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1. Introduction

Fixed point theory has various equal on fixed point
theorems for self-mappings in metric and Banach spaces.
Huang and Zhang [1] originated the conception of cone
metric space by reconstituting the collection of real
numbers by an ordered Banach space and attained few
fixed point theorems for mappings gratifying disparate
contractive conditions. Various originators like Abbas and
Jungck [2], Rhoades [3], Raja and Vaezpour [4] have
generalized the result of Huang and Zhang [1] and
analyzed the origination of common fixed point in cone
metric spaces. In [5], Bhakhtin acquainted b-metric spaces
as a generalization of metric spaces and verified the
contraction mappings equal in b-metric space that
generalizes the familiar Banach contraction results in
metric spaces. The analysis of fixed point results for
non-self mappings in metrically convex metric space was
initiated by Assad and Kirk [6]. B.E. Rhoades and S.
Radenovic [7] have manifested fixed point theorems for
non-self mappings satisfying generalized contraction
condition in cone metric spaces. In this paper, we prove a
common fixed point theorem for non-self mappings
convincing contraction condition in cone b-metric space.

2. Preliminaries

Definition 2.1

Let B be a real Banach space. A subset C of B is called
a cone if and only if

a) C is closed, nonempty and C+ {0},

b) p, q€ER, p, q= 0, a, b €C shows that ap +bg €C,

¢) xN(—x)={0}.

In a cone CcB, we imply a partial ordering < with
respect to C by a < bwhich implies b — a €C. A cone C
is called normal if there is a number n> 0 such that for all
a,b €B, 0< a <b shows ||a|| < n||b]|.

The smallest positive number convincing the above
inequality is called normal constant of C, while a < b
stands for b — a € int C (interior of C).

Definition 2.2

If Xis a non-void set then the mapping d:X X X —
Econvincing these conditions

a) 0<d(a, b) for all @, b €X and d(a, b) = 0 if and only
ifa=>b

b) d(a,b) =d(b,a) forall a,b €X

c)d(a, b) <d(a,c) + d(c,b)forall a, b, c €X.

Called a cone metric in X and (X,d) is called a cone
metric in X and (X,d) is called a cone metric space. The
idea of a cone metric space is more familiar than that of a
metric space.

Definition 2.3 [8]

If Xis a non-void set and k= 1 be a given real number
then the mapping d:X X X —E is said to be cone b-metric
if and only if for all a, b, c €X, the following conditions
are satisfied:

a) 0<d(a, b) for all @, b €X and d(a, b) = 0 if and only
ifa=>b

b) d(a, b) =d(b,a) for all a, b €X

c)d(a,b) < k[d(a,c) + d(c, b)] for alla, b, c €X.

The pair (X,d) is said to be a cone b-metric space.
Definition 2.4

If (X,d) is a cone b-metric space then we say that {a, } is

a) A cauchy sequence, if for every k in E with k> 0,

there is N such that for all n, m> N, d(a,, a,,)<c

b) A convergent sequence, if for every k in E with

k> 0, there is N such that for all n> #, d(a,,a) <c
for some fixed point a in X.
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We say that a cone b-metric space X is said to be
complete only if every Cauchy sequence in X is
convergent in X. Also {a,} is convergent to a in X if and
only if d(a,,a) = 0 asn — oo.

Remarks 2.5 [4]:

1. If a< bandb < cthena < c.

2. Ifak bandb < cthena < c.

3.1f0< a K pforeachp € intCthena = 0.

Remarks 2.6 [4]

If p € intC, 0< x,, and x,, = 0, then there existan n,

such that for all n> ny wehavex, < p.

3. Main Result

Theorem 3.1

If (X,d) is a complete cone b-metric space and M a
non-empty closed subset of X such that for each a € M
and b € M there exist a point c€ M such that

d(a,c)+d(c,b)=d(a,b). &)
Suppose that f, T: M — X are two non-self mappings
satisfying for all a, b € Mwitha #b,
d(Ta,Tb)

< {d(fa,ﬂ?), d(ﬁ;’Ta) , d(ﬂ;’Tb)} 2

+u{d(Ta, fb)+d(Tb, fa)}.

