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Abstract  A mathematical model for the transmission of cholera dynamics with a class of quarantined and 
vaccination parameter as control strategies is proposed in this paper. It is shown through mathematical analysis that 
the solution of the model uniquely exist, is positive and bounded in a certain region. The disease-free and endemic 
equilibrium points of the model are obtained. By using the next generation matrix, the basic reproduction number 
was computed around the disease-free equilibrium points, and it was shown through the Jacobian matrix that the 
disease free equilibrium is locally asymptotic stable if 𝑅𝑅ℎ < 1. Numerical simulation was carried to understand the 
impact of the incorporated controls as the system evolves over time. Results show that effective quarantine, 
vaccination and proper sanitation reduce the disease contact rates and thus eliminates the spread of cholera. 
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1. Introduction

The world health organization defines cholera as an 
acute diarrheal disease of the intestine caused by the 
bacterium Vibrio cholerae [1]. Cholera is contracted 
through ingestion of food or water contaminated with 
Vibrio cholerae, and the symptoms includes profuse 
watery diarrhea, vomiting, and extreme dehydration in 
severe cases [2]. It is also noted that most infected people 
are asymptomatic but the bacteria are present in their stool 
for some days after infection. These bacteria are shed back 
into the environment which potentially infect other people. 
According to a study by Azman et al. [2], cholera infected 
persons takes 0.5 days to 4.4 days to show symptoms. It is 
also reported that cholera can kill within hours if left 
untreated. On estimation, cholera causes roughly 1.3 to 4 
millions cases and 21000 to 143000 deaths annually [1]. 
The number of cholera reported cases has continued to be 
high over the last few years [3] with countries like 
Zimbabwe, Vietnam, Nigeria, Haiti [4,5], and Zambia 
experiencing the most recent cholera outbreak. According 
to the government statement of Tuesday 23rd January 
2018, the recent cholera outbreak in Zambia have killed 
78 of the more than 3,600 people who had fallen sick 
since October, 2017. The sources of infection transmission 
in cholera outbreaks is associated with inadequate 
access to sanitation facilities and clean water. Therefore, 
it is important to note the different possible cholera 

transmission pathways are human to human and 
environment to human. High risk areas potential of having 
Vibrio cholerae include overcrowded camps for refugees, 
and slums where there is less or no access to clean water 
and sanitation systems. Although cholera may be life 
threatening but controlling and preventing the disease is 
normally straight forward if proper sanitation practices  
are followed [6]. Also, a key to control cholera and to 
reduce deaths is by employing a multifaceted approach. 
Therefore, a combination of proper sanitation and hygiene, 
surveillance, education awareness, oral rehydration 
solution (ORS), cholera vaccines are used [1]. 

A good understanding of the transmission dynamics 
of cholera is crucial for effective control, prevention 
and intervention strategies against cholera outbreak. 
Through mathematical modeling, understanding into the 
transmission dynamics of cholera is gained and 
consequently helps for prediction. Several studies have 
been elicited in the quest to gain deeper understanding of 
the complex dynamics of cholera. Mathematical models 
have been used in several studies as a tool that can provide 
a quantitative and potentially valuable outcome in the 
fight against cholera. We give a review of a few related 
works while we recommend for more references be found 
from the referenced papers. Codeço [7] proposed an SI-B 
(Susceptible, Infected and Bacteria) cholera model to 
analyze the effect of aquatic reservoir in the persistence of 
endemic cholera. The author assumed the rate individuals 
are born is the same as the rate they die. Ochoche [6] 
modified Codeço’s model with addition of control strategy 
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and different birth and death rate. Because of the large 
impact of vaccination in controlling diseases, Cui et al. [8] 
developed an SIVR-B model with the variable, V as  
the class of vaccinated individuals, and R, the recovered 
class. Building on the model in [6], Mukandavire et al. [9] 
proposed an SIR-B model for the 2008-2009 outbreak in 
Zimbabwe which considers a fast and slow environmental 
transmission. The slow transmission in this sense is  
said to be an environment-to-human transmission 
characterized with a high infectious dose. It results from 
drinking from water bodies contaminated with V. cholerae 
which have been in the environment for a long  
period (5 to 18 h) to no longer be hyperinfectious. 
Whereas, the fast transmission is assumed to be that of  
human-to-human characterized with a low infectious  
dose which results from consuming water or food 
contaminated with hyperinfectious vibrios from freshly 
passed human stool. Wang and Modnak [10] extended the 
model in [9] capturing the effects of therapeutic treatment, 
vaccination, and water sanitation. The optimal control 
strategy was analyzed in other to obtain the best  
cost-effective multiple time-dependent intervention 
strategies. Edward and Nyerere [5] modified the model in 
[9] to include public health educational campaigns parameter 
in addition to the control strategies in [10]. Lemos-Paião 
et al. [11] proposed a model with the class of individual 
under treatment through quarantine (Q). It is also assumed 
the recovered individuals can lose immunity and become 
susceptible again. In order to obtain a successful treatment, 
the authors analyzed the optimal cost-effective quarantine 
strategy for the minimization of the number of infectious 
individuals and bacteria concentration. Sun et al. [12] 
incorporated vaccination and disinfection as the basic 
control strategies in a mathematical study on the SIR-B 
model of cholera transmission dynamics. The authors took 
into account the two transmission paths considered in 
Mukandavire et al. [9].  

