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Abstract  In this article the new extension of the generalized and improved ( '/ )G G -expansion method has been 
used to generate many new and abundant solitons and periodic solutions, where the nonlinear ordinary differential 
equation has been used as an auxiliary equation, involving many new and real parameters. We choose the Fisher 
Equation in order to explain the advantages and effectives of this method. The illustrated results belongs to 
hyperbolic functions, trigonometric functions and rational functional forms which show that the implemented 
method is highly effective for investigating nonlinear evolution equations in mathematical physics and engineering 
science. 
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1. Introduction 

In physical sciences all essential equations are nonlinear 
and these are often complicated to interpret. So the exact 
solutions of nonlinear evolution equations (NLEEs) have 
turned out to be a chief concern for researchers. NLEE  
is one of the most powerful and important modelled 
equations among all equations in nonlinear sciences and it 
plays a vital role in the field of scientific work of 
engineering sciences such as chemical kinematics, fluid 
mechanics, chemistry, biology, nonlinear optics, optical 
fibers, plasma physics, solid state physics, biophysics, 
geochemistry, quantum mechanics, chemical physics, 
condensed matter physics, high-energy physics and so on. 
As they reveal a lot of physical information which help to 
understand the operation of the physical model better, that 
is why the explicit solutions of NLEEs play important role 
in the study of physical phenomena and remains a crucial 
field for researchers in the ongoing investigation. 

For the past few decades, a vast research has been 
going on to construct explicit solutions of NLEEs, which 
are used as models in order to describe many important 
and problematics physical phenomena in various fields of 
science. So to figure out the exact solutions of NLEEs 
substantial work are being made by mathematicians and 
scientists and have developed effective and convincing 
methods such as the Hirota’s bilinear transformation 
method [1], the tanh-function method [2,3], the exp-function 

method [4,5], the F-expansion method [6], the Jacobi 
elliptic function method [7], the homogeneous balance 
method [8], the homotopy perturbation method [9], the 
tanh-coth method [10], the direct algebraic method [11], 
the Backlund transformation method [12], and others 
[13,14,15,16]. 

 Later in 2008, Wang et al [17] introduced a new 
method called the ( )G G′ -expansion method for finding 

the solutions of traveling waves of NLEEs. This ( )G G′  - 
expansion method shows that it is one of the most 
powerful and effective method to solve NLEEs since it 
gives a clear and short to the point results in terms of 
hyperbolic functions, trigonometric functions and rational 
functions which is why scientists have carried out a lot of 
researches to construct traveling wave solutions via this 
method [18-21]. 

Further research of ( )G G′ - expansion method has 
been carried out by many researchers to show the possible 
productivity of the application. For example- Zhang et al 
[22] expanded the original ( )G G′ - expansion method 

and named as the improved ( )G G′ - expansion method. 
Using this method many researches have been carried out 
in order to find travelling wave solutions for NLPDEs  
[23-30]. Then Akber et al [31] introduced the generalized 
and improved ( )G G′ - expansion method, where the 
second order LODE were used as auxiliary equation to 
construct travelling wave solution, this method were also 
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used in the study of higher dimensional NLPDEs [32].  
In the meanwhile, Naher ad Abdullah [33] demonstrated  
a new method that is the new approach of the  
( )G G′ - expansion method and new approach of the 

generalized ( )G G′ - expansion method where nonlinear 
ODE were used as auxiliary equation and the resulted 
travelling wave solutions of this method were quite 
different. Many researchers still carrying out experiments 
using the new extension of ( )G G′ - expansion method to 
generate more new travelling wave solutions of NLEEs. 

2 Methodology of New Extension of  
the Generalized and Improved  
( '/ )G G - Expansion Method 

Recently a new application have been introduced  
called the new extension of the generalized and improved 
( '/ )G G - expansion method for NLEEs. So to demonstrate 
this method, first a NLPDE is taken with real independent 
variables x  and t  i.e. 

 ( , , , , , ...) 0t x tt xt xxP u u u u u u =  (2.1) 

where P  is the polynomial and here ( , )u u x t=  is an 
unknown function. In the polynomial P  contains different 
partial derivatives of the function u  itself wherein 
involves the highest order derivatives and the highest 
nonlinear terms. Now the prime process of this method is 
being discussed in steps below. 
Step 1: Suppose that,  

 ( , ) ( ),u x t u x Wtξ ξ= = ±  (2.2) 

where the constant term W is known as the speed of wave, 
is substituted in Eq. (2.1), which allows a PDE to convert 
an ODE with respect to ξ . 

