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Abstract  It is well known that the human health is adversely affected by toxic air pollutants such as sulfur dioxide, 
nitrous oxide etc. present in the atmosphere. The removal of such pollutants from the atmosphere is, therefore, very 
much desirable. In this paper, a nonlinear mathematical model is proposed to study the population density dependent 
industrial emission of toxic air pollutants in the atmosphere and their removal by spraying liquid (water droplets) and 
particulate matter. In the modeling process, five variables are considered, namely; the cumulative concentration of 
toxic air pollutants, the density of human population affected by the toxic pollutants, the density of industrialization 
which is  population density dependent, the number density of liquid droplets sprayed in the environment and the 
density of particulate matter sprayed in the environment. It is assumed that the emissions of toxic air pollutants are 
linearly related to the density of industrialization, the growth rate of which is directly proportional to the density of 
human population. It is also assumed that the growth rate of externally sprayed species in the environment is directly 
proportional to the concentration of toxic air pollutants in the environment. The model is analyzed using stability 
theory of nonlinear differential equations and numerical simulations. The model analysis shows that as the rate of 
spray of external species in the environment increases, the cumulative concentration of toxic air pollutants decreases. 
It is also found that as the rate of removal of toxic pollutants increases, the cumulative concentration of toxic air 
pollutants in the environment decreases. The effect of toxic air pollutants is observed to decrease the density of 
human population. The numerical simulation confirms analytical results. 
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1. Introduction 

Various types of toxicants such as 2SO , 2NO , emitted 
from human population density dependent sources like  
manmade thermal power plants etc., affect human health 
and therefore it is very desirable to remove these toxic 
pollutants from the atmosphere. It is noted that nitric 
oxide ( NO ) converts to nitrogen oxide ( 2NO ) which in 
turn reacts with available moisture in the atmosphere to 
form nitric acid. Similarly sulfur dioxide converts into 
sulfuric acid. It has been shown that resource and hence 
population dependent on them may lead to extinction as a 
result of increased industrialization [1]. The most 
important techniques by which toxic air pollutants can be 
removed from the atmosphere are; the precipitation 

scavenging in which toxic air pollutants are precipitated 
by the use of liquid droplets or by using particulate matter 
such as calcium oxide ( ).CaO  In precipitation scavenging, 
pollutants are absorbed / trapped in liquid droplets and as 
such these pollutants are precipitated on earth surface 
whereas using calcium oxide ( )CaO  as particulate matter 
with 2CO  results in forming calcium carbonate, thus 
removing pollutants from the atmosphere as per reaction 
below,  
 2 3CO CaO CaCO+ →  

Since visibility is increased after rain, the same 
phenomenon is used artificially to remove pollutants from 
the atmosphere. Several experimental investigations have 
been made to study the removal of pollutants by the 
process of precipitation [2-5,16]. It can be seen that after 
rain the visibility always increases and the pollutants are 
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removed from the atmosphere resulting in the enhanced 
visibility. In some studies around the cities of Kanpur, 
Varanasi, Pune in India [3,4,5] and Sheffield in United 
Kingdom [2] appreciable decline in the concentration of 
pollutants after rain is observed.  

Many researchers have developed mathematical  
models and analyzed them to understand the scavenging 
of pollutants by precipitation [6-16]. A theoretical 
framework for scavenging of gases in the atmosphere 
using rain was developed [10]. A mathematical model  
to calculate the redistribution and washout of sulfur 
dioxide by raindrop spectra characteristic of drizzle and 
heavy rain was also presented [17]. A six dimensional 
mathematical model has been proposed to study the  
effect of the density of cloud droplets on the removal  
of pollutants, gaseous as well as particulate, from  
the atmosphere [18]. Some investigations have also  
been made to study the phenomenon of removal  
of gaseous pollutants and particulate matters by 
precipitation scavenging using nonlinear mathematical 
models [19-21]. 

Thus, in order to reduce the concentration of gaseous 
pollutants, particulate matters and dust particles which 
affect our environment considerably in various ways, 
using liquid droplets and particulate matters can be very 
significant removal mechanism to keep the environment 
clean.  

From the above, it is observed that no study has been 
made to remove the pollutants from the atmosphere by 
using both the liquid droplets and particulate matter 
calcium oxide ( CaO ) associated with some human 
activity from the atmosphere. Therefore, in this paper, we 
propose and analyze a nonlinear mathematical model to 
study the removal of toxic air pollutants from the 
atmosphere using above concepts. 