Motivated by the work in [11], we therefore aim to 
modify the model proposed in the paper with the addition 
of the assumption that once an individual is vaccinated or 
treated, they do not loose immunity. Though, research 
reports that cholera vaccines do not offer complete 
protection [13]. However, as the global strategy on cholera 
control aims to reduce cholera deaths and eliminate 
cholera [1], we therefore study to understand the scenario 
where recovered individuals do not have to lose immunity 
in the same cholera outbreak. 

The rest of the paper is organized as follows. In Section 
2, we describe and formulate the model for the dynamics 
of cholera transmission and give the description of the 
model parameters and variables in Table 1. Through 
mathematical analysis, we analyze the model properties in 
Section 3. In Section 4, we present the numerical results in 
different graphs and give the result discussion. Finally, we 
give the conclusion in Section 5. 

2. Model Assumptions and Formulation 

We propose an SIQR epidemic model with a class of 
bacterial concentration for the dynamics of cholera. Our  

model is motivated by the work of Lemos-Paião et al. [11],  
and we incorporate the two transmission paths considered 
in [9]. The total human population, N(t) at time t ≥ 0  
is assumed to be non constant and divided into  
four classes: susceptible, S(t), symptomatically infectious, 
I(t), quarantine isolated, Q(t) and the recovered class,  
R(t). Individuals are recruited into the susceptible class at 
an average rate, Π and die naturally at a rate, μ.  
The vibrios concentration in contaminated water is 
denoted by B(t). Cholera infection is contracted by the 
susceptible individuals either by ingesting vibrios from 

contaminated aquatic reservoirs at a rate eB
k B
β
+

 or through 

human-to-human transmission which results from  
the ingestion of hyperinfectious vibrios [9] at a rate  

.hβ  Note that the subscripts, e and h respectively denotes 
environment-to-human and human-to-human. We denote 
by k, the concentration of V. cholerae in the environment 
that yields 50% chances of contracting cholera, and, eβ  
and 𝛽𝛽ℎ  are respectively the rates of ingesting vibrios  
from the contaminated environment and through  
human-to-human interaction. environment and through 
human-to-human interaction. The susceptible individuals 
move to the recovery class after being vaccinated at a rate, 
𝜈𝜈  and never loose their immunity in the same cholera 
outbreak. Infected and quarantined individuals die as a 
result of cholera disease at the rates, 𝛿𝛿1 and 𝛿𝛿2 
respectively. Through shedding, infectious individuals 
contribute to V. cholerae in the environment at a rate, 𝜖𝜖. 
Furthermore, the vibrios die at a rate, c after proper 
environmental sanitation. Once individuals are observed 
to have been infected, they are isolated through hospital 
quarantine at a rate, 𝛾𝛾 . Upon successful therapeutic 
treatment, the quarantined individual progress to the 
recovery class at a rate 𝜂𝜂. These assumptions are therefore 
translated into the following nonlinear differential 
equations: 

 Π ,e
h

BdS S SI S S
dt k B

β
β µ ν= − − − −

+
 

 ( )1 ,e
h

BdI S SI I I
dt k B

β
β µ δ γ= + − + −

+
 

 ( )2 ,dQ I Q Q
dt

γ µ δ η= − + −  (1) 

 ,dR S Q R
dt

ν η µ= + −  

 ,dB I cB
dt

= −  

with the nonnegative initial conditions: 