 ( , , , ...) 0Q u u u u′ ′′ ′′′ =  (2.3) 

Step 2: Eq. (2.3) is being integrated term by term and if 
needed it can be integrated more than once and the 
integral constants may be set to zero to make easy to solve. 
Now the integrated travelling wave solution of Eq. (2.3) 
can be represented as. 

 ( )
( )1

( )
N N jj

j j
j N j

b
u a d H

d H
ξ

=− =
= + +

+
∑ ∑   (2.4) 

where ,N Na a−  or Nb  can be zero but all cannot  
be zero at the same time, ( 0, 1, 2,... ),ja j N= ± ± ±  

( 1, 2,3,... ),jb j N= d  is the arbitrary constant to be 

determined later and ( )H ξ  is 

 ( ) GH
G

ξ
′ =  

 
 (2.5) 

where ( )G G ξ=  satisfies the nonlinear ordinary differential 
equation (ODE) i.e. 

 2 2( ) ( ) 0GG GG G Gλ µ δ β′′ ′ ′− − − =  (2.6)  

where 
2

2 ,d G dGG G
dd ξξ

′′ ′= =  and , , &λ µ δ β  are the real 

parameters 
Step 3: The positive integer N appearing in the integrated 
solution of Eq. (2.3) is then determined by considering  
the homogeneous balance between the highest order 
derivative and the highest nonlinear term. The value of  
N is substituted in Eq. (2.4) which gives a complete  
ODE. Then the completed ODE of Eq. (2.4), Eq. (2.5) 
along with Eq. (2.6) is substituted in the integrated 
solution of Eq. (2.3) and collecting all the powers  
of the term ( )d H+  in descending order to the left  
hand side, thus transforms into another polynomial  
of ( ) ,d H+  here ( )Nd H+ ( 0, 1, 2,...)N = ± ±  and 

( ) Nd H −+ ( 1, 2,3...)N = . 
Step 4: The coefficient of the ( )d H+  polynomial is then 
equated to zero, hence generates a set of algebraic 
equation. By solving the algebraic equation gives the 
value for ( 0, 1, 2,... )ja j N= ± ± ± , ( 1, 2,3,... )jb j N=  , d  
and W  obtained from Eq. (2.5). Now by solving Eq. (2.6) 
we obtain a general solution, which is then substituted 
with the values of constants into Eq. (2.4) we can achieve 
more general type and more new travelling wave solutions 
of NLPDE of Eq. (2.1). 
Step 5: Using the general solution of Eq. (2.6), the 
following solutions for Eq. (2.5) are obtained: 
Family 1: When 0,µ ≠ λ δΨ = −  and  

 2 4 ( ) 0,µ β λ δΩ = + − >  

 1 2

1 2

( )

sinh cosh
2 2

.
2 2

cosh sinh
2 2

GH
G

C C

C C

ξ

ξ ξ
µ

ξ ξ

′ =  
 

   Ω Ω
+      Ψ ΨΩ    = +

Ψ Ψ    Ω Ω
+      Ψ Ψ   

 (2.7) 

Family 2: When 0,µ ≠ λ δΨ = −  and  

 2 4 ( ) 0,µ β λ δΩ = + − <  

 1 2

1 2

( )

sin cos
2 2

2 2
cos sin

2 2

GH
G

C C

C C

ξ

ξ ξ
µ

ξ ξ

′ =  
 

   −Ω −Ω
− +      Ψ Ψ−Ω    = +

Ψ Ψ    −Ω −Ω
+      Ψ Ψ   

(2.8) 

Family 3: When 0,µ ≠ λ δΨ = −  and  

 2 4 ( ) 0,µ β λ δΩ = + − =  

 2

1 2
( )

2
CGH

G C C
µξ

ξ
′ = = +  Ψ + 

 (2.9) 

Family 4: When 0,µ =  λ δΨ = −  and 0,β∆ = Ψ >  
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 1 2

1 2

( )

sinh cosh
.

cosh sinh

GH
G

C C

C C

ξ

ξ ξ

ξ ξ

′ =  
 

   ∆ ∆
+      Ψ Ψ∆    =

Ψ    ∆ ∆
+      Ψ Ψ   

 (2.10) 

Family 5: When 0,µ =  λ δΨ = −  and 0,β∆ = Ψ <  

 1 2

1 2

( )

sin cos
.

cos sin

GH
G

C C

C C

ξ

ξ ξ

ξ ξ

′ =  
 

   −∆ −∆
− +      Ψ Ψ−∆    =

Ψ    −∆ −∆
+      Ψ Ψ   

 (2.11) 

3. Application of the Method 

Let us consider the Fisher equation to investigate and 
construct new wave solutions by executing new extension 
of the generalized and improved ( )/G G′ − expansion 
method [34]. 

