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Abstract  This paper deals with random removal of progressively type II censored data. The removal of the data is 
assumed to follow a binomial or a uniform distribution, and the life time testing is assumed to follow a Gompertz 
distribution. Parameters of these distributions are estimated using the Maximum Likelihood estimation procedure. 
Fisher information matrix is used to estimate the asymptotic mean squared error and to construct confidence 
intervals of model parameters. The optimal partially accelerated lifetime testing (PALT) is estimated by minimizing 
the Generalized Asymptotic Variance (GAV). Simulation study is performed to Clarification the statistical properties 
of the parameters. A simulation results reveal that for the fixed values of the parameters, the error and optimal time 
decrease with increasing sample size n; estimates of binomial are more stable with a relatively small error with 
increasing sample size; and the test design is robust and works well for binomial removal. 
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1. Introduction

Traditional life testing may show no failure or few 
failures of some highly reliable units because of some 
severe conditions (stresses) that may occur in the form of 
pressure, voltage, temperature, vibration, load, cycling 
rate, etc. In such situations life testing has to be performed 
at higher than usual conditions in order to obtain failures 
as fast as possible. The data collected under stresses or 
severe conditions should not be used to estimate the life 
distribution at normal use assumptions. There are three 
types of stress, a) step stress; b) progressive stress, and 
c) constant stress; Ismail, [1] when testing is conducted
under stress, it is called either “Accelerated Life Testing 
(ALT)” or “Partially Accelerated Life Testing (PALT)”. 
In ‘Alt” testing, units are put under stress to reach more 
failure in short time, and the mathematical stress model is 
known; while in “PALT”, data can be extrapolated to normal 
use conditions, and the statistical model parameters could 
be estimated and step-stress could be applied. Nelson [2] 
proposed the step stress PALT (SS-PALT) where units are 
tested at normal use conditions within a specified time 
interval. Censored schemes arise when not all lifetime 
testing units are observed. When a unit does not fail 
within that time interval, it is put under stress, until failure 

or until the termination of the time interval (censored 
scheme). Rao [3] and Balakrishnan and Aggarwala [4] 
have mentioned that step stress saves money, effort and 
time. There are two censoring scheme types. Type I arises 
when the experiment continues up to a pre-specified time 
T and Type-II censoring scheme requires the experiment 
to continue until a pre-specified number of failures m ≤ n 
occur. 

These two types do not allow for the removal of any 
unit until life testing is terminated. Nevertheless, this 
allowance may be desirable to compromise between at 
least one observation is sought and a reduced time interval 
for the experimentation. At this situation, progressive 
censoring is needed.  

In the progressive Type II censoring scheme, the 
experimenter selects n (iid) units for life testing; and 
observes the occurrence of the first failure 𝑟𝑟1, at time 𝑡𝑡(1), 
and this  𝑟𝑟1  is removed from testing. When the second 
failure occurs  𝑟𝑟2  at time t(2), one of the surviving units 
are randomly selected and removed from the test, the 
experiment terminates when the mth failure occurs at time 
t(m)  and the remaining surviving units rm = n −m −
r1 − r2 −⋯− rm−1  are all removed from the Test 
Progressive type-II censoring scheme with fixed number 
of removals r1, r2, … , rm  is considered by Cohen [5] and
Cohen and Norgaard [6]. In some reliability 
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experiments and when the number of removals is not fixed, 
a progressive censoring with random removals model 
could be considered [7,8,9]. The random removal is 
assumed to follow the binomial distribution, and used to 
estimate the parameters of the reliability model.  

Ismail [1] discusses step-stress partially-accelerated 
model. The model differs than the progressive type II 
censoring scheme in that the lifetime of the test follows 
the exponential distribution rather than the binomial. 

This paper considers the step-stress partially-accelerated 
model, where the removals are assumed to follow the 
binomial and the life time-testing follows the Gompertz 
distribution. The optimal stress change time is also being 
determined by minimizing the generalized asymptotic 
variance of the MLE parameters. In Section 2, 
assumptions of the Gompretz distribution are given; 
Section 3 presents the assumptions of the partially 
accelerated model. Estimation of model parameters is 
given in Section 3; simulation study results are given in 
Section 4. 

