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1. Introduction 

Azzalini [1] was the first to propose the skew-normal 
distribution to incorporate (shape/skewness) parameter to 
a normal distribution depending on a weighted function 
denoted by F(αX) where  is a shape parameter. Azzalini’s 
proposition was followed by extensive work that aimed to 
introduce ‘shape’ parameters to some symmetric distributions, 
for instance skew-t, Skew-Cauchy, Skew-Laplace, and skew-
logistic. In general, skew-symmetric distributions have been 
defined and several of their properties and inference 
procedures have been discussed, see for example, Arnold 
and Beaver [2], Gupta and Kundu [3] and the recent study 
by Genton [4]. Arnold and Beaver [5] provided a nice 
explanation of Azzalini's skew-normal distribution as a 
hidden truncation model, although the same explanation 
may not be true for other skewed distributions. 

The Laplace distribution, its name came after Pierre-Simon 
Laplace (1749-1827) obtained the likelihood of the Laplace 
distribution and found it is maximized when the location 
parameter is set to be the median. Sometimes the distribution  
is called the double exponential distribution, because  
it can be thought of as two exponential distributions  
(with an additional location parameter) spliced together 
back-to-back, although the term is also sometimes used to 
refer to the Gumbel distribution. 

Up to this day, many studies have been published with 
extensions and applications of the Laplace distribution. 
Extensions to a skewed model as well as to a multivariate 
setting can be found, for example, in Kotz et al. [6] and 
references therein. Liu and Kozubowski [7] have studied a 
class of probability distributions on the positive line, 
which arise when folding the classical Laplace distribution 
around the origin. Yu and Moyeed [8] and Yu and Zhang 
[9] have proposed a three-parameter asymmetric Laplace 
distribution. Cordeiro and Lemonte [10] have proposed 
the socalled beta Laplace distribution as an extension of 
the Laplace distribution. 

In this study, we will provide a new generalization  
of Laplace distribution called the Weighted Laplace 
distribution. 

2. The Weighted Laplace Distribution 

A method of obtaining weighted distributions from 
independently identically distributed (i.i.d.) random variables 
was proposed by Azzalini [1]. This proposed family of 
distributions used density function of one random variable 
and distribution function of other random variable. To 
simplify the idea, suppose two random variables X and Y 
are i.i.d. random variables with distribution function F(x) . 
Azzalini [1] proposed that a weighted class of density 
functions can be obtained by using 

 ( ) ( ) ( )1 ; 0.
( )X Yf x g x G x

p X Y
α

α
= >

>
 (1) 

Gupta and Kundu [3] used equation (1) to suggest the 
weighted exponential distribution.  

Now when X and Yare i.i.d. as Laplace random variable 
with parameter β.Then apply 

 ( ) 1 1( ); 0
2Xg x Exp x β
β β

= − >  

and  

 ( ) ( )1 11 Exp 1
2YG x sgn x x

β
    = − − +   

    
 

in (1) we obtain following weighted Laplace distribution 
(WLD): 

 ( ) ( )1 1 1 1 .
2Xf x Exp x sgn x Exp xα
β β β

      = − − − +     
      

(2) 

The plots of density function (2) for different choices of 
𝛽 an α are given below: 

 

https://en.wikipedia.org/wiki/Gumbel_distribution
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We now present some common properties of distribution 
WLD in the following sections. 

3. The Statistical Properties of (WLD) 

In this section, we present the statistical properties of 
(WLD) throughout computing the moment generating 
function, the rth moment, mean, variance, reliability 
function and hazard function as follow: 

3.1. The Cumulative Distribution Function 
(CDF) 

We have defined the weighted Laplace distribution in (2). 
The Cumulative distribution function of (2) is given as: 

 ( ) ( )
x

xF X f w dw
−∞

= ∫  (3) 

At 𝑥 < 0 

 ( ) 1 .
2

x

x
w wF X Exp Exp dw

∞

α
β β β

−

   
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   
∫  

After simplification, the distribution function is: 

 ( ) 1 ( 1) 0.
2( 1)x

xF X Exp xα
α β
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 (3) 

At 𝑥 > 0 

 ( ) ( ) ( )
0

0
.
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xF X f w dw f w dw
∞−

= +∫ ∫  

After simplification, the distribution function is: 
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Then  
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Where  
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3.2. The Hazard Rate Function 
Using (2) and (4), the hazard rate function of weighted 

Laplace distribution is: 
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3.3. The Moment Generating Function 
The moment generating function of density (2) can 

readily obtain as: 
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After simplification, the moment generating function of 
(WLD) is: 

 ( ) { }( )

2

2 2
2 1 .

