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Abstract  Computational thinking is a kind of analytic thinking that synthesizes critical thinking and existing 
knowledge and applies them for solving complex real life and technological problems, designing systems, and 
understanding human behaviour, by drawing on fundamental principles of computer science. This involves 
frequently a degree of uncertainty and (or) the use of approximate data. On the other hand, a grey system is 
characterized by lack of adequate information about its components and (or) its function and the corresponding 
theory has found nowadays many applications to real life, science and engineering. In grey system theory the main 
tool for handling approximate data is the use of the grey numbers, which are indeterminate numbers defined with the 
help of the closed real intervals. In the present work grey numbers are used for evaluating computational thinking 
skills and examples are presented to illustrate our results. The outcomes of this new assessment method are 
compared to the corresponding outcomes of the classical method of calculating the GPA index and of a similar 
method developed in earlier works that uses as tools triangular fuzzy numbers instead of grey numbers. 
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1. Introduction 

An organised system is defined to be a set of interacting 
components forming an integrated whole and working 
together for achieving a common target. A factory,  
a hospital, a bank, etc. are common examples of  
systems, whereas in general one can distinguish between 
physical, biological, social, economic, engineering, 
abstract knowledge systems, etc. As a multi-perspective 
domain systems’ theory serves as a bridge for an 
interdisciplinary dialogue between autonomous areas of 
study [1]. In the present work we deal with Computational 
Thinking (CT) systems. 

The assessment of a system’s performance is a very 
important part of the systems’ theory, because it enables 
the system’s designer to correct its weaknesses and therefore 
to increase its effectiveness. When the performance of a 
system’s components is evaluated with numerical scores, 
then the traditional way for assessing the system’s mean 
performance is the calculation of the mean value of those 
scores. However, in order to comfort the user’s existing 
uncertainty about the exact value of the numerical scores 
corresponding to each of the system’s components, frequently 
in practice the assessment is made not by numerical scores 
but by qualitative linguistic expressions, like excellent, 

very good, good, etc, which makes the calculation of their 
mean value impossible. 

A popular in such cases method for evaluating the 
overall system’s performance is the calculation of the 
Grade Point Average (GPA) index ([2], Chapter 6, p.125). 
However, GPA is a weighted average in which greater 
coefficients (weights) are assigned to the higher grades, 
which means that it reflects not the mean, as we wish, but 
the quality system’s performance. 

In order to overcome this difficulty we have utilized in 
earlier works the system’s total uncertainty under fuzzy 
conditions (due to the qualitative assessment of its 
components) as a measure of its effectiveness ([2], 
Chapter 5). This manipulation is based on a fundamental 
principle of the Information Theory according to which 
the reduction of a system’s uncertainty is connected to the 
increase of information obtained by a system’s activity. In 
other words, lower uncertainty indicates a greater amount 
of information and therefore a better system’s performance 
with respect to the corresponding activity. However, this 
method needs laborious calculations, cannot give a precise 
qualitative characterization of a system’s performance and, 
most importantly, it is applicable for comparing the 
performance of two different systems with respect to a 
common activity only under the assumption that the 
existing uncertainty is the same in the two systems before 
the activity. This was the reason for turning in later works 
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our attention to the use of Fuzzy Numbers (FNs) for the 
assessment of a system’s mean performance under fuzzy 
conditions ([2], Chapter 7). 

In the present work Grey Numbers (GNs) are used for 
assessing the performance of CT systems, in which vagueness 
and/or uncertainty are frequently appearing. This method 
is proved to be equivalent to the method using a special 
form of FNs, the Triangular FNs (TFNs) (e.g. see [3]), but 
it has the advantage of reducing significantly the required 
computational burden. Moreover, the GNs are defined 
easily with the help of the closed intervals of real numbers, 
in contrast to the TFNs that need the knowledge of basic 
elements of the theory of Fuzzy Sets (FS). 

The rest of the paper is formulated as follows: Section 2 
is devoted to a brief description of the CT process and of 
the Case-Based Reasoning (CBR) systems that are special 
forms of CT systems. In Section 3 the assessment method 
with the TFNs is briefly recalled and the background 
information is given about GNs, needed for the understanding 
of the article. The new assessment method using GNs is 
developed in Section 4 and its equivalence to the method 
with TFNs is also proved. Examples with CT situations 
illustrating those methods are presented in Section 5. The 
article closes with our conclusions and a short discussion 
on the perspectives of future research on the subject, 
presented in Section 6. 