The Fisher equation: 

 ( )1 0.t xxu u u u− − − =  (3.1) 

By using the wave transformation of Eq. (2.2), into Eq. 
(3.1), the above equation transforms into the following 
NLODE: 

 2 0.u Wu u u′′ ′+ + − =  (3.2) 
Now by taking the homogeneous balance between the 

nonlinear term 2u  and the highest order derivative term 
u′′  in Eq. (3.2), we obtain the value for N i.e. 2N = . 
Therefore the solution of Eq. (3.2) can be written in the 
form: 

 
( ) ( ) ( )
( )( ) ( )( )

2
0 1 2

1 2
1 1 2 2

u a a d H a d H

a b d H a b d H

ξ
− −

− −

= + + + +

+ + + + + +
 (3.3) 

where 2 1, 0 1 2 1 2, , , , ,a a a a a b b− −  and d  are constants 
to be determined. 

Substituting Eq. (3.3) along with Eq. (2.5) and  
(2.6) into Eq. (3.2) and by simplifying it transforms  
into polynomials in ( )Nd H+ ( 0, 1, 2,...)N = ± ±  and

( ) Nd H −+ ( 1, 2,3...).N =  By collecting the resulted 
polynomials, yields a set of simultaneous algebraic 
equations for 2 1, 0 1 2 1 2, , , , , , ,a a a a a b b d c− −  and W . After 
solving the systems of algebraic equations with the aid of 
Maple, we have obtained the following sets result for 
travelling waves. 

3.1. Results of Travelling Waves 
Set 1 

( )
( )

2 2 2

2 2
2 22

1 1 0 1

2

2 1 1 2 22

, 2 , ,
1 596 , ,

96 6
1, 1536 ,

1536
1 3 616 , , ,

16 86 6

6 , , ;

d

d W

d d a b

a b a a

a b b b b

λ λ µ δ δ

β λ

λ

λ
λ

λ

−

−

= = − Ψ =

= − Ψ − = ±
Ψ

= = − Ψ −
Ψ

Ψ 
= − Ψ ± = = Ψ  

Ψ
= = =



 (3.1.1) 

where, .λ δΨ = −  
Set 2 

( )
( )

2 2 2

2 2
2 22

1 1 0

2

1 2 1 1 2 22

1
, 2 , , 96 ,

96
5 1

, , 1536 ,
6 1536
1 516 , ,

16 86

6 6, , , ;
6

d d

i
W d d a b

a b a

a a b b b b

λ λ µ δ δ β λ

λ

λ

λ λ

−

−

= = − Ψ = = − Ψ +
Ψ

= ± = = − Ψ −
Ψ

 
= − Ψ ± = Ψ  

Ψ Ψ
= = = =

(3.1.2) 

where, .λ δΨ = −  
Set 3 

 2 2 1 1

0 1 2 1 1 2 22

1, , , 0,
6 6

5 , , , ,
6

10, 0, , , ;

d
d

W d d a b a b

a a a b b b b
d

λ λλ λ µ δ β

− −

 
= = ± = ± = 

 

= ± = = − = −

= = = = =

 (3.1.3) 

Set 4 

 2 2 1 1

0 1 2 1 1 2 22

, , , 0,
6 6

5 , , , ,
6

11, 0, , , ;

i id
d

iW d d a b a b

a a a b b b b
d

λ λλ λ µ δ β

− −

 
= = ± = ± = 

 

= ± = = − = −

= = = − = =

 (3.1.4) 

Set 5 

 2 2 1 1

0 1 2 1 1 2 22

1, , , 0,
6 6

5 , , , ,
6

2 11, , , , ;

d
d

W d d a b a b

a a a b b b b
d d

λ λλ λ µ δ β

− −

 
= = = = 

 