 ( ) ( ) ( ) ( ) ( )0 0, 0 0, 0 0, 0 0, 0 0.S I Q R B≥ ≥ ≥ ≥ ≥  

The model parameters and variables are described with 
values in Table 1 and note that the human population, 

 ( ) ( ) ( ) ( ) ( ).N t S t I t Q t R t= + + +  
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Table 1. Description of Model Parameters and Variables 

Parameter Description Value Source 
Π Human recruitment rate 9.13×10=5 (day=1) [8] 
βh Human-to-human transmission rate 0.02 (day=1) [8] 
βe Environment-to-human transmission rate 0.214 (day=1) [8] 
µ Natural death rate 0.033 (day=1) Assumed 
ν Vaccination rate 0.07 (day=1) [8] 
ɣ Quarantine rate 0.005 (day=1) Assumed 
δ1 Disease induced death rates (infected) 0.015 (day=1) [14] 
δ2 Disease induced death rates (Quarantined) 0.0001 (day=1) [14] 
η Recovery rate 0.2 (day=1) [15] 
k Concentration rate 106 (cell.ml-1) [15] 
є Shedding rate 10(cell.ml-1 day=1person-1) [15] 
c Sanitation rate 0.33 (day=1) [15] 

S(0) Susceptible at time, t = 0 10000 (persons) Assumed 
I(0) Infected at time, t = 0 2000 (persons) Assumed 
Q(0) Quarantined at time, t = 0 0 (persons) Assumed 
R(0) Recovered at time, t = 0 0 (persons) Assumed 
B(0) Concentration of V.cholerae at time, t = 0 300 ×103(cell.ml-1) Assumed 

 
3. Mathematical Analysis 

3.1. Basic Properties of the Model 
The model system describes the dynamic of human 

population and V.cholerae in the aquatic reservoir. Before 
we embark on analyzing the dynamics of the model, we first 
discus the basic properties of the system. All model 
variables and parameters are assumed to be nonnegative for 
all t ≥ 0 since the model monitors changes in the population.  

3.1.1. Existence of Solution 
Let 

 X : ℝ → ℝ5  

 t ↦ (S(t), I(t), Q(t), R(t), B(t)) 
and 

 F: ℝ5 → ℝ5 

 ( ) ( )( )
( ) ( ) ( )

( ) ( )

, , ,
.

,

dS t dI t dQ t
dt dt dtX t F X t

dR t dB t
dt dt

 
 
 → =
 
 
 

 

Then the system (1) becomes, 

 ( ) ( )( ) ( ) 0, 0 .X t F X t X X= =  

Theorem 1. (Existence and Uniqueness) The model (1) is 
continuous and satisfies the Cauchy-Lipschitz condition.  
Proof. We show for one equation and the rest follows the 
same procedure. Let  

 ( ), Π .e
h

BdSG t s S SI S S
dt k B

β
β µ ν= = − − − −

+
 (3) 

Then, 

 ( ),
.e

h
G t s B

I
S k B

β
β µ ν

∂ −
= − − −

∂ +
 (4) 

We have that the function 𝐺𝐺(𝑡𝑡, 𝑠𝑠)  and its partial 

derivative ( ),G t s
S

∂
∂

 are defined and continuous at all 

points (t, S). Similarly, the right-hand functions of the 
other equations and their respective partial derivatives 
satisfy these conditions. Hence by the existence, and 
uniqueness theorems, there exists a unique solution for 
S(t), I(t), Q(t) and R(t) in some open intervals centered at 
𝑡𝑡0 . We move on to show that the solution satisfies the 
Lipschitz condition. Using equation (3), we see that 

 

( ) ( )

( )

( )

( ) ( )

1 2

1 1 1

2 2 2

1 2

1 2

, ,

Π

Π

1

.

e
h

e
h

e
h

e
h

G t S G t S

B
S S I S

k B
B

S S I S
k B

B
I S S

k B
B

I S S
k B

β
β µ ν

β
β µ ν

β
β µ ν

β
β µ ν

−

 − − − + + =
 − − − − + + 

 = − + + + − + 

 ≤ + + + − + 

 

This implies that |𝐺𝐺(𝑡𝑡, 𝑆𝑆1 ) − 𝐺𝐺(𝑡𝑡, 𝑆𝑆2 )| ≤ 𝑀𝑀|𝑆𝑆1 − 𝑆𝑆2| , 

where e
h

B
M I

k B
β

β µ ν = + + + + 
 is a Lipschitz constant. 