2. The Gompretz Distribution 

The probability density function of the Gompretz 
distribution takes the form: 

 ( ) { }exp 1 , 0 , , 0x xf x e e xθ θθα α α θ = − − < >   (1) 

And the cumulative distribution function is: 

 ( ) { }1 exp 1 , 0 , , 0.xF x e xθα α θ = − − − < >   (2) 

The following assumptions are used: 
1.  n identical and independent units are selected for 

life testing. 
2.  The lifetime of each unit has Gompertz distribution. 
The following steps are to be followed: 
a)  Each of the n units is first run under normal use 

condition. If it does not fail or remove from the test 
by a pre-specified timeτ. it is put under accelerated 
condition (stress). 

b)  At the ith failure a random number of the surviving 
units, 𝑅𝑅𝑖𝑖 , 𝑖𝑖 = 1,2, . .𝑚𝑚 − 1,  are randomly selected 
and removed from the test.  

c)  Finally, at the mth failure the remaining surviving 
units 𝑅𝑅𝑚𝑚 = 𝑛𝑛 −𝑚𝑚 − ∑ 𝑅𝑅𝑖𝑖𝑚𝑚−1

𝑖𝑖=1  are all removed from 
the test and the test is terminated.  

The lifetime, say X, of a unit under SS-PALT can be 
rewritten as 
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In addition, the survival functions under normal and 
accelerate use conditions respectively is given by 

 ( ) { }1 exp 1 , 0 .xS x e xθα τ = − − < <   (4) 

And 

 ( ) ( )
2 exp 1 , x .xS x eθ τ β τα τ+ −    = − − >    

 (5) 

3. Estimation of Parameters 

Let (𝑥𝑥i), i = 1,2, . . , m, denote the observation obtained 
form a progressively type-II censored sample with random 
removals in a step-stress PALT. Here 𝑥𝑥(1) ≤ 𝑥𝑥(2)  …  ≤ 𝑥𝑥(𝑚𝑚). 

Given a pre-determined number of removals 𝑅𝑅 =
(𝑅𝑅1 = 𝑟𝑟1, . . ,𝑅𝑅𝑚𝑚−1 = 𝑟𝑟𝑚𝑚−1),  the conditional likelihood 
function of the observations 𝑥𝑥 = {(𝑥𝑥𝑖𝑖 , 𝑟𝑟 ), 𝑖𝑖 = 1,2, . . ,𝑚𝑚} 
takes the following form 

 
( )

( ) ( )( ){ } ( ) ( )( ){ }
1 1 2

1 2
1 1 1 1

1

, , , , , |

.

i i i
m u ui ir ri i

i i i i
i

L x u u R r

f x S x f x S x

α θ β

=

=


= 


∏

 (6)  

Equations (1) and (3) are inserted in (6) and simplify, 
we get 
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3.1. Parameter Estimation with Binomial 
Removals 

Given that the number of units removed 𝑹𝑹𝟏𝟏  from the 
test at each failure time follows a binomial distribution 
𝒃𝒃𝒃𝒃𝒃𝒃(𝒃𝒃 −𝒎𝒎,𝒑𝒑),  and 𝑹𝑹𝒃𝒃~𝒃𝒃𝒃𝒃𝒃𝒃 (𝒃𝒃 −𝒎𝒎− ∑ 𝒓𝒓𝒋𝒋𝒎𝒎

𝒋𝒋=𝟏𝟏 ,𝒑𝒑)  for 
𝒃𝒃 = 𝟏𝟏,𝟐𝟐, . .𝟑𝟑., 𝒓𝒓𝒎𝒎 = 𝒃𝒃 −𝒎𝒎− 𝒓𝒓𝟏𝟏 − 𝒓𝒓𝟐𝟐 − ⋯− 𝒓𝒓𝒎𝒎−𝟏𝟏. Thus, 
the number of units removed at each failure time follows a 
binomial distribution such that 

 ( ) ( ) 111 1
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The likelihood of the sample of size n is given as 
follows  

 ( ) ( ) ( )1, , , , , , , , | ,i iL x p L x p R r P R rα θ β α θ β= = =  (9) 