= ± = = − = −

= = − = = =

 

 (3.1.5) 

Set 6 

 2 2 1 1

0 1 2 1 1 2 22

, , , 0,
6 6

5 , , , ,
6

2 10, , , , ;

i id
d

iW d d a b a b

a a a b b b b
d d

λ λλ λ µ δ β

− −

 
= = = = 

 

= ± = = − = −

= = = − = =

 

 (3.1.6) 
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Set 7 

2 2 2

2 2 1 1 0 12 2

2

2 1 1 2 22

5, , , 0, , ,
6 6

6 12, , , ,

6 , , ;

W d d

d da b a b a a

a b b b b

λλ λ µ δ δ β

λ λ

λ

− −

= = = = = ± =

Ψ Ψ
= − = − = = −

Ψ
= = =



(3.1.7) 

where, .λ δΨ = −  
Set 8 

 
2 2 2

2 2 1 1 0 2

2 2

1 2 1 1 2 22 2

5, , , 0, , ,
6 6

6, , ,

12 6, , , ;

i iW d d

da b a b a

da a b b b b

λλ λ µ δ δ β

λ
λ

λ λ

− −

= = = = = ± =

Ψ +
= − = − =

Ψ Ψ
= − = = =



(3.1.8) 

where, .λ δΨ = −  
Set 9 

 

2 2 1 1

2
2 2

0 2

2
2

1 2

2

2 1 1 2 22

, , , 0,
6

5 , , , ,
6

1 12 12 6 ,
6 6

1 12 ,
6 6

6 , , ;

W d d a b a b

d da d

a d

a b b b b

λλ λ µ δ δ β

λ λδ
λ

λδ λ
λ

λ

− −

= = ± = =

= ± = = − = −

 
= ± + Ψ  

 
 

= ± − Ψ  
 

Ψ
= = =





 (3.1.9) 

where, .λ δΨ = −  
Set 10 

 

2 2 1 1
2

2
0 2

2
2

1 2

2

2 1 1 2 22

5, , , 0, ,
6 6

, , ,

1 12 2 ,
6 6

1 12 ,
6 6

6 , , ;

i iW

d d a b a b

d i ia d

i ia d

a b b b b

λλ λ µ δ δ β

λ λδ
λ

λδ λ
λ

λ

− −

= = ± = = = ±

= = − = −

 
= ± + Ψ  

 
 

= ± − Ψ  
 

Ψ
= = =





(3.1.10) 

where, .λ δΨ = −  
Set 11 

( )2 2 2 2
2 22

1 1 0 1 2 1 1 2 2

5 66, , 6, , ,
6

1, 2 ,

, 0, 0, 0, , ;

W

d d a d d b

a b a a a b b b b

λ µ µ µ δ µ β β

µ β µβ µ
µ

−

−

= ± = = ± = = ±

= = + − −

= − = = = = =

(3.1.11) 

Set 12 

 
( )2 2 2 2

2 22

1 1 0 1 2 1 1 2 2

6, , 6,

5 6, , ,
6

1 2 ,

, 1, 0, 0, , ;

i i

iW d d

a d d b

a b a a a b b b b

λ µ µ µ δ µ

β β

µβ µ β µ
µ

−

−

= ± = = ±

= = =

= − − −

= − = = = = =



(3.1.12) 

Set 13 

( )
(

)

2 3 4
2 2

2 2 2 4 3 2 4 2
2

3 2 2 2

1 2 2 2 3 2 3 2
1

3 2 2 3 2

3 3 2 3 3

0

6, , , 0,

5 6 , ,
6 6 6

1 2 6 2 6 ,

2 6 ,

4 6 4 6 21 ,
4 2 12

18 36 18

36 18 6 6

1

d dW d d
d d

a d d

d d d d b

d d d
a

d d d b

d d d

d d

a

λ µ µ µ δ δ β

µ µ δ
µ δ µ

µ δµ
µ

µ δ δ µ µ µ

δ µ µ µ

µ δµ δ µ µ

µ µ δ µ δ

µ µ µ

−

−

= ± = = =

− +
= =

± +

= ±

+ + − + −

 ± −
 =
 + − − − 

− +

+ ± ±

=











3 2 2

2 2 3 3

3

1 2 1 1 2 2

8 6 3 6

3 6 6
,

6 6 6
0, 0, , ;

d d

d d

d d
a a b b b b

δ µ δµ

µδ δ

µ δ µ

 
 