For every a, b in M and A, u are positive real numbers
such that (4+2p) < 1 and

A+us A+2us s
1—ps 2(1—,us) l—g—ﬂs

(ﬂ +,us)(1 +y)

(1-ps)(1-p)
A+,us 1+;+yj

(1= us)(1-p)

(/1+,us)(1+,u)

(1_ﬂs)(1_§_ﬂ)

where s> 1 and h" = max{h, h'}. Also assume that
()M S fM,TMNM C fM
(2) fa € OM implies Ta € M
(3) fM is closed in X.
Then there exist a coincidence point of f and T in M.
Moreover if fandT are weakly compatible, then
f and T have a unique common fixed point in M.

Proof:

We construct the sequence {a, } and {b,} in M and a
sequence {b,} in TM. Let a € M. Set up a point ¢,= a
Also ¢y € M and from condition (1) M C fM, we
havecy= fa, for some a, € M. Now, since fa, € M
from condition (2) we conclude that Tay € M. Also

h = max

and h = max

clearly Ta, € TM. Therefore Tay € MNTM and from
(1) Tay € fM. Therefore for some a; € M, we have
fa, = Tay € M.

Set up c;=b; =Tap=a, ,b, =Ta;. Ifb, =TMNM,
then condition (1) implies b, € fM. Therefore for some
point a, € M, we have fa, = b, = ¢, = Ta,. Suppose
ifb, =Ta, € M, then we denote a point ¢, in M,
(c; # by) such that

d(bl,C2)+d(02,b2)=d(bl,b2) =d(Ta0,Ta1).

Next we set by = Ta,=c3. Therefore for some point
c; EM, we have fa; = b; = c3 = Ta,. Therefore, if
¢, # b= fa;, then we have ¢;= by =Ta and c3 =
bs = Ta,. If we continue the process, we obtain three
sequences{a,}SM, {c,}EM, {b,}STM which is in X,
such a way that

a)b, =Ta,_4

b) = fa, .

¢) c,= b, ifand only if b, € M

d) If ¢, # b,,, whenever b, € Mand then from equation
(1), ¢, € M and d(b,,_ ,c,) + d(cy, b,) = d(b,_1.b,,).

If ¢, #b,, then b, =b,,y and c,_1 =b,_1.
We discuss the case about d(c,, c,41). If d(c,, chy1)=0,
then it is clear that d(c,, c,4x)=0 for all k> 1. Now, if
d(cy, cppq) >0, for all n, then three cases are distinguished.
Case (i)

If ¢, =b, EM and c,,; = b,4; €M then ¢, = b, =
Ta,_1 and ¢,,;1 = b,,;.1=Ta, from (a)

And ¢,_1 = fa,_, from (b). Using contraction (2), we
have,

d(cnﬁcnﬂ): d(bn’bn-H)
=d(Ta, ,Ta,)

n—1»

d(fan—l’fan)a

<2 d(fan—l’Tan—l)’
2
d(fan,Tan)
2

+u{d(Ta,_y. fa,)+d(Ta,, fa, | )}
= ﬂ{d(cn_l ,Cpy )’ d(cn—lscn ) , d(cn’cn+l )}

2 2
+,u{d(cn cn)+d(cn+l,cn,1 )}

:l{d(cn_l,cn),d(cn—l’cn)’d(cn’cnﬂ)}

2 2

+lu{d(cn+1’cn—1 )}

Now, three subcases arises,
1) d(Cn' Cn+1) < X{d(Cn_l, Cn)} + .u{d(cn+1' Cn—l)}
< }\‘{d(cn—l; Cn)} + .U{S[d(cn+1' Cn) + d(cn; Cn—l)]}
d(Cn' Cn+1)(1 - H.S) < O\‘ + .Lls){d(cn—l; Cn)}
A

( +#s) d(cp_1,¢p)

(1-ps)
d(cn,l,cn)

2

d(Cn' Cn+1) <

(ll) d(Cn, Cn+1) <2 +.u{d(cn+1' Cn—l)}
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< }‘M +u{s[d(Cas1, €a) + d(Cy, )]}

d(Cn €)1 = p5) < G + ) {d(Cuo1, €1)}
A+2us

d(cnlcn+1) = ( M){d(cn—lﬁcn)}

(iii) d(c,, Cpyq) < X{M} +u{d(cny1r cno1)}
d n>“n+
< 1{(6’701)}+#{s|:d(cn+1,cn)+d(cn,0n_1):|}

d(cn, Crpn)(1 — % — 1s) < ps{d(cu caop)}

S
d(cn' Cn+1) = 5— d(cn' Cn—l)-
1-——us
( 2 j
from subcases (i), (ii), (iii) we get

d(cn,cn+1)shd(cn,cn_1)

