set of all derivations of R is denoted by DerR. 

Given a non commutative ring R and an element s in R 
it is easy to check that the map d: R → R defined by  

d(r) = sr-rs is a derivation of R, called the inner derivation 
of R induced by s. For distinguishing between the two 
cases, a derivation of R which is not inner is called an 
outer derivation. 

2.2 Definition: Let R be a ring and let d be a derivation 
of R. Then an ideal I of R is said to be a d-ideal, if d(I)⊆ I. 
If the only d-ideals of R are 0 and R, then R is called a  
d-simple ring and d is called a simple derivation of R. 

Non commutative d-simple rings exist in abundance; 
for example every simple ring is d-simple for any 
derivation d of R. On the other hand, there is not known 
any general criterion under which one can decide whether 
or not a commutative ring possesses simple derivations. 
Typical examples of such rings are the polynomial rings in 
finitely many variables over a field [1] and the regular 
local rings of finitely generated type over a field [2]. More 
examples can be found in [1], whereas in [3] geometrical 
examples are presented of smooth varieties (algebraic sets) 
over a field with coordinate rings possessing simple 
derivations. 

It is well known that if a commutative ring R is d-
simple then R is an integral domain and also that if R has 
no non zero prime d-ideals, then R is a d-simple ring ([4]; 
Corollary 1.5). 

Definition 2.2 can be generalized for a finite set D of 
derivations of R as follows: 

2.3 Definition: Let D be a finite set of derivations of R. 
Then an ideal I of R is called a D-ideal if d(I)⊆ I for all d 
in D and R is called a D-simple ring, if it has no proper 
non zero D-ideals (differential simplicity of R). 

Obviously, if R is a d-simple ring for some d in D, then 
R is also a D-simple ring, but the converse is not true; e.g. 
this happens with the coordinate ring of the real sphere 
([5], Lemma 3.1).  

2.4 Definition: Let R be a ring and let d be a derivation 
of R. Define on the set S of all polynomials in one 
variable x over R addition in the usual way and 
multiplication by the rule: xr=rx+d(r), for all r in R. It is 
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well known then that S becomes a non commutative ring 
denoted by R[x, d] and called a skew polynomial ring (of 
derivation type) over R (e.g. see [6], p.35). 

Such rings, which are also known as Ore extensions, 
have been firstly introduced by O. Ore [7] to be used as 
counter examples. Note that skew polynomial rings can 
also be defined over R with respect to an endomorphism f 
of R and in a more general context with respect to f and an 
f-derivation d of R [6], which is a generalization of the 
concept of the ordinary derivation. 

We continue with the following useful Lemma: 
2.5 Lemma: Let R be a ring, let d be a derivation of R 

and let S=R[x, d] be the corresponding skew polynomial 
ring over R. Let also d* be another derivation of R. Then 
d* extends to a derivation of S by d*(x)=0, if, and only if, 
d* commutes with d. 

Proof [8]: Obviously d* extends to a derivation of S, if, 
and only if, d*(x) can be defined in a way compatible to 
multiplication in S. In other words, if d*(x)=h, then for all 
r in R we must have d*(xr)= d*(rx)+d*[d(r)] ⇔
xd*(r)+hr=rh+d*(r)x+d*[d(r)] ⇔  d*(r)x+ d[d*(r)]+hr= 
rh+d*(r)x+d*[d(r)], 

Therefore h=0⇔  d[d*(r)]= d*[d(r)], which completes 
the proof. 

Let now D = {d1, d2,…,dn} be a finite set of derivations 
of R commuting to each other; i.e. we have that di o dj=dj 
o di, i, j = 1, 2,…,n. Consider the set Sn of all polynomials 
in n variables x1, x2, …,xn and define addition in Sn in the 
usual way and multiplication by the rules xir = rxi+di(r), 
xixj = xjxi, for all r in R and all i, j = 1,2,…,n.  

