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Abstract  In spite of the ability of Artificial Neural Network (ANN) to handle nonlinear relationships in data, there 
are instances where ANNs have not been able to predict accurately in the presence of non-stationarity. A novel 
algorithm that has the ability to treat the nonstationary and nonlinearity in a time series had been presented in [1]. 
This paper presents a modification done to the algorithm via addressing the edge distortion that arises in the real time 
execution. The proposed algorithm in [1] was named as “1D Multilevel DWT Segmented ANN Algorithm” where 
the modified algorithm presented in this paper will be called as “Denoised 1D Multilevel DWT Segmented ANN 
Algorithm”. 
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1. Introduction

The main intuition behind the 1D Multilevel DWT 
Segmented ANN Algorithm is building expert models to 
different data segments in a way that the forecasting error 
that materializes due to non-stationarity is reduced. Data 
segmentation is carried out using one dimensional multilevel 
discrete wavelet transformation. This transformation was 
used for the purpose as it returns a data vector of the same 
length of the input while capturing information at various 
resolution levels that addresses non-stationarity. 

There are three main advantages of the 1D Multilevel 
DWT Segmented ANN Algorithm. First advantage is that 
the data are divided horizontally without losing the time 
domain information and separate expert models are built 
for each subseries wherein the final forecast will be the 
aggregated forecast from each expert model. This will 
introduce the ability of capturing information at various 
resolution levels, thus extracting even the hidden features. 
Secondly, each expert model, considers its lagged inputs 
so that the time dependent nature can also be contemplated. 
Thirdly, this is a one dimensional modeling approach 
where the forecasting is carried out using the lags of the 
response variable, without the use of any explanatory 
power of any other supporting variable. This aspect is 
somewhat related to deep learning concepts of the ANN as 
NAR-ANN considers feedback connections enclosing several 
layers of the network. 

In the usual ANN model fitting procedure, actual values 
(as they are) of the test set will be used for calculating the 

errors in the test set. Since the wavelet procedure is 
subjected to decomposition of each actual value in the real 
time execution, the values in the test set need to be 
handled differently. However, when proposing the algorithm 
at first [1], the full length of the series was transformed at 
first and divided into train, validation and test sets. This 
strategy thereabout is a “hypothesized” approach whereas 
this paper considers a calibrated decomposition mechanism 
to incorporate the actual value of the new day to the 
decomposition. The main finding of this paper is the 
improvement done to the 1D Multilevel DWT Segmented 
ANN Algorithm coupling a de-noising strategy to reduce 
forecasting error that occurs due to the edge distortion of 
wavelet transformation when decomposing the series in 
the real time. 

2. Literature

Non-stationary time series consist of events occurring 
for varying durations which can be ascertained through 
time segmentation [2]. Although artificial neural network 
(ANN) and fuzzy methods have been used extensively 
as useful tools for prediction of hydrological variables, 
dealing with nonstationary data through such methods 
have proved many drawbacks [3,4]. Thus, some mechanism 
need to be adopted that can improve the performance of 
ANN in the presence of non-stationarity. This can mainly 
be ascertained via certain transformations to the inputs of 
the ANN. 

Various researchers in the context of hydrology have 
successfully applied discrete wavelet transformation based 
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ANNs ([5,6,7,8,9]). The initial approach that uses a horizontal 
divide and conquer approach using NAR-ANN in the 
entire context so far is published as our original work in 
[1]. The paper has not addressed the issue of edge distortion 
that is present in discrete wavelet transformation when 
executing the 1D multilevel DWT segmented ANN algorithm. 

The wavelet transform is calculated as shifting the 
wavelet function in time along the input signal and 
calculating the convolution of them. In most practical 
applications, the signals of interest have finite support. As 
the wavelet gets closer to the edge of the signal, computing 
the convolution requires the non-existent values beyond 
the boundary ([10,11,12]). This creates boundary effects 
caused by incomplete information in the boundary regions. 
Thus, the results of wavelet transform in these boundary 
effects regions have questionable accuracy. Actually, the 
particular impacts of boundary effects become increasingly 
significant for some systems that may possess longer 
period sequence and thus require higher frequency resolutions 
[13]. 

This is called as edge distortion and can affect the 
accuracy of 1D multilevel DWT segmented ANN algorithm 
in [1]. The circumstance is such that the algorithm uses 
separate NAR-ANN models to the sub series resulted from 
discrete wavelet decomposition and aggregate the 
forecasts from each ANN model to produce the final 
forecast. Since the NAR-ANN model uses the lags of the 
same variable to forecast, the accuracy of the forecast 
heavily depend on the most recent observations. In that 
regard the sub series associated in the 1D multilevel DWT 
segmented ANN algorithm, may act differently in the test 
set as opposed to the training set. Therefore, remedial 
measures need to be taken in order to reduce the adverse 
effect on the model performance due to edge distortion. 
This paper presents one such mechanism to modify the 1D 
multilevel DWT segmented ANN algorithm in a way that 
the adverse effect of edge distortion to the model performance 
is reduced. 