2. Computational Thinking 

2.1 Computational and Critical Thinking in 
Problem Solving 

The importance of Problem Solving (PS) has been realised 
for such a long time that in a direct or indirect way affects 
our daily lives for ages. However, even graduates have 
nowadays difficulty in solving real life problems. Somehow, 
they can not apply theory into practice, or theorise/reflect 
on practice [4]. In fact, it is the human mind at the end that 
has to be applied in a problematic situation and its capacity to 
solve the problem is directly related to the knowledge stored 
in the mind. But knowledge is the product of thinking that 
varies from a very simple and mundane thought to a very 
sophisticated and complex one. The nature of a problem 
dictates the level of thinking required to solve it. 

A simple problem can be solved by applying a  
lower-order thinking that requires minimum cognitive 
effort. On the contrary, the solution of composite non-routine 
problems requires a higher-order thinking that is referred 
as Critical Thinking (CrT) [5]. CrT has its roots to the ancient 
Greek philosopher Socrates, who perfected the art of 
questioning, whereby by asking pertinent questions he 
would show that “people could not rationally justify their 
confident claims of knowledge”. CrT can be conceptualised as 
a complex mode of thinking involving abstraction, uncertainty, 
application of multiple criteria, reflection, self-regulation, 
making judgements, analysis and synthesis and so on [6]. 
Such kind of thinking, which often generates multiple 
solutions, facilitates the transfer of knowledge, i.e. the use 
and transformation of already existing knowledge in creating 
new knowledge. In concluding, creativity and innovation 
driven by tacit knowledge and CrT driven by logic become 
the necessary tools for solving non-routine problems. 

However, living in a knowledge era and in an ever 
increasing progress in technology, combining knowledge 
and technology to solve problems becomes the mode 
rather than the exception. In an attempt by humans to 
increase the power of the mind (Artificial Intelligence), 
the holder of a Nobel prize Herbet Simon saw thinking as 
information-processing and computers started taking over 
as a kind of ‘thinking machines’ [7]. If technology is added 
as a tool, then Computational Thinking (CT) is another 
essential component of thinking required for solving 
complex real life or technological problems. The term CT 
was first introduced by S. Papert [8], who is widely 
known as the “father” of the Logo software. However, it 
was brought to the forefront of the computer society by 
Wing [9] to describe how to think like a computer scientist. 
Wing has described CT as “solving problems, designing 
systems and understanding human behaviour by drawing 
on concepts fundamental to computer science”. 

The main characteristics of CT include: 
 Analyzing and logically organizing data 
 Data modelling, data abstractions, and simulations 
 Formulating problems such that computers may assist 
 Identifying, testing, and implementing possible 

solutions 
 Automating solutions via algorithmic thinking 
 Generalizing and applying this process to other 

problems 
(http://en.wikipedia.org/wiki/Computational-thinking) 

It can be concluded that CrT is a prerequisite to knowledge 
acquisition and application to solve problems, but not a 
sufficient condition when we are faced with complex real 
life or technological problems, the solution of which requires 
also a pragmatic way of thinking such as CT. The way in 
which CrT and CT are simultaneously acting for the 
solution of such complex problems has not been clearly 
established yet. In an earlier work [10] we have attempted 
at shedding some light into this action. According to our 
approach, which is graphically represented in Figure 1, the 
given problem is considered as an obstacle to be passed 
through. The three cognitive components acting during the 
PS process are the already existing knowledge, CrT and 
CT. Our hypothesis is that, once awareness of the problem 
is made, the existing information is extracted and critically 
analyzed. Then, if there exists sufficient background 
knowledge, the necessary new knowledge is retrieved 
through CrT and the solver, thinking in a computer like 
scientific way (CT), applies that knowledge to solve the 
problem. In other words, CT synthesizes CrT and existing 
knowledge and applies them for the solution of the 
problem. This approach could be used as a model for the 
process of solving complex real life or technological problems. 

 
Figure 1. Voskoglou and Buckley’s problem solving model 
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According to Liu & Wang [11] CT is a hybrid of 
abstract, algorithmic, logical, constructive and modelling 
thinking. The last one refers to the translation of objects or 
phenomena from the real world into mathematical 
equations (mathematical models) or computer relations 
(simulation models). One could claim that modelling 
thinking constitutes the essence of CT, since it synthesizes 
all the modes of thinking involved in CT to construct a 
model for the solution of the corresponding problem.  