Where 
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The log-likelihood function [Eq. 10] can be written as 
follows: 

 ( ) ( ) ( )1, , , , ln , , , .i il x p L x lnP R rα θ β α θ β= + =  (11) 
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To obtain the estimate of the 𝜶𝜶,𝜽𝜽,𝜷𝜷 𝐚𝐚𝐚𝐚𝐚𝐚 𝒑𝒑 ,  the first 
partial derivatives with respect to 𝜶𝜶,𝜽𝜽,𝜷𝜷  and 𝒑𝒑  of 
Equation (12) are obtained and equated to zero as follows:  
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From Equation (16), 𝑝𝑝 is estimated as follows 
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There is no closed-from solution to this system  
of equations 13, 14 and 15. using the Newton-Raphson 
iteration method, for root finding. ∅ = (𝛂𝛂,𝛉𝛉,𝛃𝛃)  is 
𝒆𝒆𝒆𝒆𝒆𝒆𝒃𝒃𝒎𝒎𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 Iteratively as follows: 

 1
1

ˆ ˆ gj j G−
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where g is the vector of normal equations, 

 [ ]1 2 3g g g g=  

and 

 
( )

( ) ( ) ( )

1
1

1

2

1 1

1

1 1

m
xii

i
m mxi

i i
i i

mg r e

r e r

θ

θ τ β τ

α =

 + − 

= =

= − +

− + + +

∑

∑ ∑
 

 

( )

( )

( ) ( ) ( )

1 1
2

1 1

2
2

1

2

1

1

1

1

m m
xii i i

i i
m

i
i
m

xi
i i

i

mg x r x e

x m

r x e

θ

θ τ β τ

α
θ

β τ β

α τ β τ

= =

=

 + − 

=

= + − +

+ + −

 − + + − 

∑ ∑

∑

∑

 

 

( ) ( )

2
2

3 2
1

2

1
1

m

i
i

m
xi

i i
i

mg x m

r x eθ τ β τ

τθ
β

αθ

=

 + − 

=

= − −

− +

∑

∑
 

and G [Equation 17] is the matrix of second derivatives 
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Convergence of the Newton-Raphson algorithm for the 
estimates of 𝜶𝜶,𝜽𝜽  and 𝜷𝜷  depends on the tolerance limit 
change with each successive iteration, to  𝜶𝜶�,𝜽𝜽� and 𝜷𝜷�. 

Numerically inverting the above G matrix above, we 
easily obtain Fisher Information matrix, i.e. F=𝑮𝑮−𝟏𝟏 

The approximate 𝟏𝟏𝟏𝟏𝟏𝟏(𝟏𝟏 − 𝜸𝜸) % two sided confidence 
intervals for 𝜶𝜶,𝜽𝜽 and 𝜷𝜷 can be, constructed as follows: 

 ˆ ˆ ˆ
2 2 2

ˆ ˆˆ and, .Z Z Zγ α γ γθ βα σ θ σ β σ± ± ±  

3.2. Parameter Estimation with the Uniform 
Removals  

The model assumes that removed units are independent and 
that the probability of each removed unit is the same, such that: 
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The joint probability distribution of  
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where 0 ≤ 𝑟𝑟𝑖𝑖 ≤  𝑛𝑛 − 𝑚𝑚 − ∑ 𝑟𝑟𝑗𝑗𝑖𝑖−1
𝑗𝑗=1  , 𝑖𝑖 = 0,1, … ,𝑚𝑚 − 1. 

The maximum likelihood estimators can be derived 
directly by maximizing the equations (12) and then 
solving for equations (13), (14) and (15). 

3.3. D-optimality 
Fisher's information matrix is used to determine t 

ℎ𝑒𝑒 𝑜𝑜𝑝𝑝𝑡𝑡𝑖𝑖𝑚𝑚𝑜𝑜𝑜𝑜 𝑣𝑣𝑜𝑜𝑜𝑜𝑣𝑣𝑒𝑒 𝑜𝑜𝑜𝑜 𝜏𝜏  in the SS-PALT type II 
progressive censoring scheme proposed criterion is based 
on the determinant of Fisher's information matrix. The 
generalized asymptotic variance (GAV) is the reciprocal 
of the determinant of Fisher's information matrix F [10], 
thus 

 ( ) 1ˆ ˆˆ, , .GAF
F

α θ β =  (28) 

The D-optimality criterion is the optimal value of 𝜏𝜏 that 
maximizes the determinant of the Fisher's information 
matrix F and minimizes the GAV.  