 
 
 
  ± 

± +
= = = =







(3.1.13) 

Set 14 

( )
4 2 3 2 2

2 2 2 4 3 2 4 2
2

2 2 3

2 2 2 3
1 2

2 3 2
1

3 2 3

0

6, , , 0,

5 6 , ,
6 6 6

2 6 2 61 ,
2 6

2 4 4 6
1 4 6 2 ,

12

12 36 18 6

18

i

di dW d d
i d i d

d i d i d
a

d d d b

d d d i

a d i d

d b

d d i

d

a

λ µ µ µ δ δ β

µ µ δ
µ δ µ

µ δ µ µ

µ δ δ µ µ µ

µ δµ δ µ

µ δ
µ

µ µ

µ µ δ µ

δ

−

−

= ± = = =

+ −
= =

± −

 ± −
 =
 − + + − 
 −
 
 = ± +
 
 − − 

− ±

=











2 2 2 2 2

3 2 2 3 2

3

1 2 1 1 2 2

6 18 2 6

36 3 6 6
,

6 6 6
0, 0, , ;

d i d i

d di d i

d d
a a b b b b

µ µ δ δµ

µ µδ δ

µ δ µ

 
 
 + ±
 
 − ± 

± +
= = = =





(3.1.14) 

Set 15 

 
( )2 2

2 2 1 1

1, , 6 24 ,
24

5, , , , ,
6

W d d a b a b

λ λ µ µ δ λ µ λβ
β

β β − −

= = = − − −

= = ± = = − = −
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3
4 2 2 2 2

2
2 2 2

0 2 2
2

2 2

4 2 3

3 2

2 3 4
1 2 2

2 2 4

2
2 2 2

24
12

6

144
24 241

,6
96

288
144

6

36 144

12 72

6 6
1

12 72 ,
48

12 36

1
96

d
d d

d
d

a

d d

a d

d d

a

β λ
λ λ µ

µ β
λ β λ µβ

λ β
λµβ

β µ

µ µ β

λ β λβµ

µβλ βµ λ
λ β

λ µ µ

λ
λ β

± −

+ +
=

± +

+ −

±

= − + − +

− +

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=





( )22
1 1 2 26 , , ;b b b bµ− = =

 (3.1.15) 

Set 16 

 

( )2 2

2 2 1 1

3
4 2 2 2 2

2
2 2 2

0 2 2
2

2 2

4 2 3

3 2

1 2 2

1, , 6 24 ,
24

5, , , , ,
6

24 12
6

14472 241 ,6
96

288 144
6

36 144

12 72
1

6
48

iW d d a b a b

d id d

did
a

i

d d

i i
a

λ λ µ µ δ λ µ λβ
β

β β

β λλ λ µ

λµ βλ β λ µβ

λ β
λµβ β µ

µ µ β

λ β λβµ

λ β

− −

= = = + +

= = ± = = − = −

 
+ 

 
 
 + −
 =
 
 
± + 
 
 + − 

= −





 

2

3 4 2 2 4

12
,6

72 12 36d d d

µβλ

βµ λ λ µ µ

 
− 

 
 − + + + 

 

 ( )22 2
2 1 1 2 22 2

1 6 , , ;
96

a b b b bλ µ
λ β

= + = = (3.1.16) 

3.2. Solutions 
Substituting Eq (3.1.1) in Eq (3.3), along with Eq (2.7) 

and simplifying, yields the following travelling wave 
solution, ( if 1 0C ≠  and 2 0C = ) 

 

1

2
2

2

2

3 31 ( , ) tanh
8 26

3 tanh
22 8 6 tanh

2

,
384 tanh

2

u x t ξ
λ

λξ
λ ξ

λ

ξ

 Ω Ω
=   Ψ 

 Ω Ω
+   Ψ  Ω  Ω   Ψ 

+
 Ω

Ω   Ψ 



  

Substituting Eq. (3.1.1) in Eq. (3.3), along with Eq. (2.8) 
and simplifying, our obtained solution becomes, ( if 

1 0C ≠  and 2 0C = ) 

 

2

2
2

2

2 2

3 31 ( , ) tan
8 26

3 tan
22 8 6 tan

2

,
384 tan

2

iu x t

i

i

ξ
λ

λξ
λ ξ

λ

ξ

 Ω −Ω
= ±   Ψ 
 Ω −Ω

− ±  Ψ  −Ω  Ω   Ψ 

+
 −Ω

Ω   Ψ 

 