A+us A+2us us

where h=max , ,
I—us 2(1-ps) | _4
2

— us

Case ii
Let ¢, = b, EMand c¢,,; # b,,q. Then b,,; € M
and

d(bn’cn+l )+d(cn+l’bn+l ) = d(bn’bn+1 )

Therefore, d( Cns Cn+1) =d (bn' Cn+1) :d( bn' bn+1) -
d(cn+1' bn+1) <d(bnt bn+1)~

Using contraction (2) we have,

d(b,,b,11) =d(Ta,_y,Ta,)

< {d(fan_l,fan),d(fan1»Tan1)’d(fan,]"an)}

2 2
+/4{d(Tan,l,fan )+d(Tan,fan,l )}

<4y 2] Lt

>

2 2
+ﬂ{d (Cn »Cn )+ d(bn+1 »Cn—1 )}

< ﬁ,{d(cn_lacn),d(cn_l’cn),d(bn’bnﬂ)}

2 2
+/1{d (bn+l »Cp—1 )}

Now, three subcases arises,

1) d(bn' bn+1) < x{d(cn—lﬂ Cn)} + #{d(bn+1' Cn—l)}
< Md(cp1, )} + p{s[d(by i1, by) + d(by, €, -1)]}
< Md(cp—1, )} + p{s[d(by 1, by) + d(cp, cu1)]}
d(bp, bpy1) (1 — ps) < (A + ps){d(cp1, )}

A+ us
d(by, by11) < (A )d(cn—l'cn)'
(1=ps)
d(c,_i,c
(ii) d(bnl bn+1) S ﬁw +.u{d(bn+1ﬂcn—1)}

< ld(cn_l,cn)
2

+#{S[d(bn+1' bn) + d(bn' Cn—l)]}

d(by.byy)(1-ps) < (%WSJ{CZ(%_],% )}

A2
d(by,b,41) < [Z(TZ:)]{d (Cn—l »C )}

d(b,,b,,
(iii) (b, bp11) < K{%} +p{d(bni1,cn-1)}
d(bn’bn+l)
< A T +#{S[d(bn+1lbn) + d(bnﬂcn—l)]}

d(bn, bp1)(1 =

% —us) < ps{d(bn, ¢y-1)}

d(bn; bn+l) < f—s d(Cn, Cn—l)'
1-2—
( 2 Sj
from subcases (i), (ii), (iii) we get

d(cn' Cn+1) < hd(cn' Cn—l)

A+us A+2us Us

where h=max , s
1—ps " 2(1— ps) 1_&
2

— us
Case (iii)
Let ¢, # b, € M. Then ¢, € dM and
d(by1,¢y)+d (byrcy ) =d (1D, ) (3)

and we have ¢,,,.1 = b and ¢,_1=b,_;.
Now using triangle inequality, we get

d(cn’anrl): d(cn’bnﬂ) < d(cnfbn)+d(bn’bn+1)a
d(cpscper)=d(by_i,b, ) S d(b,_1,b,)+d(b,,b,1). (4)

We need to find d(b,,_1, b,,) and d(b,,, b,, +1). Now using
contraction (2) we find d(b,,_4, b,).

d(bn—lﬂbn) = d(Tan_z,Tan_l)

< {d (fa”_z’fan—l )’ d(fanzz, Ta,_, ) ’ d (fanlz’Tanl )}

+/U{d(Tan72afan71)+d(Tanflafan72 )}

< {d(cn_z,cn_l )’ d(cn—Zsbn_] ) d(Cn_l ,bn )}

B

2 2
+u{d (b,_1,¢,-1)+d (bysCya)}-
As ¢,_1 = b,_1 and c,,_,=b,,_, we have,

d(b,_1.b,) <{d (cpsCpy )} + 1{d (By.cpma )}

s{d(cn_z,cn_n}de(”"’c"*) }dw_l,ww

+d(Cn_1,Cn_2 )
(l+,us)

(1= ps)