Table 1. Simulation study results with Binomial Removals for θ=2, α=2.1, β=2.3, τ=3 

n m 
 Estimates 95% Confidence Interval Coverage 𝝉𝝉 

|𝑭𝑭−𝟏𝟏| 𝑩𝑩𝒃𝒃𝒆𝒆𝒆𝒆𝜶𝜶� 𝑩𝑩𝒃𝒃𝒆𝒆𝒆𝒆𝜽𝜽� 𝑩𝑩𝒃𝒃𝒆𝒆𝒆𝒆𝜷𝜷�  
𝛼𝛼� 𝜃𝜃� �̂�𝛽 𝐶𝐶𝐶𝐶𝛼𝛼�  𝐶𝐶𝐶𝐶𝜃𝜃�  𝐶𝐶𝐶𝐶𝛽𝛽�   

20 9 2.173 2.035 2.114 0.3865 0.4519 0.3089 2.7310 0.968 0.0062 0.0085 0.0077 
19 2.360 2.065 2.154 0.5699 0.6421 0.3449 2.7862 0.985 0.0055 0.0078 0.0086 

50 

9 2.177 1.995 2.064 0.3935 0.4519 0.2623 2.8459 1.082 0.0074 0.0075 0.0066 
19 2.134 2.026 2.103 0.3471 0.4124 0.2975 2.8160 1.111 0.0052 0.0073 0.0074 
29 2.115 2.042 2.124 0.3235 0.3991 0.3134 2.8055 1.180 0.0041 0.0071 0.0078 
39 2.088 2.089 2.185 0.2912 0.3771 0.3687 2.8169 1.194 0.0034 0.0067 0.0092 
49 2.053 2.033 2.113 0.2681 0.3300 0.3088 2.8362 1.273 0.0027 0.0064 0.0077 

80 

9 2.185 2.039 2.121 0.3979 0.4633 0.3150 2.7959 1.361 0.0025 0.0060 0.0079 
19 2.143 2.053 2.138 0.3533 0.4255 0.3291 2.8362 1.375 0.0024 0.0055 0.0082 
29 2.128 2.058 2.145 0.3349 0.4140 0.3327 2.8450 1.465 0.0022 0.0052 0.0083 
39 2.088 2.072 2.164 0.2929 0.3754 0.3494 2.8055 1.563 0.0020 0.0042 0.0087 
49 1.962 2.077 2.169 0.1632 0.2525 0.3512 2.8353 1.651 0.0018 0.0039 0.0088 
59 1.940 2.082 2.176 0.1395 0.2323 0.3565 2.8634 1.686 0.0018 0.0036 0.0089 
69 1.936 2.093 2.190 0.1317 0.2314 0.3671 2.8450 1.833 0.0017 0.0034 0.0092 
79 1.930 2.101 2.200 0.1230 0.2296 0.3742 2.8257 1.928 0.0015 0.0032 0.0094 

100 

9 2.186 2.022 2.099 0.4014 0.4633 0.2948 2.8274 2.036 0.0013 0.0028 0.0074 
19 2.172 2.032 2.111 0.3857 0.4510 0.3054 2.8459 2.118 0.0012 0.0025 0.0076 
29 2.154 2.039 2.121 0.3638 0.4360 0.3116 2.8046 2.204 0.0011 0.0021 0.0078 
39 2.134 2.044 2.128 0.3402 0.4193 0.3152 2.8353 2.297 0.0010 0.0018 0.0079 
49 2.114 2.053 2.139 0.3183 0.4008 0.3248 2.8599 2.446 0.0009 0.0015 0.0081 
59 2.097 2.059 2.147 0.2982 0.3876 0.3293 2.8950 2.553 0.0008 0.0010 0.0082 
69 2.084 2.067 2.157 0.2833 0.3762 0.3372 2.8862 2.600 0.0007 0.0008 0.0084 
69 2.066 2.071 2.163 0.2624 0.3621 0.3399 2.8652 2.732 0.0007 0.0007 0.0085 
79 2.056 2.080 2.173 0.2484 0.3550 0.3470 2.8546 2.820 0.0006 0.0007 0.0087 
89 2.028 2.087 2.183 0.2169 0.3303 0.3532 2.8739 2.992 0.0005 0.0005 0.0088 
99 2.018 2.102 2.202 0.2004 0.3276 0.3656 2.8774 3.051 0.0004 0.0004 0.0091 
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Table 2. Simulation study results with uniform Removals for 𝜽𝜽 = 𝟐𝟐 ,𝜶𝜶 = 𝟐𝟐.𝟏𝟏 ,𝜷𝜷 = 𝟐𝟐.𝟑𝟑 ,𝝉𝝉 = 𝟑𝟑 