2. Mathematical Model 

Consider that in a human habitat toxic air pollutants are 
emitted by human population dependent industrial sources 
which affect the human population. Let C  be the 
cumulative concentration of toxic air pollutants, N be the 
density of human population governed by a logistic model, 
the growth rate of which decreases due to toxic air 
pollutants. Let I be the density of industrialization, the 
growth rate of which is directly proportional to the density 
of human population. It is further assumed that the growth 
rate of number densities of liquid droplets dC  and 
particulate matter pC are proportional to the concentration 
of toxic air pollutants present in the environment. The 
effect of these externally sprayed species is to reduce the 
concentration of toxic air pollutants in the atmosphere. 

Keeping these considerations in view, the model is 
proposed as follows. 

The emission of toxic air pollutants C  is governed by 
the equation (1), wherein Q  is the constant emission rate 
of pollutants in the atmosphere. The growth rate of toxic 
air pollutants is enhanced by population density dependent 
industrialization and therefore it is assumed that 0δ >   
is the growth rate coefficient of toxic air pollutants  

in the atmosphere due to increase in industrialization. The 
constant 0 0δ > is natural depletion rate coefficient of 
toxic air pollutants in the atmosphere. Some of the 
pollutants are removed from the atmosphere by the use of 
liquid droplets dC  in atmosphere, 1 0,δ >  being the 
depletion rate coefficient of pollutants due to externally 
introduced liquid species. Particulate matters are also used 
to remove the toxic air pollutants from the atmosphere and 
therefore the removal of toxic air pollutants is taken in the 
direct proportion of number density of external species as 
well as the concentration of these pollutants as in equation 
(1), 2 0δ >  being the depletion rate coefficients of toxic 
air pollutants due to particulate matters. The constant 

3 0δ >  is the depletion rate coefficient of toxic air 
pollutants due to self awareness of human beings about 
the adverse effects of these pollutants.  In equation (2), N  
is the population density, the growth rate of which is 
assumed to follow logistic equation. Let r be the intrinsic 
growth rate of N with carrying capacity K . Since toxic air 
pollutants emitted from industries have adverse effect on 
human population and therefore it is reasonable to assume 
1 0r > as depletion rate coefficient of population due to 

toxic air pollutants. As population increases, demand and 
supply equations get changed. Thus, in order to fulfill 
demand and supply equations, more industries are to be 
established and therefore the growth of industrialization is 
assumed to be proportional to the density of human 
population as shown in equation (3). Therefore, in this 
equation, the constant 0λ >  is assumed to be growth rate 
coefficient of industrialization and 0 0λ > is its natural 
depletion rate coefficient. In equation (4), 0µ >  is the 
growth rate coefficient of number density of liquid 
droplets used to reduce the concentration of toxic air 
pollutants in the atmosphere. Since some of the liquid 
droplets decays themselves and hence 0 0µ >  is taken as 
natural depletion rate coefficient of liquid droplets. The 
constant 1 0µ >  is the depletion coefficient of liquid 
droplets due to toxic air pollutants. In equation (5), 0ν >  
is the growth rate coefficient of particulate matters. Since 
some of the particulate matters are depleted itself and 
hence it is assumed that 0 0ν >  is the natural depletion 
rate coefficient of particulate mattes. The constant 1 0ν >  
is the depletion coefficient of particulate matters due to 
toxic air pollutants.  

Thus, in view of the above, the system is assumed to be 
governed by the following nonlinear ordinary differential 
equations, 

 0 1 2 3d p
dC Q I C CC C C NC
dt

δ δ δ δ δ= + − − − −  (1) 

 11dN NrN r NC
dt K

 = − − 
 

 (2) 

 0
dI N I
dt

λ λ= −  (3) 

 0 1
d

d d
dC

C C C C
dt

µ µ µ= − −  (4) 
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 0 1
p

p p
dC

C C C C
dt

ν ν ν= − −  (5) 

(0) 0C ≥ , (0) 0I ≥ , (0) 0N ≥ , (0) 0dC ≥ , (0) 0.pC ≥  
Remark 1: 

It is noted from equations (2), (4) and (5) that 1r r C− , 

1 dCµ µ− and 1 pCν ν− are growth rates of population, 
liquid droplets and particulate matters respectively and 
hence must be positive for all time 0t > . 