Computer Science is not just about programming, it is 
about an entire way of thinking, which has become 
nowadays an intrinsic part of our lives. Computation is an 
increasingly essential tool for doing scientific research. It 
is expected that future generations of scientists and 
engineers will need to engage and understand computing 
in order to work effectively with scientific objects, 
technologies and methodologies. Nevertheless, CT builds 
on the power and limits of computing processes whether 
they are executed by a human or by a machine. Therefore, 
it is a fundamental skill to everyone, not just for scientists 
and engineers. To reading, writing and arithmetic, we 
should add CT to every child’s analytical ability [9]. 

It is widely accepted that motivation and involvement 
are imperative in retaining students in computer science 
and in order to do so we need to suitably engage students 
in the process of learning programming by building more 
effective mechanisms and tools for the development of 
programming skills. However, this is not an easy task. 
One of the core aims of learning programming should be 
to constantly highlight that programming is not only 
coding, but also thinking computationally and acquiring 
skills to develop solid solutions through understanding of 
concrete problems. Recent studies in this field address the 
necessity to become trained in thinking computationally 
before learning programming. They conclude that the 
education of programming along with the theory of 
computing needs to be represented in a way that would 
make sense to students within the computer science 
discipline [12]. 

2.2 Case-Based Reasoning Systems 
Case-Based Reasoning (CBR) is the process of solving 

new problems by adapting the solution of similar (analogous) 
problems solved in the past, which are referred as past 
cases. A case-library can be a powerful corporate resource 
allowing everyone in an organization to tap in it when 
handling a new problem. A CBR system, usually designed 
and functioning with the help of computers, allows the 
case-library to be developed incrementally, while its 
maintenance is relatively easy and can be carried out by 
domain experts. It becomes evident that the greatest part 
of the CBR process involves CT, which means that the 
CBR systems constitute a special case of CT systems. The 
CBR approach has got a lot of attention over the last  
30-40 years, because as an intelligent-systems method 
enables information managers to increase efficiency and 
reduce cost by substantially automating processes. 

CBR has been formalized for purposes of computer and 
human reasoning as a four step process, often referred as 
the “four R’s”. These steps involve: 
 R1: Retrieve the most similar to the new problem 

past case. 

 R2: Reuse the information and knowledge of the 
retrieved case for designing the solution of the new 
problem. 

 R3: Revise the proposed solution. 
 R4: Retain the part of this experience likely to be 

useful for future problem solving. 
The first three of the above steps are not linear, 

characterized by a backward-forward flow among them. A 
simplified flow-chart of the CBR process, which is 
adequate for the purposes of the present paper, is 
presented in Figure 2: 

 
Figure 2. A simplified flow-chart of the CBR process 

More details about the CBR process and a detailed 
functional diagram illustrating its four steps are presented 
in [13]. 

3. Mathematical Background 

3.1 Triangular Fuzzy Numbers (TFNs) 
It is assumed that the reader is familiar with the basic 

principles of the theory of FS and the book of Klir & 
Folger [14] is proposed as a general reference on the subject. 

It is recalled that a FS on the set of the discourse U is a 
set A of ordered pairs of the form {(x, mA(x)), x ∈ U}, 
where mA: U →  [0, 1] is its membership function. The 
closer is the membership degree mA(x) of x in U to 1, the 
better x satisfies the characteristic property of A.  

Now a FN, say A, is a FS on the set R of the real 
numbers, which is normal (i.e. there exists x in R such that 
mA(x)=1) and convex (i.e. all its a-cuts Aa={x∈U: mA(x) ≥ a}, 
a in [0, 1], are closed real intervals) and whose membership 
function y=mA (x) is a piecewise continuous function. 

For general facts on FNs we refer to the book of 
Kaufmann and Gupta [15]. 

A TFN (a, b, c), with a, b, c real numbers such that a < 
b < c is the simplest form of a FN. It represents 
mathematically the fuzzy statement “the value of b lies in 
the interval [a, c]”. The membership function y = m(x) of 
(a, b, c) is zero outside the interval [a, c], while its graph 
in [a, c] consists of two straight line segments forming a 
triangle with the OX axis (Figure 3). 