3. Methodology 

In order to make adjustments to reduce the effect of 
edge distortion, the boundaries should be treated differently 
from the other parts of the signal. According to [12], two 
alternatives to deal with boundary effects can be found. 
The first one is to accept the loss of data and truncate 
those unfavorable results at boundaries after convolution 
between signal and wavelet. However, simply neglecting 
these regions in analysis yields to a considerable loss of 
data which is not allowed in many situations where the 
edges of the signal contain critical information. The other 
is making artificial extensions of the boundaries before 
processing signals. In fact, there is another approach that 
employs the usual wavelet filters for the interior of the 
signal and constructs different boundary wavelets at the 
ends of the signal. 

This paper considers a method where a truncating 
mechanism is applied to the time series in the form of 
wavelet de-noising. The paper has proven effective in 
forecasting the daily catchment flow to the Kotmale 
reservoir in Mahaweli river basin. It should be noted that 
the series considered is a highly volatile nonlinear and 

non-stationary time series. The modification proposed to 
the 1D multilevel DWT segmented ANN algorithm  
is indicated in bold font in the algorithm presented in 
Figure 1. 

 

Figure 1. De-noised 1D multilevel DWT segmented ANN algorithm 

In wavelet de-noising, the noise series is more generally 
represented as the following one dimensional model 
(Equation 1). 

 ( ) ( ) ( ).S n f n e nσ= +  (1) 

In practice, S(n) is often a discrete time signal with 
equal time steps corrupted by additive noise and the 
attempts are being taken to recover that signal. Thus, in 
the time series context, the de-noising equation can be 
viewed as a T-dimensional random vector as given in 
Equation 2. 
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The general wavelet-based method for denoising and 
nonparametric function estimation is to transform the data 
into the wavelet domain, threshold the wavelet coefficients, 
and invert the transform. The simple steps to be followed 
in wavelet de-noising method are as stated below. 
 Choose a wavelet and a level N. Compute the 

wavelet decomposition of the signals down to level 
N. 

 For each level from 1 to N, threshold the detail 
coefficients. 

 Compute wavelet reconstruction using the original 
approximation coefficients of level N and the 
modified detail coefficients of levels from 1 to N. 

The threshold stated in the above step 2 can take 
different values depending on the situation. The widely 
used threshold rules are as stated below. 
 Rigrsure-uses for the soft threshold estimator a 

threshold selection rule based on Stein’s Unbiased 
Estimate of Risk (Stein, 1981) (quadratic loss function). 
An estimate of risk for a particular threshold value t 
is taken initially. A selection of threshold values 
can be taken by minimizing the risks in t. 

 Minimax-uses a fixed threshold chosen to yield 
minimax performance for mean square error against 
an ideal procedure. The minimax principle which is 
used in statistics to design estimators is applied here. 
Since the denoised signal can be assimilated to the 
estimator of the unknown regression function, the 
minimax estimator is the option that realizes the 
minimum, over a given set of functions, of the 
maximum mean square error. 

 Sqtwolog-uses a fixed form threshold yielding 
minimax performance multiplied by a small factor 
proportional to log (length (s)). 

 Heursure-uses a mixture of the two options” rigrsure” 
and” Sqtwolog”. Due to the same reason, if the signal-
to-noise ratio is very small, the SURE estimate is 
very noisy. Under such circumstance, the fixed form 
threshold will be used. 

Two other shrinkage rules can be applied for the 
thresholding depending on the requirement. The simplest 
scheme is hard thresholding. Let T denote the threshold 
and x your data. The hard thresholding is,  
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The soft thresholding is,  
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4. Application 
The effect of reducing the adverse effects of edge 

distortion to the application 1D Multilevel DWT segmented 
NAR-ANN algorithm is analyzed here in order to modify 
the algorithm. The algorithm was applied to forecast to the 
daily catchment flow to the upmost reservoir in the Mahaweli 
cascaded system in Sri Lanka. Daily catchment flow data 
for 21 years were used with a train, test, and validation 
split of 2: 1: 1. 

Exploring the Pattern of Edge Distortion in the Daily 
Catchment Flow. 

First and foremost, the nature of the edge distortion in 
wavelet decompositions was observed. For example, it was 
assumed that the last observation in the time sequence is 
the 6080th (i.e. 25th July 2011). This is the first observation 
considered as the edge. The wavelet transformation was 
then carried out taking observations only up to the 6080th and 
this was compared with the wavelet transformations obtained 
considering the full length of the series (7670). See  
Figure 1, Figure 2 and Figure 3 for the illustration of the 
edge distortion. Note that the addition of approximation 2, 
detail 1 and detail 2 constitutes the original series pf daily 
catchment flow. 