2.1. Lemma 
The region of attraction of the model system (1) – (5) is 

given as follows, 

 { * * * * * 4
max( , , , , ) : 0 ,d pC N I C C R C CΩ = ∈ ≤ ≤  

 0

max max
0 0

0 ,0 ,
,

0 ,0d p

KN K I

C C C C

λ
λ

µ ν
µ ν

≤ ≤ ≤ ≤ 

≤ ≤ ≤ ≤


 

where 0
max

0 0

Q K
C

λ λ δ
λ δ
+

=  

Proof: 
From equation (2), we have  

 1dN NrN
dt K

 ≤ − 
 

 

implying that 0 .N K≤ ≤  

From equation (3), we note that 
0

0 .I Kλ
λ

≤ ≤  

From equation (1) we have, 

 0
dC Q I C
dt

δ δ≤ + − 0
0

KQ Cλδ δ
λ

≤ + −  

which gives, max0 C C≤ ≤  (say)  

where 0
max

0 0
.

Q K
C

λ λ δ
λ δ
+

=  

From equation (4), we have  

 0
d

d
dC

C C
dt

µ µ≤ − max 0 dC Cµ µ≤ −  

implying max
0

0 .dC Cµ
µ

≤ ≤  

In a similar manner, we can show from equation (5) 

that max
0

0 pC Cν
ν

≤ ≤ . 

2.2. Equilibrium Analysis 
The model system has following non-negative equilibria,  

1. 0
0

,0,0,0,0QE
δ
 
 
 

 

Existence of 0E  is obvious. 

2. 1( ,0,0, , ).d PE C C C  
To show the existence of 1E ,  
Let  

 
2 2

1 2
0

0 1 0 1
( ) 0

C Cf C Q C
C C

δ µ δ ν
δ

µ µ ν ν
= − − − =

+ +
 (6) 

From equation (6), we note that,  
(i) (0) 0f >  

(ii) 
0

0Qf
δ
 

< 
 

 

(iii) ( ) 0.f C′ <  
This implies that there exists a unique positive root  

(say C ) of ( ) 0f C =  in max
0

0 QC C
δ

≤ ≤ < . Using this 

value we can find the value of other variables

0 1
d

CC
C

µ
µ µ

=
+

 and 
0 1

p
CC

C
ν

ν ν
=

+
,  

3. * * * * * *( , , , , ).d pE C N I C C  

2.3. Existence of the Equilibrium *E  

Equilibrium values of different variables in *E are 
given by the following algebraic equations 

 0 1 2 3 0d pQ I C CC CC NCδ δ δ δ δ+ − − − − =  (7) 

 1( )KN r r C
r

= −  (8) 

 
0

I Nλ
λ

=  (9) 

 
0 1

d
CC

C
µ

µ µ
=

+
 (10) 

 
0 1

.p
CC

C
ν

ν ν
=

+
 (11)  

Using equations (8) – (11) in equation (7), we get 

 

1
0
2 2

1 2
0

0 1 0 1

3 1

( ) ( )

( ) 0.

KF C Q r r C
r

C CC
C C

K r r C C
r

δλ
λ

δ µ δ ν
δ

µ µ ν ν

δ

= + −

− − −
+ +

− − =

 (12) 

From equation (12), we note that,  
(i) (0) 0F >   
(ii) ( )max 0F C <  in view of remark 1. 

Since we have (0) 0F > and ( )max 0F C <  this  
implies that equilibrium level can be attained and thus 
equilibrium *E exists. We also note from equation (12) 
that  

(iii) ( ) 0F C′ < , which implies that *E is unique. 
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Thus, ( ) 0F C =  has a unique positive root (say *C ) in 

max0 C C≤ ≤ . Using this value we can find the value of 
other variables from equations (8) – (11). 

2.4. Variation of Different Variables  
with Relevant Parameters 

2.4.1. Variation of C  with δ  
Differentiating equation (12) with respect to δ we note 

that  

 
1

0

1 0 11
0 2

0 0 1

2 0 1
3 12

0 1

( )
0

(2 )
( )

(2 ) ( 2 )
( )

λ
λ
µδ µ µλδδ δ

λ µ µ
νδ ν ν

δ
ν ν

−
= >

+ + + + 
 +
+ + − 

+  

K r r C
rdC

C CK rd
r C
C C K r r C

rC

 

provided 

 
1 1

.
2
r rC
r r

≤ <  (13) 

This implies that concentration of toxic air pollutants  
in the atmosphere increases as the growth rate of  
toxic air pollutants due to population density dependent 
industrialization increases.  