Substituting Eq (3.1.1) in Eq (3.3), along with Eq (2.9) 
and simplifying, our exact solution becomes 

 
( ) ( )

( ) ( )

2 2
2 2

3 22
1 2 1 2

22
1 2 1 2

2 2
2 2

6 631 ( , )
8 6

,
16 6 1536

C Cu x t
C C C C

C C C C
C C

λ ξ λ ξ

λ ξ λ ξ

Ψ Ψ
= +

+ +

+ +
+

Ψ Ψ





 

Similarly, substituting Eq. (3.1.1) in Eq. (3.3), along 
with Eq. (2.10) and simplifying, our obtained exact 
solution becomes, (if 1 0C ≠  and 2 0C = ) 

 

4

2

2

2

2

6 tanh
31 ( , )
8 6

6 tanh

16 6 tanh

,

1536 tanh

d

u x t

d

d

d

ξ

λ

ξ

λ
λ

ξ

λ

ξ

  ∆
Ψ + ∆    Ψ  =

  ∆
Ψ + ∆    Ψ  +

  ∆
Ψ + ∆    Ψ  

+
  ∆

Ψ + ∆    Ψ  





 

Substituting Eq. (3.1.1) in Eq. (3.3), along with Eq. 
(2.11) and simplifying, we obtain the following solution, 
(if 1 0C ≠  and 2 0C = ) 

 

5

2

2

6 tan
31 ( , )
8 6

6 tan

16 6 tan

d i

u x t

d i

d i

ξ

λ

ξ

λ
λ

ξ

  −∆
Ψ − ∆    Ψ  =

  −∆
Ψ − ∆    Ψ  +

  −∆
Ψ − ∆    Ψ  




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2

2 ,

1536 tand i

λ

ξ

+
  −∆

Ψ − ∆    Ψ  

 

where .x Wtξ = −  
Similarly, substituting Eq. (3.1.3) in Eq. (3.3), along 

with Eqs. (2.7) - (2.11) and simplifying, our travelling 
wave solutions become: 

 

2

1 2 2

2 6 6 tanh
2

3 ( , ) ,
24

d

u x t
d

λ ξ
  Ω Ψ ± + Ω    Ψ   =

Ψ
 

 

2

2 2 2

2 6 6 tan
2

3 ( , ) ,
24

d i

u x t
d

λ ξ
  −Ω Ψ ± − Ω    Ψ   =

Ψ
 

 

( )
( )

( )

2
1 2

1 2 2
3 22 2

1 2

2 6

2 6
3 ( , ) ,

24

d C C

C C C
u x t

d C C

ξ

λ ξ

ξ

 Ψ + 
 
± + + Ψ  =

Ψ +
 

 

2

4 2 2

tanh

3 ( , ) ,

d

u x t
d

ξ
  ∆

Ψ + ∆    Ψ  =
Ψ

 

 

2

5 2 2

tan

3 ( , ) ,

d i

u x t
d

ξ
  −∆

Ψ − ∆    Ψ  =
Ψ

  

where .x Wtξ = −  
Similarly, substituting Eq (3.1.7) in Eq (3.3), along with 

Eq (2.7) - (2.11) and simplifying, our obtained travelling 
wave solutions become: 

2 2

1 2
2

2 6
6

6 tanh
2

617 ( , ) ,6

2 6 6 tanh
2

4

d
d

d
u x t

d

λ

ξ

λ

λ ξ

  Ψ
  

Ψ    Ω
+ Ω     Ψ   Ψ − =  

 
   Ω Ψ + Ω     Ψ    +  





 

2 2

2 2
2

2 6
6

6 tan
2

617 ( , ) ,6

2 6 6 tan
2

4

d
d

i

d
u x t

d i

λ

ξ

λ

λ ξ

  Ψ
  

Ψ    −Ω
− Ω     Ψ   Ψ − =  

 
   −Ω Ψ − Ω     Ψ    +  





 

 

( )
( )

( )

( )
( )

( )