 
Figure 3. Graph and Centre of Gravity (CoG) of the TFN (a, b, c) 
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Therefore we have: 
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Using elementary methods of Analytic Geometry it is 
straightforward to check ([2], Proposition 8) that the 
coordinates (X, Y) of the Centre of Gravity (CoG) of the 
graph of a TFN A = (a, b, c), being the intersection point 
G of the medians of the corresponding triangle (Figure 3), 
are calculated by the formulas  

 ( ) ( ),
3

1 .
3

X A Y Aa b c+
= =

+  (1) 

The first of formulas (1) can be used to defuzzify the 
TFN A with the CoG defuzzification technique [16], i.e. to 
represent it by a crisp number. 

There are two general methods known, equivalent to 
each other, for defining arithmetic operations on FNs [15]. 
Those methods lead to the following simple rules for the 
addition and subtraction of TFNs. 

Let A=(a, b, c) and B=(a1, b1, c1) be two TFNs. Then 
one defines: 
 The sum A + B = (a+a1, b+b1, c+c1). 
 The difference A-B=A + (-B)=(a-c1, b-b1, c-a1), 

where-B=(-c1, -b1, -a1) is defined to be the opposite 
of B. 

On the contrary, the product and the quotient of A and 
B are FNs, which are not TFNs in general, apart from 
some special cases. 

The following two scalar operations can also be 
defined: 
 k + A= (k+a, k+b, k+c), k∈R. 
 kA = (ka, kb, kc), if k>0 and kA = (kc, kb, ka), if 

k<0, k∈R. 

3.2. The Assessment Method Using TFNs 
For the better understanding of the present work our 

assessment method using TFNs developed in earlier works 
([2], Chapter 7) is recalled here in brief. 

For this, let Ai, i = 1, 2, n be given TFNs, where n is a 
non negative integer, n ≥ 2. Then, we define the mean 
value of the Ai’s to be the TFN  

 ( ) .  .1 2A A A An= + +… +  

The qualitative grades A = excellent, B = very good, 
C=good, D = fair and F = unsatisfactory are considered for 
the assessment of a system’s performance. A scale of 
numerical scores from 1-100 is assigned to them as follows: 
A (85-100), B (75-84), C (60-74), D (50-59) and F (0-49)1. 

Then, each of the above grades can be represented by a 
TFN, denoted for simplicity by the same letter, as follows: 
A=(85, 92.5, 100), B=(75, 79.5, 84), C (60, 67, 74), D (50, 
54.5, 59) and F (0, 24.5, 49). The middle entry of each of 
the above TFNs is equal to the average of its other two 
entries. In other words, if A (a1, b1, c1), B (a2, b2, c2), F (a5, 
b5, c5), then  
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2
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In order to assess the total system’s effectiveness, the 
performance of each of the system’s components is 
evaluated by one of the above five qualitative grades. This 
means that one of the TFNs A, B, C, D, F can be assigned 
to each of those components. 

Let n be the total number of the system’s components 
and let nX be the number of the components corresponding 
to the TFN X, where X = A, B, C, D, F. Then the mean 
value M of all those TFNs is equal to the TFN  

 ( ) ( ),  ,  .   M a b c n A n B n C n D n FA B C D F= + + + +  (2) 

Since the calculation of the mean value of the qualitative 
grades is not possible, it looks logical to consider the TFN 
M as a fuzzy representative for evaluating the system’s 
mean performance.  Replacing the values of the TFNs A, 
B, C, D and F in equation (2) and making the required 
calculations it is straightforward to check that for M (a, b, 
c) we have  
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Then, equation (1) gives that  
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The value of X (M) provides a crisp representation of 
the TFN M evaluating the system’s mean performance. 

3.3. Grey Numbers 
Frequently in the everyday life, as well as in many 

applications of science and engineering, a system’s data 
cannot be easily determined precisely and in practice estimates 
of them are used. The reason for this is that in large and 
complex systems, like the socio-economic, the biological 
ones, etc., many different and constantly changing factors 
are usually involved, the relationships among which  
are indeterminate. This makes their operation mechanisms 
to be not clear. Two are the main tools today for handling 
such approximate data: Fuzzy Logic (FL), which is  
based on the notion of FS initiated by Zadeh [17] in 1965 
and the theory of Grey System (GS) initiated by Deng [18]  
in 1982. 