2.4.2. Variation of N  with δ  
From equation (8) we get  

 1KrdN
dC r

= −  

Hence using the relation dN dN dC
d dC dδ δ

=  and noting that 

0dC
dδ

>  we get 0dN
dδ

< . 

This implies that as the growth rate of toxic air pollutants 
increases, the growth of population density decreases. 

2.4.3. Variation of C with µ  
Differentiating equation (12) with respect to µ , then in 

view of (13), we get  

 

2
1

0 1

1 0 11
0 2

0 0 1

2 0 1
3 12

0 1

( )
0.

(2 )
( )

(2 ) ( 2 )
( )

C
CdC
C CK rd

r C
C C K r r C

rC

δ
µ µ

δ µ µ µλδµ δ
λ µ µ

δ ν ν ν
δ

ν ν

+
= − <

+ + + + 
 +
+ + − 

+  

 

This implies that the concentration of toxic air 
pollutants decreases with increase in the rate of increase of 
externally introduced liquid droplets. 

2.4.4. Variation of C  with ν  
Differentiating equation (12) with respect to ν , then in 

view of (13), we get,  

 

2
2

0 1

1 0 11
0 2

0 0 1

2 0 1
3 12

0 1

( )
0

(2 )
( )

(2 ) ( 2 )
( )

C
CdC
C CK rd

r C
C C K r r C

rC

δ
ν ν

δ µ µ µλδν δ
λ µ µ

δ ν ν ν
δ

ν ν

+
= − <

+ + + + 
 +
+ + − 

+  

  

which also implies that the concentration of toxic air 
pollutants decreases with increase in the rate of increase of 
particulate matters in the atmosphere. 

2.5. Stability Analysis 
In order to establish the local stability behavior of 

equilibrium, we compute the Jacobian matrix M  for the 
model system (1) – (5) 

0 1
3 1 2

2 3

1 1

0

1 0 1

1 0 1

2
0 0 0

0 0 0

0 0 ( ) 0

0 0 0 ( )

.

δ δ
δ δ δ δ

δ δ

λ λ

µ µ µ µ

ν ν ν ν

− −
− − −

− −

− − −
=

−

− − +

− − +

  
  
  
 
 
 
 
 
 
 
 

d

p

d

p

C
C C C

C N

rN
r N r r C

M K

C C

C C

 

From the above matrix we note that, 

(i) Equilibrium 0
0

,0,0,0,0QE
δ
 
 
 

is unstable as one 

eigenvalue 1

0

r Qr
δ

−  of the Jacobian matrix M  

corresponding to 0E  is positive. 
(ii) Equilibrium 1( ,0,0, , )d pE C C C is unstable as one 

eigenvalue 1r r C− of the Jacobian matrix M  
corresponding to 1E  is positive. 

In the following, we state the local and nonlinear 
stability theorems for the equilibrium *E . 

2.5.1. Theorem 1 

The equilibrium *E  is locally asymptotically stable 
provided the following conditions are satisfied, 

 *2 *
1 3

1 ( )
8

rr C Q I
K

δ δ< +  (14) 

 
2

2 2 *0 3
1

1 ( )
2

r
r Q I

K
λ δ

λ δ δ< +  (15) 

(See Appendix A for proof). 

2.5.2. Theorem 2 

The equilibrium *E  is nonlinearly stable inside the 
region of attraction Ω  provided the following conditions 
are satisfied, 

 *0
1 1 3 0

8
r

S r C
K

δ
δ= − >  (16) 
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2

* 2 20 3
2 1

1 ( ) 0
2

r
S Q I r

K
λ δ

δ λ δ= + − >  (17) 

(See Appendix B for proof). 
It is noted from the above theorems that if population 

density dependent growth rate coefficient of industrialization 
( ) ,δ  growth rate coefficient of industrialization ( λ ) and 
depletion rate coefficient ( 1r ) of human population growth 
tend to zero, the local and nonlinear stability conditions, 
stated in Theorems 1 and 2, will be satisfied automatically. 
This implies that ,δ  λ and 1r  have destabilizing effect on 
the model system. 