1 2

1 2

22 2

1 23 2
2

1 2

1 2 2
2

1 2

2 6

6

2 6
61 67 ( , ) ,

2 6

2 6

4

d C C

d C C

C
d

C Cu x t

d C C

C C C

C C

ξ

λ ξ

ξ
λ

ξ

λ ξ

ξ

  Ψ +
   Ψ +  
  

+ Ψ   Ψ −  +=  
 

 Ψ +  
  

+ + Ψ   + 
+  





 

 

4

2 2

22

7 ( , )

6 12 tanh
1 ,

6 tanh

u x t

d d d

d

ξ

λ
ξ

   ∆
Ψ − Ψ Ψ + ∆     Ψ    =  
   ∆

+ Ψ + ∆     Ψ    

 

 

5

2 2

22

7 ( , )

6 12 tan
1 ,

6 tan

u x t

d d d i

D

d i

ξ

λ
ξ

   −∆
Ψ − Ψ Ψ − ∆     Ψ    =  
   −∆

+ Ψ − ∆     Ψ    

 

where .x Wtξ = −  
Similarly, substituting Eq. (3.1.9) in Eq. (3.3), along 

with Eqs. (2.7), (2.9) and (2.11) and simplifying, our 
obtained solutions become: 

 
( )

1

1 0

2

2

2

2 6 6 tanh
2

9 ,
2 6

2 6 6 tanh
2

,
24

a d

u x t a

a d

λ ξ

λ ξ

  Ω
Ψ ± + Ω    Ψ  = +

Ψ

  Ω
Ψ ± + Ω    Ψ  +

Ψ

 

 

( )

( )
( )

( )

( )
( )

( )

1 2
1

1 2 2
2 0

1 2
2

1 2
2

1 2 2
22

1 2

2 6

2 6
9 ,

2 6

2 6

2 6
,

24

d C C
a

C C C
u x t a

C C

d C C
a

C C C

C C

ξ

λ ξ

ξ

ξ

λ ξ

ξ

 Ψ + 
 
± + + Ψ  = +

Ψ +

 Ψ + 
 
± + + Ψ  +

Ψ +

 

 
( )

1

3 0

2

2

2

tan

9 ,

tan

,

a d i

u x t a

a d i

ξ

ξ

  −∆
Ψ − ∆    Ψ  = +

Ψ

  −∆
Ψ − ∆    Ψ  +

Ψ

 

 

 



 American Journal of Applied Mathematics and Statistics 250 

where  

 

2
2 2

0 2

2
2

1 2

2

2 2

1 12 12 6 ,
6 6

1 12 ,
6 6

6

d da d

a d

a

λ λδ
λ

λδ λ
λ

λ

 
= ± + Ψ  

 
 

= ± − Ψ  
 

Ψ
=



  

and .x Wtξ = −  
Similarly, substituting Eq. (3.1.11) in Eq. (3.3), along 

with Eqs. (2.7) - (2.11) and simplifying, the following 
travelling wave solutions become: 

 ( )
( )2 2 2 2

1 2
2

4 2
11 , ,

2 tanh
2

d d
u x t

d

µ β µβ

µ µ ξ

Ψ + −
=

  Ω Ψ + + Ω    Ψ   

 

 ( )
( )2 2 2 2

2 2
2

4 2
11 , ,

2 tan
2

d d
u x t

d i

µ β µβ

µ µ ξ

Ψ + −
=

  −Ω Ψ + − Ω    Ψ   

 

 

( )

( )( )

( )
( )

3
22 2 2 2

1 2
2

1 22

1 2 2

11 ,

4 2
,

2

2

u x t

d d C C

d C C

C C C

µ β µβ ξ

ξ
µ

µ ξ

Ψ + − +
=

Ψ +  
 
+ + + Ψ  

 

 ( )
( )2 2 2 2

4 2
2

2
11 , ,

tanh

d d
u x t

d

µ β µβ

µ ξ

Ψ + −
=

  ∆ Ψ + ∆    Ψ   

 

 ( )
( )2 2 2 2

5 2
2

2
11 , ,

tan

d d
u x t

d i

µ β µβ

µ ξ

Ψ + −
=

  −∆ Ψ − ∆    Ψ   

 

where .x Wtξ = −  
Similarly, substituting Eq. (3.1.14) in Eq. (3.3), along 

with Eqs. (2.7), (2.9) and (2.11) and simplifying, our 
solutions become: 

 

( )
( )

( )