In a similar way, we obtained that the remaining variables 
satisfy the Lipschitz condition and thus, there exists a 
unique solution S(t), I(t), Q(t), B(t) for all 𝑡𝑡 ≥ 0. 
Theorem 2. (Positivity) Given the non-negative initial 
conditions (2), then the solutions S(t), I(t), Q(t), R(t) and 
B(t) are non-negative for all 𝑡𝑡 ≥ 0. 
Proof. From the first equation in model (1), we deduce 
that for all 𝑡𝑡 > 0  

 .e
h

BdS S I S
dt k B

β
β µ ν ≥ − + + + + 

 (5) 

Let ,e
h

B
S I

k B
β

λ β µ ν = + + + + 
 then equation (5) 

becomes 

 .dS S
dt

λ≥ −  (6) 
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Integrating equation (6) gives 

 0ln .
Adte dtS dt A S e S S eλ λλ − −∫ ∫≥ − + ⇒ ≥ ⇒ ≥∫  

Hence, 

 0 0,
B e S I dthk BS S e
β

β µ ν − + + + + 
∫

≥ ≥  (7) 

where 𝑆𝑆0  is the susceptible population at t=0. Similarly, 
we obtain from the last four equations of model (1)  
that I(t), R(t), Q(t) and B(t) ≥ 0 . Therefore, any  
solution of model of model (1) is such that 
{I(t), R(t), Q(t), B(t)}𝜖𝜖ℝ5

+.  
We show in the following Theorem 3 that it is 

sufficient to consider the flow dynamics of model (1)-(2) 
in a certain region Ω.  
Theorem 3. (Boundedness) All solution of model (1) is 
bounded and remain in the region.  

 Ω Ω ΩN B= ×  (8) 

where  

 ( )
( ) ( )
( ) ( )

4 ΠΩ , , , : 0N
S t I t

S I R Q
Q t R t µ+

 +  = ≤ ≤   + +   
  (9) 

and  

 ( ) ΠΩ : 0 .B B B t
cµ+

 
= ≤ ≤ 
 

   (10) 

Proof. We begin by splitting the model (1) into human 
population 𝑁𝑁(𝑡𝑡) = 𝑆𝑆(𝑡𝑡) + 𝐼𝐼(𝑡𝑡) + 𝑄𝑄(𝑡𝑡) + 𝑅𝑅(𝑡𝑡)  and the 
bacteria population, B(t). Then we have that, 

 ( ) 1 2Π

Π .

dN S I Q R I Q
dt

N

µ δ δ

µ

= − + + + − −

≤ −
 

By integrating, we obtain 

 Π ,tN Ce µ
µ

−≤ +  

where C is a constant. Initially at t=0, ( ) Π0 .N C
µ

− ≤  

Therefore, 

 ( )Π Π0 .tN N e µ
µ µ

− 
≤ + − 

 
 

Thus, 

 Πlim .t N
µ→∞ ≤  (11) 

Similarly,  

 ΠdB I cB cB
dt µ

= − ≤ −   

and  

 Πlim ,t N
cµ→∞ ≤
  (12) 

This shows that human and bacteria population are 
biologically feasible in the region (9) and (10) respectively. 
Therefore, the solution of model (1) with the initial 
conditions (2) is bounded in the invariant region (8) for all 
𝑡𝑡 ≥ 0. Hence, the model is well posed.  

3.2. Equilibria Points and Stability Analysis 
At each of the equilibrium points of the model (1), 

 0.dS dI dQ dR dB
dt dt dt dt dt

= = = = =  

Thus, we compute the following. 