The GS theory was mainly developed in China and  
it has found nowadays many important applications in 
agriculture, economy, management, industry, ecology, 
environment, meteorology, geography, geology, forecast 
of earthquakes, history, military affairs, sports, traffic, 
material science, biological protection and in many other 
fields of the human activity; see [19] and its relevant 
references. 
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The systems which lack information, such as structure 
message, operation mechanism and behaviour document, 
are referred to as GSs. For example, the human body, the 
world economy, etc., are GSs. Usually, on the grounds of 
existing grey relations and elements one can identify 
where "grey" means poor, incomplete, uncertain, etc. 

The aim of the GS theory is to provide techniques, 
notions and ideas for analyzing latent and intricate 
systems. For example, the establishment of non-function 
models, the development of a grey process replacing an 
existing stochastic process, the transformation of disorderly 
raw data into a more regular series by grey generating 
techniques, grey decision making, grey forecasting control, 
the study of feeling and emotion functions and of fields 
with whitening functions, etc. [19]. 

An effective tool for handling the approximate data of a 
GS is the use of GNs. A GN is an indeterminate number 
whose probable range is known, but which has unknown 
position within its boundaries. The GNs are defined with 
the help of the closed real intervals. More explicitly, if R 
denotes the set of real numbers, a GN, say A, can be 
expressed mathematically by  

 [ ] { ,  }:  .A a b x a x b∈ = ∈ ≤ ≤R  

If a b, then A is called a white number and if 
A ( , )∈ −∞ +∞ , then A is called a black number. A GN 
may enrich its uncertainty representation with respect to 
the interval [a, b] by a whitening function f: [a, b] →  [0, 1] 
defining a degree of greyness g(x) for each x in [a, b]. The 
closer is g(x) to 1, the greater the probability for x to be 
the representative real value of the corresponding GN. For 
general facts on GNs we refer to [20]. 

The well known arithmetic of the real intervals [21] has 
been used to define the basic arithmetic operations among 
the GNs. More explicitly, if [ ]1 1 ,  A a b∈  and [ ]1,  2B b b∈  
are given GNs and k is a real number, one defines: 
 Addition by A + B ∈  [a1 + b1, a2 + b2] 
 Subtraction by A-B = A + (-B) ∈  [a1-b2, a2-b1], 

where-B∈  [-b2, -b1] is defined to be the opposite of B. 
 Multiplication by A x B ∈  [min {a1b1, a1b2, a2b1, 

a2b2}, max {a1b1, a1b2, a2b1, a2b2}]. 
 Division by  
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with b1, b2 ≠ 0 and B-1
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inverse of B. 

 Scalar multiplication by kA ∈  [ka1, ka2], if k ≥ 0 
and by kA ∈  [ka2, ka1], if k <0. 

Observe that B + (-B) ∈  [b1-b2, b2-b1] ≠ [0, 0], B + (-B)

≠ (-B) + B ≠ 0 and B x B-1 = B-1 x B 1 2

2 1
[ , ]
b b
b b

∈ ≠ [1, 1]. 

The white number with the greatest probability to be 
the representative real value of the GN Aà[a, b] is denoted 
by W(A). The technique of determining the value of W(A) 
is called whitening of A. 

One usually defines W(A) = (1-t)a + tb, with t in [0, 1]. 
This is known as the equal weight whitening. If the 
distribution of A is unknown (i.e. no whitening function 

has been defined for A), one takes t= 1
2

, which gives that  

 ( ) .
2

W A a b+
=  (4) 

4. The Assessment Method with GNS 

Consider again the numerical scores A (100-85), B  
(84-75), C (74-60), D (59-50), F (49-0) attached to the 
corresponding qualitative grades. We correspond to each 
grade a GN, denoted for simplicity with the same letter, as 
follows: A∈ [85, 100], B∈[75, 84], C∈ [60, 74], D∈[50, 
59] and F∈[0, 49]. 

Next, assigning to each of the system’s components the 
GN assessing its individual performance and using the 
same notation and definitions as in the case of the TFNs, 
we consider the mean value  

 1*M n A n B n C n D n FA B C D Fn
= + + + +     (5) 

of all those GNs as the grey representative of the system’s 
mean performance. 

But nAA ∈ [85nA, 100nA], nBB ∈ [75nB, 84nB], nCC ∈
[60nC, 74nC], nDD∈ [50nD, 59nD] and nFF ∈ [0nF, 49nF], 
therefore it turns out that M∈  [m1, m2], with  
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Since the distributions of the GNs A, B, C, D and F are 
unknown, the same happens with the distribution of M*. 
Therefore, one can take  

 ( ) 1
2

* 2 .
m

W M
m+

=  (6) 

From equations (3) and (6) it turns out that 
X(M)=W(M*), which means that the assessment methods 
of a system’s mean performance using as tools the TFNs 
or the GNs A, B, C, D and F respectively are equivalent to 
each other, providing the same assessment outcomes. 