1

1 1
0

2
2 2

2

14 ,

2

2 tanh
2

4
,

2 tanh
2

u x t

a b
a

d

a b

d

µ ξ

µ ξ

−

−

Ψ +
= +

  Ω
Ψ + + Ω    Ψ  

Ψ +
+
  Ω

Ψ + + Ω    Ψ  

 

 

( )
( )( )

( ) ( ){ }
( )( )

( ) ( ){ }

2

1 1 1 2
0

1 2 1 2 2
22

2 2 1 2
2

1 2 1 2 2

14 ,

2
2 2

4
,

2 2

u x t

a b C C
a

d C C C C C

a b C C

d C C C C C

ξ
ξ µ ξ

ξ

ξ µ ξ

−

−

Ψ + +
= +

Ψ + + + + Ψ

Ψ + +
+

Ψ + + + + Ψ

 

 

( ) ( )

( )

1 1
3 0

2
2 2

2

14 ,

tanh

,

tanh

a b
u x t a

d i

a b

d i

ξ

ξ

−

−

Ψ +
= +

  −∆
Ψ − ∆    Ψ  

Ψ +
+
  −∆

Ψ − ∆    Ψ  

 

where  

 

3 2 2 3 2

3 3 2 3 3

3 2 2 3 2

0 3

18 36 18

36 18 6 6

18 6 3 6 6
,

6 6 6

d d d

d d

d di d i
a

d d

µ µ δ µ δ

µ µ µ

δ µ µδ δ

µ δ µ

 − +
 
 + ± ±
 
 ± =

± +

 



 

 
3 2 2 2

1 2 2 2 3 2 3 2
1

4 6 4 6 21 ,
4 2 12

d d d
a

d d d b

δ µ µ µ

µ δµ δ µ µ
−

 ± −
 =
 + − − − 



 

 
4 2 3 2 2

2 2 2 4 3 2 4 2
2

2 6 2 61

2 6

d i d i d
a

d d d b

µ δ µ µ

µ δ δ µ µ µ
−

 ± −
 =
 − + + − 



 

and .x Wtξ = −  

4. Discussions 

Various methods have been used to investigate for  
the solutions of Fisher Equation, such as Kudryashov [35] 
investigated by using simplest equation method, Wazwaz 
et al. [36] studied by using the Adomain decomposition 
method, in Ref. [37] Öziş et al. implemented by the  
Exp-function method, the homotopy analysis method 
executed by Tan et al. [38], and Ablowitz et al. [39] 
investigated solutions for a special wave speed. To the 
best our awareness the Fisher Equation has not been 
investigated by the new generalized and improved 
( )/G G′ − expansion method. It is important to point out 
that our some obtained solutions are new, simple, 
straightforward, and precise compared to the solutions 
obtained in the open literature.  

5. Graphical Representations 

With the help of the computational software, Maple,  
we have illustrated some of the obtained solutions for 
travelling waves solutions in below. 
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Figure 1. Eq.- 51 ,u for 5,λ =  15,δ = ( )2 2 21
4 ,

4
dβ λ= − + Ψ

Ψ
 

10,d =  
5
6

W = − and 500..500,x = −  250..250t = −  

 

Figure 2. Eq.- 13 ,u  for 3,λ =  ,
6
λµ = 0,β =  

1 ,
6

d
d
λδ  

= + 
 

 2,d =  
5
6

W =  and 1..1,x = −  

10..10t = −  

 

Figure 3. Eq- 33 ,u for 4,λ = − 2 0.521c = ,
6
λµ =  0,β =  

1
,

6
d

d
λ

δ = +
 
 
 

 1,d =  
5 ,
6

W =  1 0.7,c =  and  

50..50,x = −  50..20t = −  

 

Figure 4. Eq- 29 ,u for 8.5,λ =  ,
6
λδ =  0,β =  0.4,d =  

5
,

6
W = −  1 2.1,c =  2 9.5c =  and 50..50,x = −  50..20t = −  

6. Conclusions 

In this article, the new extension of the generalized and 
improved ( )/G G′ − expansion method has been applied 
successfully in the Fisher Equation. The auxiliary equation 
used in the method that involves many arbitrary parameters 
and those can take any real values then the NLODE produces 
many new solutions. The obtained solutions show that the 
method is effective and gives precise and direct solutions. 
Therefore, we conclude that this method could be implemented 
for constructing various types of wave solutions of NLEEs 
those arise in the application of mathematical field. 
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