3.2.1. Disease Free Equilibrium 
At the disease-free state, there is no disease in the 

human population and no bacteria in the environment 
which implies 𝐼𝐼 = 𝑄𝑄 = 𝑅𝑅 = 𝐵𝐵 = 0. Thus, the disease-free 
equilibrium of the model (1) is given by 

 ( ) ( )0 0 0 0 0
0 , , , , ,0,0,0,0S I Q R B Sε = =  (13) 

with Π .S
µ

=  

3.2.2. Endemic Equilibrium. 
Let any arbitrary endemic equilibrium of the model system 

(1) be represented by 𝜀𝜀∗ =  (𝑆𝑆∗, 𝐼𝐼∗, 𝑄𝑄∗, 𝑅𝑅∗, 𝐵𝐵∗)  such that 
𝑁𝑁∗ =  𝑆𝑆∗ + 𝐼𝐼∗ + 𝑄𝑄∗ + 𝑅𝑅∗. By solving the system, we obtain  

 ( )
( )

*
1* Π I

S
µ δ γ
µ ν

− + +
=

+
 

 
( )

*
*

*
1

e

h

S ckI
S

β

µ δ γ β
= −

+ + − 
 

 
( )

* *

1
Q Iγ

µ δ η
=

+ +
 

 ( )
* *

1*
S I

R

γν η
µ δ γ
µ

+
+ +

=  

 
*

* .IB
c

=
  

3.2.3. Reproduction Number. 
The basic reproduction number 𝑅𝑅0  as defined by 

Diekmann et al. [16] is the expected number of secondary 
cases produced, in a completely susceptible population, by 
a typical infected individual during its entire period of 
infectiousness. Using the method of next generation 
matrix explained in details by Van den Driessche and 
Watmough [17] we compute 𝑅𝑅0  for the cholera model 
given in system (1) as follows: 

 
( )

( )
1

10 ,
0

e
h

B
S SI Ik B

f V Q I
cB I

β
β µ δ γ

µ δ η γ

 +  + + +   = = + + −   
   −   
 


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where 𝑓𝑓  is the rate of appearance of new infection, 
𝑉𝑉 = 𝑉𝑉− − 𝑉𝑉+  and 𝑉𝑉+  and 𝑉𝑉−  respectively the rate of 
transfer of individual into the class by any other means 

and out of the compartment given by 
0

V I
I

γ+
 
 =  
 
 

 and 

( )
( )

1

1 .
I

V Q
cB

µ δ γ
µ δ η−
+ + 

 = + + 
 
 

 

Computing the derivatives of 𝑓𝑓  and 𝜈𝜈  with respect to 
𝑥𝑥 = (𝐼𝐼, 𝑄𝑄, 𝐵𝐵) at the DFE point 𝜖𝜖0, we obtain 

 ( )0

Π Π
0

0 0 0
0 0 0

h e

j

k
f

F
x

β β
µ µ

 
 
 ∂
 = =

∂  
 
 
 


 

and 

 ( ) 1
0

2

0 0
0 .

0j

V
x

c

µ δ γ
γ µ δ η

+ + 
∂  = = − + + ∂  − 




V  

Thus, 

 

( )

( ) ( )

1
0

1 1

.

h e

h e

R F

ck
R R

ρ

β β
µ µ δ γ µ µ δ γ

−=

Π Π
= +

+ + + +

= +



V

 

In this case, 𝑅𝑅ℎ  represents the strands for the 
continuation of infectious individuals from the human to 
human interaction and 𝑅𝑅𝑒𝑒  denotes the strand from the 
environment to human interaction. The epidemiological 
significance of 𝑅𝑅0  shows Cholera pandemic can 
effectively be controlled by reducing the contacts of 
infected individuals with other individuals that may 
include house members and curbing the environmental 
transmission of the disease. By so doing, 𝑅𝑅0  will be 
brought to a value less than unity which implies that the 
disease can be eliminated from the population. This thus 
leads to the following theorem. 
Theorem 4. The DFE ε0 of the model system (1) is locally 
asymptotically stable if Rh < 1, and unstable if Rh > 1. 
Proof. Let J be the Jacobian matrix of the model system 
(1). Then, J at the disease free equilibrium point, 𝜖𝜖0  is 
given as follows: 

( )

( )

1
0

Π
0 0

Π
0 0 0 0

.
0 0 0

0 0

0 0 0

h e

h

J

c

β β
µ ν

µ µ
β

δ γ µ
µ

γ γ η µ

ν η µ

−Π −
− −

− + +
=

− + +

−

−

 
 
 
 
 
 
 
 
 
 
 





 

The eigenvalues of 𝐽𝐽𝜖𝜖0  are ( )1
Π

,hβ δ γ µ
µ

− + +  −(𝜇𝜇 + 𝜈𝜈), 

−(𝛾𝛾 + 𝜂𝜂 + 𝜇𝜇) , −𝜇𝜇  and −𝑐𝑐 . Clearly, all the eigen  
values except the first, Π𝛽𝛽ℎ

𝜇𝜇
− (𝛿𝛿1 + 𝛾𝛾 + 𝜇𝜇)  are negative. 