Moreover, one observes that in the extreme case where 
the maximal possible numerical score corresponds to each 
component for each grade, i.e. the nA scores corresponding 
to A are equal to 100, the nB scores corresponding to B are 
equal to 84, etc., the mean value of all those scores is 
equal to c or m2 respectively. Also, in the opposite extreme 
case, where the minimal possible numerical score 
corresponds to each component for each linguistic grade, 
i.e. the nA scores corresponding to A are equal to 85, the 
nB scores corresponding to B are equal to 75, etc., the 
mean value of all those scores is equal to a or m1 
respectively. Therefore, equations (3) and (6) give a 
reliable approximation of the system’s mean performance. 
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Consequently, the equivalent assessment methods with 
TFNs and GNs are useful when no numerical scores  
are used, but the system’s performance is assessed by 
qualitative grades. 

5. Examples on the Assessment of CT 
Skills 

As we have seen in Section 2.1, modelling thinking 
synthesizes all the other modes of thinking involved in CT 
for constructing a proper model for the solution of the 
given problem. As a matter of fact, our first example on 
the assessment of CT skills concerns the evaluation of 
student mathematical modelling abilities. 

Example 1: The following Table depicts the performance 
of two student groups G1 and G2, in a common mathematical 
test involving the solution of MM problems: 

Table 1. Student performance 

Grade G1 G2 
A 20 20 
B 15 30 
C 7 15 
D 10 10 
F 8 10 

Total 60 85 
 
Assigning to each student the corresponding GN we 

calculate the mean values M1 and M2 of all those GNs for 
the groups G1 and G2 respectively, which are 
approximately equal to  
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Consequently both groups demonstrated a good (C) 
mean performance, with the mean performance of the 
second group being slightly better. 

A special form of CT systems, with great importance 
for Artificial Intelligence, are the CBR systems (see 
Section 2.2) and the following examples concern the 
evaluation of the effectiveness of such kind of systems. 

Example 2: Consider two CBR systems designed for 
help desk applications with their libraries containing 105 
and 90 past cases respectively. Assume that the two 
systems’ designers have supplied them with the same 
mechanism (software) that enables the assessment of the 
degree of success of each one of their past cases at each 

step of the CBR process, when used for the solution of 
new similar problems. Table 2 depicts the degree of 
success of their past cases in each of the three first steps of 
the CBR process. 

Table 2. Assessment of the past cases of the CBR systems 

First System 
Steps F D C B A 

R1 0 0 51 24 30 
R2 18 18 48 21 0 
R3 36 30 39 0 0 

Second System 
Steps F D C B A 

R1 0 18 45 27 0 
R2 18 24 48 0 0 
R3 36 27 27 0 0 
 
We shall compare the quality performance of the two 

systems by calculating the GPA index and their mean 
performance by applying our assessment methods with the 
TFNs and the GNs. 

i) GPA index: Denote by yi, i = 1, 2, 3, 4, 5 the ratios of 
the number of the CBR system’s cases whose performance 
is characterized by F, D, C, B and A respectively to the 
total number of its cases (frequencies), then the GPA 
index is calculated ([2], Chapter 6, p.125) by the formula  

 2 3 42 3 4 .5GPA y y y y= + + +  (7) 

In case of the ideal performance (y5=1) we have GPA=4, 
while in case of the worst performance (y1=1) we have 
GPA=0; therefore 0 ≤  GPA ≤  4. Consequently, values of 
GPA greater than 2 could be considered as corresponding 
to a more than satisfactory system’s performance. In our 
case, the data of Table 1 give the following frequencies:  

Table 3. Frequencies of the past cases of the CBR systems 

First System 
Steps Y1 y2 y3 y4 y5 

R1 0 0 
51

105
 

24

105
 

30

105
 

R2 
18

105
 

18

105
 

48

105
 

21

105
 0 

R3 
36

105
 

30

105
 

39

105
 0 0 

Second System 
Steps y1 y2 y3 y4 y5 

R1 0 
18

90
 

45

90
 

27

90
 0 

R2 
18

90
 

24

90
 

48

90
 0 0 

R3 
36

90
 

27

90
 

27

90
 0 0 

 
Replacing the values of frequencies from Table 3 to formula 

(7) one finds the following values for the GPA index: 
First System:  