2.6. Numerical Simulation 
In this section, we perform some numerical simulations 

to study the local and nonlinear stability behavior of 
equilibria and feasibility of the model system (1)-(5) 
numerically using MAPLE 18  by choosing the following 
set of parameter values, 1 0.0003,δ =  2 0.0004,δ =  

3 0.0001,δ =  0 0.2,δ =  0.3,δ =  40,Q =  1.6,r =  
25000K = , 1 0.0001r = , 0.3µ = , 0 0.11µ = , 1 0.01µ = , 

0.28ν = , 0 0.12ν = , 1 0.01ν = , 0.0001λ = , 0 0.1.λ =  

The equilibrium values of different variables in *E
corresponding to above data are given as * 17.528269C = ,

* 24972.61208N = , * 24.972612I = , * 18.432526dC = ,
* 16.621073.pC =  
The eigenvalues of the Jacobean matrix corresponding 

to * * * * * *( , , , , )d pE C N I C C for the model system (1) (5)−

are, 1.598676,−  0.459821,−  0.291041 0.001306 ,i− +  
0.291041 0.001306 ,i− −  0.100137.−  Since all eigenvalues 

are negative or having negative real part and hence the 
interior equilibrium * * * * * *( , , , , )d pE C N I C C  is locally 
asymptotically stable. The nonlinear stability behavior of 

*E is shown in the Figure 1. This figure depicts that the 
solution trajectories that start at any point within the 
region of attraction approach to equilibrium *E . In Figure 
2, the variation of concentration of toxic air pollutants  
( C ) with time t  for different values of ,δ  the growth rate 
coefficient of toxic air pollutants due to population density 
dependent industrialization, is plotted. It is observed from 
the figure that as δ increases, the concentration of toxic 
air pollutants increases in the atmosphere. In Figure 3, the 
variation of concentration of toxic air pollutants ( C )  
with time t for different values of 1,δ  the depletion rate 
coefficient of pollutants due to liquid droplets is plotted. It 
is seen that as 1δ increases, the concentration of toxic air 
pollutants C decreases. In Figure 4, the variation of toxic 
pollutants C with time t for different values of 2 ,δ  the 
depletion rate coefficient of pollutants due to particulate 
matters is plotted. From this figure, it is noted that as 2δ
increases, the concentration of toxic pollutants decreases 
in the atmosphere. Thus, the level of toxic air pollutants 
increases with increase in the industrialization level but it 

decreases when liquid droplets or particulate matters are 
introduced in the atmosphere. As the depletion rate 
coefficient 3δ  of toxic pollutants due to human activity 
increases, the concentration of toxic pollutants C
decreases in the atmosphere, (Figure 5). In Figure 6, the 
variation of human population N with time t  for different 
values of 1r , the depletion rate coefficient of population 
due to toxic air pollutants is shown and it is observed that 
as 1r  increases, the growth of population N decreases. 
This implies that the abundance of toxic air pollutants in 
the atmosphere adversely affects the human population. 
Figure 7 shows the variation of toxic pollutants 
concentration C  with time t  for different values of ,µ  
the growth rate coefficient of liquid droplets in the 
atmosphere. It is observed that as the rate of introduction 
of liquid droplets increases, the concentration of toxic air 
pollutants decreases in the atmosphere. Similar phenomenon 
of decrease of toxic air pollutants is observed when 
particulate matters are introduced in the atmosphere with 
different rates (Figure 8). In Figure 9, the variation of 
toxic pollutants C with time t for different values of λ is 
plotted. It is found that the rate of industrialization λ
increases due to human activities, the concentration of 
toxic air pollutants increases in the atmosphere.  

We have also plotted stability condition with respect to 
crucial parameters to study the effect of these variables on 
stability condition. Figure 10 and Figure 11 show the 
variation of nonlinear stability condition 1S  and 2S   
with respect to parameters 1r and λ respectively. It is 
apparent from Figure 10 that 1S remains positive for 

1 0.00091281r <  and negative for 1 0.00091281r > . This 
implies that the stability condition is satisfied for 

10 0.00091281r< <  and for higher values of 1r  it will not 
be satisfied. Hence, 1r  has destabilizing effect on the 
model system. Likewise, from Figure 11 we infer that λ  
has destabilizing effect on the model system. 