 
Figure 2. Random sample of Approximation 2 with Edge Distortion 
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Figure 3. Random sample of Detail 1 with Edge Distortion 

 
Figure 4. Random sample of Detail 2 with Edge Distortion 

4.1. De-noising the Standardized Daily 
Catchment Flow 

Several thresholds of de-noising for wavelet transformation 
were considered in order to see the effect of de-noising in 
reducing the forecasting error of the algorithm in [1]. The 
thresholds considered were fixed form, heuristic sure, minimax 
and rigorous sure. For the first four types of thresholding, 
there are three different forms with respect to rescaling 
using no rescaling and the two rescaling methods denoted 
by ”sln” and ”mln”. Altogether 15 types of thresholds were 
used. 

For each form of de-noising, soft form thresholding was 
used, as the hard thresholding produces de-noised series 
that are not smooth. For the wavelet based de-noising, it is 
needed to determine the suitable mother wavelet and the 
level of decomposition. As such, the same mother wavelet 
function, “biorthogonal 3.1” and the level, 2, that was 
used in the discrete wavelet transformation in [1] will be 

considered here. Note the proper justifications in using 
these parameters are presented in [1]. 

Figure 5, Figure 6, Figure 7 & Figure 8 display 12 forms 
of de-noising as stated above. Note that the first 50 
observations of the series are plotted for illustration. 
Observing the Figure 5, Figure 6,Figure 7 & Figure 8, it can 
be seen that the series de-noised using “Fixed form” 
threshold, “Minimax” threshold and using every other 
threshold with no rescaling have shredded the noise at a 
very high level. All these series in general have not considered 
detail components to the de-noised series, but rather have 
resulted in only the approximation series. Moreover, 
irrespective of the type of the threshold used, wavelet de-
noising based on, no rescaling (one) has also produced 
similar de-noising patterns to that of the previously 
mentioned two thresholds, namely fixed form and minimax. 
As such, 9 threshold types are disregarded due to the 
excessive information loss in the de-noising process being 
unnecessarily high. 
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Figure 5. De-noising based on Fixed Form threshold 

 
Figure 6. De-noising based on Heuristic Sure threshold 

 
Figure 7. De-noising based on Minmax threshold 
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Figure 8. De-noising based on Rigorous Sure threshold 

 
Figure 9. De-noising based on “Heuristic Sure-HS” and “Rigorous Sure-RS” thresholds for two rescaling types “sln” and “mln” 

Rescaling based on “sln” seems to have produced somewhat 
similar results across the other two threshold types, “Heuristic 
Sure” and “Rigorous Sure”. The remaining rescaling type 
“mln” was also observed as somewhat similar across the 
said two threshold types. Therefore, further graphical 
analysis for comparison were done for those threshold 
types to select the best suited form of de-noising. Figure 9 
displays the corresponding plot. 

It is observed in Figure 9 that the red line (HS_sln) 
overlaps with the purple line (RS_sln) and the green line 
(HS_mln) over laps with the black line (RS_mln). Thus, 
the comparison indicates that de-noising based on the two 
forms “sln” and “mln” using one type of thresholding will 
be adequate. Overlapped de-noised series depicts the fact 
that the two threshold types act same across each rescaling 
type. Thus, taking any threshold type out of the two seems 
adequate. Thus, the Heuristic Sure threshold was selected 
as for the purpose of de-noising. 

4.2. Forecast Comparison for Wavelet Based 
NAR-ANN for Daily Catchment Flow 

The forecasting error of the model that uses a wavelet 
transformation after a de-noising procedure was compared 
with that of the model with raw data (See Table 1). Model 
C was observed as the best, and model B was observed 
with a very similar and comparable performance to model 
C. However, the most suitable form of thresholding can be 
identified as “De-noised-Heuristic Sure (mln)”. 

Table 1. Performance comparison of the wavelet model formulations 
for one step ahead forecasts for three months 

Model Description MAPE % 
A Raw data (Base) 33.78 
B De-noised-Heuristic Sure (sln) 31.05 

C De-noised-Heuristic Sure (mln) 29.79 
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5. Conclusion & Future Prospects

The analysis revealed that the most suitable wavelet 
threshold for de-noising is the “Heuristic Sure” threshold 
that uses level dependent estimation of level noise. Thus, 
the modified algorithm proposed in Section 3 can be applied 
with the selected threshold at the phase of de-noising. 
There is enough evidence in this paper to confirm the 
validity of the De-noised 1D Multilevel DWT Segmented 
ANN Algorithm. This algorithm is proven effective in 
forecasting nonlinear and nonstationary time series. It is 
worth mentioning that the accuracy of the modified 
algorithm can be further increased by exploring some other 
theoretical improvements proposed by various researchers. 
Especially, the work presented by [12] and [14] seem to 
be very promising in reducing edge distortion, but have 
not been the focus in this paper. 
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