 294 177 108: = 2.8, : 1.69, : 1.03.1 2 3105 105 105
R R R ≈  
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Second System:  

 189 168 81: = 2.1, : 1.87, : 0.9.1 2 390 90 90
R R R ≈  

The above values of the GPA index show that the first 
system demonstrated a better quality performance at steps 
R1 and R3 (Retrieve, Revise), whereas the second one 
demonstrated a better performance at R2 (Reuse). Further, 
the two systems’ performance was proved to be more than 
satisfactory in R1 and less than satisfactory in the  
other two steps, being worse at R3. This was logically 
expected, since the success in each step depends on the 
success in the previous steps. Notice that the two systems’ 
performance at the last step R4 was not examined, since 
ALL the past cases, even the unsuccessful ones, are 
retained in a system’s library for possible use in future 
with related new problems; the unsuccessful ones to help 
for exploring possible reasons of failure to find a solution 
for the new problem. 

Finally, the mean values of the GPA index for the two 
systems at the three steps R1, R2 and R3 are approximately 
equal to 1.84 and 1.62 respectively, showing that the first 
system demonstrated a better overall quality performance. 

ii) Use of the TFNs: From the data of Table 2 one finds 
that for the first system and in step R1 we have 51 TFNs 
equal to C(60, 67, 74), 24 TFNs equal to B(75, 79.5, 85) 
and 30 TFNs equal to A(85, 92.5, 100). The mean value of 
all those TFNs, denoted for simplicity by the same letter 
R1, is equal to  

 

( )
( )
( )

( )

( )

1 51 24  301 105
3060,  3417,  3774

1 1800,  1908,  2016
105

2550,  2775,  3000

1 7410,  8100,  8790
105
70.57,  77.14,  8 7

(

3. 1 .

)R C B A= + +

 
 

= + 



≈

+ 

=

 

Therefore, from equation (3) one gets that X(R1) = 
77.14. This shows that the first system demonstrated a 
very good (B) performance at step R1.  

In the same way one calculates for the first system the 
mean values  

 
( )

1 18 18 48 212 105
 51, 60.07, 69.1

)

4

(R F D C B

≈

= + + +
  

and  

 
( )

1 36 30 393 105
 36.57,  48.86,  61.

)

1

(

,4

R F D C=

≈

+ +
 

thus obtaining the analogous conclusions for the system’s 
performance at the steps R2 and R3 of the CBR process. 

Finally, the overall system’s performance can be assessed 
by the mean value 

 ( ) ( )1  52.71,  62.02,  71.331 2 3 ,
3

R R R R= + + ≈  

Therefore, since X(R) = 62.02, the system demonstrated 
a good (C) mean performance. 

A similar argument gives for the second system the 
values R1 = (62.5, 68.25, 74), R2 ≈ (45.33, 55.17, 65), R3 
= (33, .46.25, 59.5) and R ≈  (46.94, 56.56, 66.17), thus 
obtaining the analogous conclusions for its mean 
performance at each step of the CBR process and its 
overall mean performance. 

iii) Use of the GNs: According to this approach in step 
R1 we have 51 GNs equal to C∈[60,74], 24 GNs equal to 
B∈ [75, 84] and 30 GNs equal to A∈ [85, 100]. The mean 
value of all those GNs, denoted by R1*, is equal to  

 [ ]1* 51 24 3( )0 70.57,  83.71 .1 105
R C B A= + + ∈  

Therefore,  

 ( ) 70.57 83.71* 77.14,1 2
W R +

= =   

etc. 
As we have seen in Section 4 this approach provides in 

general the same assessment outcomes with the use of 
TFNs, but, as it becomes more evident from the present 
example, it reduces significantly the required computational 
burden. 

Table 4 depicts the assessment outcomes obtained in 
this example. 

Table 4. Outcomes of the Assessment Methods Used in Example 1 

Method Outcomes 

GPA index 
The first system demonstrated a better overall quality 
performance and a better quality performance at steps R1 
and R3, while the second system performed better at step R2 

TFNs / GNs The first system demonstrated a better mean performance 
at all the steps of the CBR process 

 
The outcomes of Table 4 illustrate the fact that the 

assessment of a system’s quality performance could lead 
to different outcomes from the assessment of its mean 
performance (step R2). 