Set S1=R[x1, d1] and, using Lemma 2.5, consider  
the skew polynomial rings S2=S1[x2, d2],…., Sk+1= 
Sk[xk, dk],…, Sn=Sn-1[xn, dn]. 

The ring Sn=R[x1, d1][x2, d2]….,[xn, dn], introduced by 
Voskoglou [8], is called an iterated skew polynomial ring 
(ISPR) of derivation type over R and for brevity will be 
denoted by Sn=R[X, D].  

Voskoglou [9] has also introduced ISPRs over R with 
respect to a finite set {f1,f2,…,fn}of monomorhisms of R 
and a corresponding set {d1, d2, …, dn} of fi-derivations of 
R, such that di o dj=dj o di, di o fj= fj o di and fi o fj = fj o fi. 

Other types of ISPRs, in which multiplication is defined 
only by the rule xir = rxi+di(r), for all r in R and all 
i=1,2,…,n, but the variables need not to commute, have 
been introduced by Kishimoto [10] and by others. To 
distinguish between the two cases we denote the ISPRs of 
the second case by Sn*. 

Note that in Sn* the derivations of D need not commute 
to each other. We prove the following result about this: 

2.6 Proposition: Let R be a ring and let D be a finite set 
of derivations of R. Then, if the variables of an ISPR over 
R defined with respect to D commute, the derivations of D 
commute too. 

Proof: Given r in R and two variables xi and xj of the 
ISPR over R we have that  
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In the same way we find that  

 ( ) ( ) ( )( ).j i j i j i i j j ix x r rx x d r x d r x d od r= + + +  

Assuming that xixj = xjxi the result follows by equating 
the right members of the last two equations. 

The ISPRs have found recently two important applications 
resulting to the renewal of the researchers’ interest about 
them. The former concerns the ascertainment that many 
Quantum Groups (i.e. Hopf algebras having in addition a 
structure analogous to that of a Lee group [11]), which are 
used as a basic tool in Theoretical Physics, can be 
expressed and studied in the form of an ISPR. The latter 
concerns the utilization of ISPRs in Cryptography for 
analyzing the structure of certain codes [12]. 

Voskoglou has also proved the following result [8]: 
2.7 Theorem: Let R be a ring, let D = {d1, , …, dn} be a 

finite set of derivations of R commuting to each other and 
let Sn=R[X, D] be the corresponding ISPR over R. 
Assume further that di is an outer derivation of Si-1, where 
So = R. Then Sn is a simple ring, if, and only if, R is a D-
simple ring.  

As an example, consider the polynomial ring R=k[y1, 
y2,…,yn] over a field k and the set D={

1y
∂
∂

, 
2y
∂
∂

,…, 
ny
∂
∂

} 

of partial derivatives of R. Then it is straightforward to 
check that R is a D-simple ring ([13]; Example 1), 
therefore by the previous theorem the ISPR R[X, D] is a 
simple ring.  

Theorem 2.6 for n=1 is due to D. Jordan [14]  
The following definition generalizes the notion of a 

prime ideal of a ring: 
2.8 Definition: Let R be a ring and let D be a finite set 

of derivations of R. Then a D-ideal I of R is said to be a 
D-prime ideal, if given any two D-ideals A and B of R 
such that AB⊆ I, it is either A⊆ I or B⊆ I. In particular, 
R is called a D-prime ring, if (0) is a D-prime ideal of R. 

The next result [15] establishes a relationship among 
the prime ideals of Sn and the D-prime ideals of R: 

2.9 Theorem: Let R be a ring, let D be a finite set of 
derivations of R commuting to each other and let Sn=R[X, 
D] be the corresponding ISPR over R. Then: 
  If P is a prime ideal of Sn, P∩ R is a D-prime ideal 

of R. 
  If I is a D-prime ideal of R, ISn is a prime ideal of 

Sn. 