IN

d(Cn_2 ,Cn_] )
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Next we have to find d(b,,, b, +1).
d(b,.,b,,1)=d(Ta,_,Ta,)

d( fa,_y,Ta, 1) d(fan,Tan)}

—l{d(fan—bfan)’ ( - —

2 2

+ﬂ{d(Tan_1,fan)+d(Tan’fan—1 )}

d ,b
< l{d(cn_]’cn ), d(cn—lgbn)’ (cn’ - )}

2 2

+u{d (by.c,)+d (by:Com )}

Now, we find
d(b, 41, 1) from above equation

d(bnﬂcn)"'d(bn-f—l’ Cn— 1)

separately what is d(b,,c,) +

=d(b Cn ) ( Cn+15>€ )
(n’ nl) (nl’ ) (n+1’ )
(bn’ n— 1) ( Cp—1-€ ) ( Cn—1-€ )+d(bn’b )
(bn, . )+d(b b_l)
As bn—l = Cn—lsbn+1:Cn+1 and
A+ us
) < (2062 0)
We get,
d(bn’bn-H)
d(cn_l,cn),
SAy A+ us d(cn’crH—I) (6)
d a7
2(1—us) (ca-2-cn1): 2

o]

A+ us

(1= ps)

d (cn,z,cn,l ) + d(cn’,cnﬂ )}

Substituting (5) and (6) in (4), we get

d (Cn 5Cntl )

< (7»+,us)
(=)

+k{d (e

d (Cn,Z . Cn,

A+ us
I’C")’z(l_ﬂs)

A+ us
—d
+ﬂ{(l_#s) (¢,

Again three subcases follows,

(i)
d (c

naanrl)S

1)=d(cn1:6n)

d(cn—Z’cn—l > 2

Z’C'nfl)+ d(cn,ﬂcnﬂ )}

(7»+,us)

(1= ps)

d (cn72 »Cp—1 )

—d (s )+ 1 (d (cppsn)

of

(K+,us)

(1-ps)

Therefore,

d(cn—Zﬁcn—l ) +d (Cn »Cntl )}

—~

k+ys)
(1-ps)

%%j ;‘:)) d(cy2icr )}d(cwcw)

d(cn’cn+l)(1_:u)S d(cn—Z’cn—l)

<dle o (A +us) . (A +us)
_d( n=2 nl){(l—,us)(l—,u) u(l—ﬂS)(l—#)}.
We get,
. (A +ps)(1+ )
d (cn »Cptl ) = d(cn72ﬁcn71 ){m}
(i1)
d(cnacn+l)
<(7\,+,LtS) o e N—dle e
< (1_#s) d( n—2>s ,171) d( n—1» n)
. (h+pus)
}L{Z(l—,uS)d( n-2->tn 1)}
. (A +us) . cdle
Therefore,

d(cn,cn+1 )(1_,“)

P (RIS

N (X+,us)
'u{(l—,us) d( n—2>Cn 1)}
(iii)

d(cn’cn-f—l)

£(}\A_IuS)d( n—2>Cn 1)

A
.-.d(cn,cn+1)(l—5—#)

,u(?»—i—,us) (k+,us)
<d ,Cpy

(cn2sCn 1){ (1= ) + (—)
(K+,us)(1+,u)
A

1—us)| 1-2 -
( ﬂS)( ,H
From all the above three subcases we have,

d(cn > Cn+1) <hd (Cn—Z »Cp-1 )

Therefore, d(c,,c,,; ) <

(¢, n5¢,t)-
)

Where
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(ﬂ+,us)(l+,u)

(1= ps)(1=p)”

(/1+,us)(l+;+,uj
(1=ps)(1-u)

(ﬂ +,us)(1 +y)

(1_Ms)(1_§_ﬂj

In all cases (i), (ii), (iii) we get

&' = max

dc, ¢, S h"w,
Where

h" = max {h, h'}
and

w, € {d (Ch2-¢n1)sd(Cntscn )}
Now, following the induction procedure of Assad &
Kirk [3] it can be showed that by induction for n> 1,
n—1

d(z,,2,11)<h" 2 wy (7)

Where, w, € {d(cy,c1),d(cqi,c;)} from (7) and by triangle
inequality for n> m, we have

d(cy.cp)<d(cp.cpy)+d(chy.cn2)
+...4+d(c,q1-Cm)

nlo =2 m-1
<(h" 2 +h" 2 +..h" 2 Hw,
V(hmy"!
<—————w, > 0asm—> o
1-+(h")