Example 3: Six different users of a CBR system ranked 
with scores from 0-100 the effectiveness of the following 
five past cases, stored in its case-library, for solving new 
related problems: C1 (Case 1): 43, 48, 49, 49, 50, 52, C2: 
81, 83. 85, 88, 91, 95, C3: 76, 82, 89, 95, 95, 98, C4: 86, 
86, 87, 87, 87, 88, C5: 35, 40, 44, 52, 59, 62. 

The mean value of the given, 6X5 = 30in total numerical 
scores is approximately equal to 72.07 demonstrating  
a good (C) mean performance of the system with respect 
to the above five past cases. In order to compare  
the assessment outcomes the system’s mean performance 
will also be calculated by using our model with the  
GNs. 

In fact, the given numerical scores correspond to 14 
GNs equal to the GN A, 4 equal to B, 1 equal to C, 4 
equal to D and 7 GNs equal to the GN F. The mean value 
of the above GNs is equal to  

 [ ]* 14 4 4 7 60.33, 79.61 ( ) 3
3

.
0

M A B C D F ∈= + + + +  

Therefore, from equation (6) one obtains that W(M*) = 
69.98. Consequently the CBR system demonstrates a good 
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mean performance with respect to the given five past 
cases. However the exact score corresponding to the 
system’s mean performance is equal to the mean value 
72.02 of the given numerical scores. In concluding, the 
assessment model using GNs (or TFNs), although it gives 
a good approximation of the system’s mean performance, 
it is actually useful only when the effectiveness of the 
system’s past cases is evaluated by qualitative grades and 
not by numerical scores, because in this case the calculation 
of the mean value of those grades is not possible. 

Our last example gives a method of solving algebraic 
systems with grey coefficients. 

Example 4: The performance of a CBR system in 
solving two different problems is represented by the GNs 
A and B respectively such that A + B ∈  [2, 4] and  
A. B∈[1,3]. It is asked to compare the system’s performance 
in those two cases to its top possible performance to 
which the numerical score 5 has being assigned. 

Solution: The whitening of the given sum and product 
of the GNs A and B leads to the solution of the ordinary 

system 
3

. 2
x y
x y
+ = 

 = 
, which gives that x=.2, y=1 or vice 

versa. Therefore W(A) = 2 and W(B) =1 or vice versa, 
which means that the system’s performance in the above 
two cases was equal to the 40% and the 20% respectively 
of its top possible performance. 

Remark: The attempt to solve the above problem by 
applying the definitions of addition and multiplication of 
GNs presented in Section 3 leads to a system of equations 
with respect to the unknown numbers a1, b1, a2, b2 which 
does not provide a concrete solution. For more details on 
solving systems of equations with grey data see [22]. 

6. Conclusions and Discussion 

A method using GNs as tools was developed in the 
present research for assessing a system’s mean performance, 
which is useful when using qualitative grades and not 
numerical scores for this purpose. This new method was 
proved to be equivalent with an analogous method using 
TFNs instead of GNs developed in earlier works, but it 
reduces significantly the required computational burden, 
since it requires the calculation of two components only 
(instead of three in case of the TFNs) for obtaining the 
mean value of the GNs. Examples were also presented on 
the assessment of CT systems illustrating our results and 
showing that the system’s quality performance, calculated 
by the traditional GPA index, may lead to different assessment 
conclusions. 

Although the enormous development of technology 
during the last years makes easier and more comfortable 
the human life, it creates in parallel more and more 
complicated artificial systems, which are difficult to be 
managed by the traditional scientific methods. As a result, 
the applications of FL and of the GS theory have been 
rapidly expanded nowadays covering almost all sectors  
of the human activities. In particular the FNs and the  
GNs have been proved to be effective tools in handling 
approximate and/or uncertain data, playing an important 
role in fuzzy mathematics and in GS theory respectively, 
analogous to the role played by the ordinary numbers in 

crisp mathematics. Therefore, the attempt to use FNs or 
GNs in other applications, apart from the assessment 
purposes, to science and technology and to the everyday 
life looks as a very interesting and promising direction for 
future research on the subject. Note that such efforts have 
been already started by the present author on solving 
equations, systems of equations and linear programming 
problems with fuzzy or grey data, connected to real life 
applications [22,23,24]. 
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