n m 
 Estimates 95% Confidence Interval Coverage 𝝉𝝉 

|𝑭𝑭−𝟏𝟏| 𝑩𝑩𝒃𝒃𝒆𝒆𝒆𝒆𝜶𝜶� 𝑩𝑩𝒃𝒃𝒆𝒆𝒆𝒆𝜽𝜽� 𝑩𝑩𝒃𝒃𝒆𝒆𝒆𝒆𝜷𝜷�  
𝛼𝛼� 𝜃𝜃� �̂�𝛽 𝐶𝐶𝐶𝐶𝛼𝛼�  𝐶𝐶𝐶𝐶𝜃𝜃�  𝐶𝐶𝐶𝐶𝛽𝛽�   

20 9 2.478 2.320 2.411 0.4408 0.5152 0.3522 3.1140 1.104 0.0071 0.0097 0.0088 
19 2.691 2.355 2.456 0.6498 0.7322 0.3933 3.1770 1.123 0.0063 0.0089 0.0098 

50 

9 2.482 2.275 2.354 0.4487 0.5153 0.2991 3.2450 1.234 0.0084 0.0085 0.0075 
19 2.433 2.310 2.398 0.3958 0.4702 0.3392 3.2110 1.267 0.0059 0.0083 0.0085 
29 2.412 2.328 2.422 0.3689 0.4551 0.3573 3.1990 1.345 0.0047 0.0081 0.0089 
39 2.381 2.382 2.491 0.3320 0.4300 0.4204 3.2120 1.361 0.0039 0.0076 0.0105 
49 2.341 2.318 2.409 0.3057 0.3763 0.3522 3.2340 1.451 0.0031 0.0073 0.0088 

80 

9 2.491 2.325 2.418 0.4538 0.5282 0.3592 3.1880 1.552 0.0029 0.0068 0.0090 
19 2.444 2.341 2.438 0.4028 0.4852 0.3753 3.2340 1.568 0.0027 0.0063 0.0094 
29 2.427 2.347 2.446 0.3819 0.4721 0.3794 3.2440 1.671 0.0025 0.0059 0.0095 
39 2.381 2.363 2.467 0.3340 0.4280 0.3984 3.1990 1.782 0.0023 0.0048 0.0100 
49 2.237 2.368 2.473 0.1860 0.2880 0.4005 3.2330 1.882 0.0021 0.0045 0.0100 
59 2.212 2.374 2.481 0.1591 0.2649 0.4065 3.2650 1.922 0.0020 0.0041 0.0102 
69 2.207 2.387 2.497 0.1502 0.2638 0.4186 3.2440 2.090 0.0019 0.0039 0.0105 
79 2.201 2.396 2.509 0.1402 0.2618 0.4267 3.2220 2.198 0.0017 0.0036 0.0107 