From remark 2.5 and 2.6, d(c,,c,) < c;, where ¢,
is constant, (i.e), {c,} is a Cauchy sequence. Since
¢, =fa, EMNOM andM N dM is complete, there is
some point ¢ € M N dM such that ¢, > c. Let w €M
be such that fw = c¢. By construction of {c,} there is
subsequence {c, )} such that ¢,y = by )= Tyk)-1 and
$0 Ty (k)—1 = ¢, we have to prove Tw = c.

d(Tw,c) < S[d(Tw,Tan(k)_l)+d(Tan(k)_l,c)}

¢ (f‘”’f“n(k)l)’w’

yl
d( fap(ay 1> Tangsy1)
d(Tw,c)<s 2

(75 Sy
(a1, /)

+u +d(Tan(k)71,c)

And on using definition and the fact that
Ca(k)= b( k)= Ta, n(k)-1 | —>cask—oo,

we obtain again three subcases.

Sub case (i)
d(Tw,c)

(o )
(1w fan(1)-1 )
+d(Ta (0-1¢)

+d(Ta e

4 (o)}
s [d (Tw.c)+d (. fa (1) )]
+d(Tay(4) 10
+d(Tay () 41.¢)
d(Tw,c)(l—#Sz)
<d(fopy e (25 m5%)
d Ty o)+ )

<s|+u

<s|+p

d(Tw,c)
e ) o )
) () e )
) )
<Ll
2 2
d(Tw,c)<c,.
Sub case (ii)

_l{d (fm, Tw)}
2
(1. o)1)

+d (Tan(k)—l ,fw)

+d(Tan(k)—l’C)

d(Tw,c)Ss +u

d(Tw,c) < As {d(c,TTw)}
+,us{s[d(Tw c)+d(c Ja, n(k)-1 )]-i—d(Ta (k)-1 ,c)}
+s[d(Tan(k)_1,c)]

d(Tw c)(l—%—,us j

< d(Txn(k)_l,c)(s +,us)+ ,usd(c,fan(k)_l)

56
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d(Tw,c)Sct.

Sub case (iii)
d (T W, c)

. d(fan(k)—l’Tan(k)—l) . d(TW’fa”(k)_])
<s 2 g +d(T“n(k)—1’fw)
+d(Tan(k)_1,C)

d(Tw,c)(l—,usz)

2

As 2 As?
< d(fan(k)—l’c)[T“‘:uS j+ d(Tan(k)—l’C>[s +T+'USJ

+d(Ta”(k)—1’c) (l_ysz)
152
< G [;+,US2]

~d(Tw,e) < ¢

In all subcases (1), (ii), (iii), we obtain d(Tw,c) < ¢, for
each ¢, €int C and using result, it follows that d(Tw,c)=0
or Tw=c. If T and f are coincidentally commuting
then c=Tw=fw which implies Tc=Tfw=fTw=fc. From
contraction (2) we have,

d(Tc,c) :d(Tc,Tw)

Sl{d(fc,fw),d(f;,Tc),d(ﬁ;,Tw)}

+,u{d(Tc,fw)+d(Tw,fc)}
Sﬂ.{d(Tc,c),d(TZ’Tc),d(c’c)}

2

+,u{d(Tc,c)+d(c,Tc)}
< ﬂ{d(Tc,c),0,0}+,u{2d(Tc,c)}
=(A+2u)d(Tc,c)

Since (1 + 2u) < 1 as mentioned in the conditions of
theorem, it follows that Tc=c, that is ¢ is a common fixed
point of f and T. Hence, Uniqueness of common fixed
point easily follows from contraction (2).

Corollary 3.2 )
If (X,d) is a complete cone b-metric space and M be a

nonempty closed subset of X such that for each a € M and
b & M there exist a point c€ M such that

d(a,c)+d(c,b)=d(a,b). (1)

Suppose that T: M — X satisfying the condition

d(Ta,Tb)Sl{d(a,b),d(a’Ta),d(b’Tb)} .

2 2
+ p{d(Ta,b)+d(Tb,a)}.

Forall a, b in M and 4, u are positive real numbers such
that (A+2 u) < 1. If T has additional property that for each
a € M, Ta € M, then T has a unique fixed point.
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