3. Main Results  

Let R be a commutative ring, let d be a derivation and 
let I be an ideal of R, Then it is straightforward to check 
that d-1(I) = {r∈R: d(r)∈ I}is a subring of R. We shall 
prove the following result: 

3.1 Theorem: Let P be a prime d-ideal of R, then the 
ring d-1(P) is integrally closed in R. 

Proof: It suffices to show that, if r is an element of R 
integral over d-1(P), then r is in d-1(P).  

In fact, since r is integral over d-1(P), there exists a 
monic polynomial f(x) = xn+an-1xn-1+ … +a1x+ao of 
minimal degree n with coefficients in d-1(P), such that  
f(r) = rn+an-1rn-1+ … +a1r+ao = 0. Differentiating this 
equation with respect to d one gets that  
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[nrn-1+(n-1)an-1rn-2+..+a1]d(r)+d(an-1)rn-1+..+d(a1)r = 0 or 
rod(r) = -[d(an-1)rn-1+..+d(a1)r], with  

 ( )1 2
1 1.1 ..n n

o nr nr n a r a− −
−= + − + +  (1)  

But, since an-1, ..,a1 are in d-1(P), we get that d(an-1), .., 
d(a1) are in P. Therefore rod(r) is in P, which implies that 
either ro  is in P or d(r) is in P. But, if ro is in P, d(ro) is also 
in P, therefore ro is in d-1(P). Thus equation (1) contradicts 
to the minimality of n in f(x). Consequently d(r) is in P, 
which shows that r is in d-1(P) and this completes the 
proof of the theorem.   

Let now s = a+d(b) be an element of I + d(I), with a, b 
in the ideal I of R. Then d(rb)=rd(b)+d(r)b, therefore  
rs = ra+rd(b) = ra+[d(rb)-d(r)b]=[ra-d(r)b]+d(rb) is in 
I+d(I), for all r in R. Consequently I + d(I) is an ideal of R. 

Assume now that R is a local ring, i.e. a Noetherian ring 
with a unique maximal ideal M. If M is not a d-ideal of R, 
then M+d(M) is an ideal of R containing properly M, 
therefore M+d(M)=R. On the other hand, it becomes clear 
that the ideal Mk+d(Mk)⊆M, for all integers k, k≥ 2. In 
particular, for k=2 we shall prove the following result: 

3.2 Theorem: Let R be a local ring with maximal ideal 
M and let d be a derivation of R such that M is not a  
d-ideal of M. Then M2+d(M2)=M. 

Proof: Since R is a Noetherian ring, M is a  
finitely generated ideal of R. Therefore, we can write  
M=(m1, m2, …, mk), for some positive integer k.  

Since M is not a d-ideal of R, there exists at least one 
generator ms of M such that d(ms) is not in M. We can 
write then M=(m1+ms, m2+ms, …, mk+ms). Therefore, 
without loss of generality we may assume that d(mi) is not 
in M, for all i=1, 2, …, k. Consequently d(mi) is a unit of 
R, because otherwise we should have that (d(mi)) is a 
proper ideal of R, which implies that (d(mi))⊆M, or d(mi) 
∈M, a contradiction. In other words, there exists ri in R 
such that rid(mi)=1.  

Then d(mi
2)=2mid(mi)=2mi(ri

-1) is in M2+d(M2), 

therefore mi =
2
ir [2mi(ri

-1)] is also in M2+d(M2), which 

completes the proof.   
We now introduce the following concept: 
3.3 Definition: Let R be a ring and let d be in DerR. 

Then the integration of R associated to d is a map i: R→
R such that d[i(x)] = x, for all x in R. 