Therefore,  

 ( ) ( )1
1

Π Π
0 1.h hβ β

δ γ µ
µ µ δ γ µ

− + + < ⇔ <
+ +

 

Thus, the disease-free equilibrium point is locally 
asymptotically stable if  

 
( )1

Π
1.h

hR
β

µ δ γ µ
= <

+ +
 

4. Numerical Results and Discussion 

In this section, we present a few graphs to illustrate the 
evolution of each population class over time. With special 
interest, we focus on the class of infected, quarantined, 
recovery and bacteria. Our focus here is based on  
the initial assumptions and therefore, we seek to assess  
the effect the control strategies have on the cholera 
transmission dynamics. Note that the graphs were obtained 
through numerical simulation of model (1) with the 
parameter values in Table 1. The MatLab computational 
software as used in [18,19,20] was used for the numerical 
simulation to obtain the time dependent solution of the 
model system. 

It is observed in Figure 1 that there is a sharp increase 
in the population of the infected individual at the very 
early time. This means that even though interventions are 
incorporated, the infected individuals are not cured 
immediately. As the system evolves with time, the 
infected individuals begin to reduce until there is no 
infected person in the population. 

However, the population of the quarantined individuals 
as shown in Figure 2 increases though at a very short time 
space just around the time a drastic decrease is observed in 
Figure 1. That is as soon as the infected population started 
reducing, the quarantined gradually increases in number. 
These explains the positive effect of isolating the infected 
individuals through quarantine to reduce the infection 
contact rates. Through early detection of infected persons 
and proper quarantining, the possibility of reducing and 
eliminating the infection becomes high. 

Figure 3 shows the population of the recovered persons 
increases over time and then remains constant for a long 
time. It can be seen that the increase in R(t) starts about 
the time the population of Q(t) shown in Figure 2 starts 
decreasing. The change in R(t) results from the individuals 
who recovers from being quarantined as a result of the 
treatment placed on them. Also, by vaccinating the 
susceptible individuals, the immuned recovered population 
increases. 

Figure 4 shows the growth curve of the bacteria 
populations. The graph shows that the bacteria population 
slightly increases then reduces exponentially. The exponential 
decrease implies that the intervention measures incorporated 
in the model was effective in eliminating the bacteria. 
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Figure 1. Time evolution of infected individuals, I(t) 

 
Figure 2. Time evolution of the quarantined individuals, Q(t). 

 

Figure 3. Time evolution of the recovered individuals, R(t). 
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Figure 4. Time evolution of the bacteria population, B(t) 

5. Conclusion 

In this paper, an SIQR-B mathematical model for the 
transmission dynamics of cholera diseases was formulated 
to a set of ordinary differential equations. The two 
possible transmission pathways: human-to-human and 
environment-to-human transmissions were considered. It 
was assumed that through vaccination, and proper 
therapeutic treatment while in quarantine, individuals 
recover and never lose immunity in same short cholera 
outbreak. Through mathematical analysis, the model 
solution was shown to uniquely exist, nonnegative and 
bounded in a certain region. To understand the stability 
conditions, the disease free equilibrium point was 
computed, and further, the expressions for the endemic 
equilibrium point were obtained. Further, the basic 
reproduction number was computed around the disease-
free equilibrium points, and it was shown that the disease 
free equilibrium is locally asymptotic stable if Rh < 1. To 
understand the time evolution of the individual classes and 
the effect of vaccination, numerical simulation was done 
to obtain the time-dependent solution. It is deduced from 
the numerical results that by quarantining the infected 
individuals, the disease contact rate between the 
susceptible and infected is minimized which therefore 
reduces the spread of cholera in the population. For 
effective quarantine in order to minimize disease contact 
rate, there is need for surveillance for early detection of 
cholera cases. Also, education campaign and sensitization 
should be considered as good measures to help bring the 
contribution of environment-to-human transmission to 
minimal. Though, there is not yet a 100% proven effective 
cholera vaccine but results shows that through effective 
vaccination, there will cease to exist an infected individual 
as time evolves. Which implies that the disease will be 
eliminated in the community. Regular proper sanitation  
is necessary in order to have a Vibrio. cholerae free 
environment.  
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