 
Figure 1. Nonlinear stability in dC N C− −  Plane 

 



 American Journal of Applied Mathematics and Statistics 70 

 
Figure 2. Variation of C with time t for different values of δ  

 
Figure 3. Variation of C with time t for different values of 1δ  

 
Figure 4. Variation of C with time t  for different values of 2δ  

 
Figure 5. Variation of C with time t for different values of 3δ  

 
Figure 6. Variation of N with time t for different values of 1r  

 
Figure 7. Variation of C with time t  different values of µ  
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Figure 8. Variation of C with time t for different values of ν  

 
Figure 9. Variation of C with time t for different values of λ  

 
Figure 10. Variation of stability condition 1S with 1r  

 
Figure 11. Variation of stability condition 2S with λ  

3. Conclusions 

In this paper, a nonlinear mathematical model has been 
proposed to study the population density dependent 
industrial emissions of toxic air pollutants in the 
atmosphere and their removal by liquid droplets and 
particulate matters. In the modeling process, the following 
variables have been considered,  

(1) The cumulative concentration of toxic air pollutants 
which is discharged by population density dependent 
industrialization in the atmosphere. 

(2) The density of human population, the growth rate of 
which decreases due to cumulative density of toxic air 
pollutants. 

(3) The density of industrialization, the growth rate of 
which is directly proportional to the density of human 
population. 

(4) The density of liquid droplets sprayed in the 
atmosphere, the growth rate of which is assumed to be 
proportional to the cumulative concentration of toxic air 
pollutants. 

(5) The concentration of particulate matter which is 
assumed to be proportional to the cumulative concentration 
of toxic air pollutants. It is assumed that the droplets  
and the particulate phases, formed in the atmosphere  
due to interaction of toxic air pollutants with spraying 
liquid droplets and particulate matter, remove the toxic air 
pollutants in the atmosphere in the same proportion by 
which their concentration/density get increased. 

The model has been analyzed by using the stability 
theory of differential equations. The existence of interior 
equilibrium is established and its local as well as nonlinear 
stability has been studied. It has been shown further  
that due to population density depended emissions (mainly 
industries), the cumulative concentration of toxic air 
pollutants in the atmosphere increases. It has also been 
shown that cumulative concentration of toxic air 
pollutants decreases considerably by spraying liquid 
droplets and particulate matters. The model has also been 
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analyzed using numerical simulation which confirms the 
above analytical results. 
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Appendix A 

To establish the local stability of *E let us consider the following positive definite function 

2 2 2 2 2
1 1 2 1 3 1 4 1 5 1

1 ( )
2 d pV m C m N m I m C m C= + + + +     (A1) 

where 1C , 1N , 1I , 1dC and 1pC are the small perturbations about *E described below, 

*
1C C C= +  , *

1N N N= +  , *
1I I I= + *

1d d dC C C= +  , *
1p p pC C C= +  

Differentiating equation (A1) with respect to ' 't we get   

111 1 1
1 1 2 1 3 1 4 1 5 1

pd
d p

dCdCdC dN dIdV m C m N m I m C m C
dt dt dt dt dt dt

= + + + +    (A2) 

The linearized system of the model system (1) – (5) corresponding to *E  is written as follows 

*
* * *
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Using the above linearized system in equation (A2) and after simplification we have  
* *

2 2 2 * 2 * 2
1 1 2 1 3 0 1 4 0 1 1 5 0 1 1

* * * *
1 1 1 1 3 2 1 1 1 1 1 4 1 1 1

* *
1 2 5 1 1 1 3 1 1

( ) ( )
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( ) [ ( )]

[ ( )] .

d p

d d

p p

Q I rNV m C m N m I m C C m C C
C K

m C I m C m r N C N m C m C C C

m C m C C C m I N

δ λ µ µ ν ν

δ δ δ µ µ

δ ν ν λ

+
= − − − − + − +

+ − + + − + −

+ − + − +



   (A3) 

Now, dV
dt

will be negative definite under the following conditions    

*
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After some algebraic manipulations and choosing 1 1m = ,
*

3
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µ µ
=

−
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 dV

dt
 will 

be negative definite provided the condition (14) – (15) are satisfied showing that V is Liaponuv function and hence the 
theorem. 

Appendix B 

Consider the following positive definite function about *E  

* 2 * * * 2
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Differentiating (B1) with respect to t we get  
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 will be negative definite under the following conditions  
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* * 2
1 1 4 1 1 4 0 0
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Maximizing left hand side and minimizing right hand side and taking 1 1k = , 
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, dU

dt
 will be negative definite provided the condition (16) – (17) are satisfied inside the region of 

attraction Ω  showing that U is Liapunov function hence the theorem. 
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