100 

9 2.493 2.306 2.393 0.4577 0.5283 0.3362 3.2240 2.321 0.0015 0.0032 0.0084 
19 2.477 2.317 2.407 0.4398 0.5142 0.3482 3.2450 2.415 0.0014 0.0028 0.0087 
29 2.456 2.325 2.418 0.4148 0.4972 0.3553 3.1980 2.513 0.0013 0.0024 0.0089 
39 2.433 2.331 2.426 0.3879 0.4781 0.3594 3.2330 2.619 0.0011 0.0021 0.0090 
49 2.410 2.341 2.439 0.3630 0.4570 0.3704 3.2610 2.789 0.0010 0.0017 0.0093 
59 2.391 2.348 2.448 0.3400 0.4420 0.3755 3.3010 2.911 0.0009 0.0011 0.0094 
69 2.376 2.357 2.459 0.3231 0.4289 0.3845 3.2910 2.965 0.0008 0.0009 0.0096 
69 2.356 2.362 2.466 0.2992 0.4128 0.3876 3.2670 3.115 0.0008 0.0009 0.0097 
79 2.344 2.372 2.478 0.2832 0.4048 0.3957 3.2550 3.215 0.0006 0.0008 0.0099 
89 2.312 2.380 2.489 0.2473 0.3767 0.4028 3.2770 3.412 0.0005 0.0006 0.0101 
99 2.301 2.397 2.511 0.2285 0.3735 0.4169 3.2810 3.479 0.0004 0.0005 0.0104 

 
4. Simulation Study 

A simulation study is performed to study the properties 
of the estimators using ML method; the study involves the 
computation of Mean squared errors (MSEs), the 
construction of confidence intervals for different sample 
sizes; and the determination of, the optimal stress change 
time. The following steps were followed: 

a)Value of n and m to be specified.  
b)Value of the parameters were set as: 𝜃𝜃 = 2 ,𝛼𝛼 =

2.1 ,𝛽𝛽 = 2.3 , 𝜏𝜏 = 3. 
c) A random sample with size n and censoring size  

m were generated, with random removals, 𝑟𝑟𝑖𝑖 , 𝑖𝑖 =
1,2, … ,𝑚𝑚 − 1 from the random variable X given by (3).  

d) Generate a group value 𝑅𝑅𝑖𝑖~𝑏𝑏𝑖𝑖𝑛𝑛𝑜𝑜 (𝑛𝑛 − 𝑚𝑚 −
∑ 𝑟𝑟𝑗𝑗𝑚𝑚
𝑗𝑗=1 , 𝑝𝑝)  and also 𝑅𝑅𝑖𝑖~𝑣𝑣𝑛𝑛𝑖𝑖𝑜𝑜 (0,𝑛𝑛 −𝑚𝑚 − ∑ 𝑟𝑟𝑗𝑗𝑖𝑖−1

𝑗𝑗=1 )  
where 0 ≤ 𝑟𝑟𝑖𝑖 ≤  𝑛𝑛 − 𝑚𝑚 − ∑ 𝑟𝑟𝑗𝑗𝑖𝑖−1

𝑗𝑗=1  , 𝑖𝑖 = 0,1, … ,𝑚𝑚 − 1 and 
𝑟𝑟𝑚𝑚 = 𝑛𝑛 − 𝑚𝑚 − 𝑟𝑟1 − 𝑟𝑟2 −⋯− 𝑟𝑟𝑚𝑚−1. 

e) ML estimates were computed, for n= 20, 50, 80 and 
100,  

f) The mean squared error (MSE), the 95% confidence 
interval of parameters and the bias associated with the 
MLE of the parameters, optimal value of 𝜏𝜏, the Optimal 
GAV of the MLEs of the model parameters are obtained 
numerically for each sample size. 

5. Conclusions 
The (SS-PALT) under progressive type-II censored data 

with binomial and uniform random removal assuming 
Gompertz distribution was studied. The Newton-Raphson 
method is applied to obtain the optimal stress-change time 
which minimizes the Generalized Asymptotic Variance (GAV).  

The maximum Likelihood estimation procedure was 
used the estimation of model parameters, mean squared  
error and the optimum plan for the binomial and uniform 

removals for different sample size were computed and 
shown. Simulation results show that the error and the 
optimal time decrease as sample size increase, when 
parameters are fixed. that both the average value of τ and 
the average value of GAV for type-II progressive 
censoring are getting close to those of complete sample 
with the bigger m and close faster for bigger n. Hence 
from the numerical result we can conclude that estimates 
of binomial are more stable with relatively small error 
with increasing sample size. Therefore, the test design 
obtained here is robust design and work well for binomial 
removal. 
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