Next we shall prove: 
3.4 Theorem: Let d be an injective derivation of a ring 

R and let i be the integration of R associated to d. Then i is 
a derivation of R, if, and only if,  

 ( ) ( ) ( ) ( )   ,xy i x d y d x i y=− +     

for all x, y in R. 
Proof: For all x, y in R we have by definition 2.2  

that d[i(x+y)] = x+y. We also have that d[i(x)+i(y)] 
=d[i(x)]+d[i(y)]=x+y. Therefore, since d is an injective 
map, we obtain that  

 ( ) ( ) ( ).i x y i x i y+ = +  (2) 

On the other hand, we have that d[i(xy)]=xy and  
d[xi(y) + i(x)y] = d[xi(y)] + d[i(x)y] = x[d[i(y)] +d(x)i(y) 
+ i(x)d(y) + d[i(x)]y =2xy+d(x)i(y)+i(x)d(y).  

On comparing the last two equations we obtain that 
d[i(xy)]=d[xi(y)+i(x)y], if, and only if, xy=2xy+d(x)i(y) + 
i(x)d(y) . 

This, combined to the fact that d is an injective map, it 
finally shows that i(xy)]=xi(y)+i(x)y, if, and only if,  

 ( ) ( ) ( ) ( ) ,xy i x d y d x i y− +  =  (3) 

which, together with equation (2) completes the proof of 
the theorem .  

Theorem 3.4 has the following two important 
corollaries: 

3.5 Corollary: Let R be a ring, let d be an injective 
outer derivation R and let i be the integration of R 
associated to d. Assume further that equation (3) holds for 
all x, y in R. Then: 

The skew polynomial ring S=R[x, i] is simple, if, and 
only if, R is an i-simple ring. 

If P is a prime ideal of S, P∩ R is an i-prime ideal of R, 
whereas if I is an i-prime ideal of R, IS is a prime ideal of 
S. 

Proof: 1) By Theorem 3.4 i is a derivation of R, 
therefore the result follows by applying Theorem 2.7 for 
n=1. 

2) It turns out by combining Theorem 3.4 and Theorem 
2.9 for n=1.  

Next we need the following lemma: 
3.6 Lemma: Let D = {d1, d2,…, dn} be a finite set of 

injective derivations of a ring R commuting to each other 
and let F = {f1, f2,…, fn} be the set of integrations of R, 
such that fi is associated to di, i=1,2,..,n. Then the 
integrations of F commute to each other.  

Proof: Given r in R, we have that didj[fifj(r)] = djdi[fifj(r)]  
= dj[(difi)fj(r)] = dj[fj(r)] = r. In the same way it turns out 
that didj[fjfj(r)] = r, therefore didj[fifj(r)] = didj[fjfj(r)].  

But the map didj is injective, hence fi o fj = fj o fi and the 
result follows. 

3.7 Corollary: Let D = {d1, d2,…, dn} be a finite set of 
injective derivations of a ring R commuting to each other 
and let F = {f1, f2,…, fn} be the set of integrations of R, 
such that fi is associated to di, i=1,2,..,n. Assume further 
that for the derivation di and the associated to it 
integration fi the equation (3) holds for all the elements of 
Si-1 (where So=R). Then one can define the ISPR Sn = R[x, F], 
where we have: 
  If P is a prime ideal of Sn, P∩ R is a D-prime ideal 

of R. 
  If I is a D-prime ideal of R, ISn is a prime ideal of 

Sn. 
Proof: By Theorem 3.4 the elements of F are 

derivations of R and by Lemma 3.6 they commute to each 
other. Therefore we can define the ISPR Sn = R[x, F] and 
the result follows by Theorem 2.9  

4. Discussion and Conclusions 

In this work we studied properties of the differential 
ideals of a ring R and of the ISPRs of derivation type over 
R. The notion of an integration of R associated to a given 
derivation of R was also introduced and some fundamental 
properties of it were studied. This new concept generalizes 
basic features of the indefinite integrals and therefore a 
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further research on its properties in connection to 
corresponding properties of the associated derivations 
seems to have its own importance. 

For example, an open question is if the first case of 
Corollary 3.5 can be extended to ISPRs in finitely many 
variables defined as in Corollary 3.7. This could happen if 
each fi in F in Corollary 3.7 is an outer derivation of Si-1, 
but the conditions under which this could happen are 
under investigation. 
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