( ) ( 1) 1
X

tM t
t t

α α β

β α β

+ − +
=

+ + −
 (6) 

Note that 

 ( )0 1.XM =  

Mean and variance of weighted Laplace distribution 
can be found 

 ( ) ( ) ( )
( )2

2
0 1
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tdt
βα α
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+
= =

= +
 (7) 

by using (6). 
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Then the variance of weighted Laplace distribution is  

 ( ) ( ) ( ){ }
{ }
( )

2 2
22

4

2 2 3
  .

1
V x E X E X

αβ α α

α

+ +
= − =

+
 

3.4. The rth Moment 
Now let us consider the different moments of the weighted 

Laplace distribution. Suppose X denote the weighted Laplace 
distribution random variable with parameter 𝛽 and, then: 
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After simplification, therth moment of (TLD) is: 

 ( ) ( )
1 1

(1 )( 1)
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r r
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β β λ β

α α+ +
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Therefore putting r = 1, we obtain the mean as 
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and putting r = 2 we obtain the second moment as  

 ( ) ( )2 3
2

3

2 ( 1) 1
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β α
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These results are the same results previously obtained 
in (7) and (8) and can also be access to the same value as 
the previous variance. On the other hand we can find 
Skewness and Kurtosis by calculating the moments of 
degrees higher than the second 

4. Order Statistics 

In statistics, the kth order statistic of a statistical sample 
is equal to its kth smallest value. Together with rank 
statistics, order statistics are among the most fundamental 
tools in non-parametric statistics and inference. For a 
sample of size n, the nth order statistic (or largest order 
statistic) is the maximum, that is, 

 ( ) 1 2max( , , , ).n nX X X X= …  

The sample range is the difference between the maximum 
and minimum. It is clearly a function of the order statistics: 

 1 2 ( ) (1)( , , , ) .n nRange X X X X X… = −  

We know that if 𝑋(1),𝑋(2), … ,𝑋(𝑛)  denotes the order 
statistics of a random sample 𝑋1,𝑋2, … ,𝑋𝑛  from a 
continuous population with cdf 𝐹𝑋(𝑥) and pdf 𝑓𝑋(𝑥). Then 
the pdf of 𝑋(𝑘)  is given by 
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for 𝑘 =  1, 2, . . . ,𝑛. The pdf of the kth order statistic for 
transmuted Laplace distribution is given by 
a) At 𝒙 < 0 
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Therefore, the pdf of the largest order statistic 𝑋(𝑛) is 
given by 

 ( ) ( ) 1
( 1)
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and the pdf of the smallest order statistic 𝑋(1) is given by 
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b) At 𝒙 > 0 
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Therefore, the pdf of the largest order statistic 𝑋(𝑛) is 
given by 
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and the pdf of the smallest order statistic 𝑋(1) is given by 
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5. Maximum Likelihood Estimators 

In this section we discuss the maximum likelihood estimators 
(MLE’s) and inference for the WLD ( 𝛽, 𝜆) distribution. 
Let 𝑥1, . . . , 𝑥𝑛  be a random sample of size n from WLD 
( 𝛽,𝛼) then the likelihood function can be written as 
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Where 𝑛1 is number of the negative observations and 𝑛2 is 
number of the positive observations. 

By accumulation taking logarithm of equation (12), and 
the log- likelihood function 𝑙( 𝜃) can be written as 
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Differentiating equation (13) with respect to β and  
then equating it to zero. The normal equations become 
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From (15) we obtain 
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By putting (16) in (14) 
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And from (17) in (16) 
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i
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Finally by solving (18) numerically we obtain α�.  
These solutions will yield the ML estimator for 𝛽̂ and α� 

for the two parameters weighted Laplace distribution 
WLD ( 𝛽, 𝜆)  pdf, all the second order derivatives exist.  

Under certain regularity conditions, √𝑛�𝜃� − 𝜃�
𝑑
→ 𝑁�0, 𝐼−1(𝜃)�  (here 

d
→  stands for convergence in 

distribution), where 𝐼(𝜃) denotes the information matrix 
given by 

 ( ) ( )2  
.

l
I E

θ
θ

θ θ

 ∂ =
 
∂ ∂ 



 

This information matrix 𝐼(𝜃) may be approximated by 
the observed information matrix  

 ( )2  ˆ( ) .
ˆ

l
I

θ
θ

θ θ θ θ

∂
=
∂ ∂ =



 

Then, using the approximation 

 √𝑛�𝜃� − 𝜃� ~ 𝑁 �0, 𝐼−1�𝜃���  

one can carry out tests and find confidence regions for 
functions of some or all parameters in 𝜃. 

Approximate two sided 100(1 − 𝛾 ) % confidence 
intervals for 𝛽 and 𝛼 are, respectively, given by 

 1
/2 11

ˆ   ( ).z Iγβ θ−±  

And 

 1
/2 22ˆ   ( )z Iγα θ−±  

where 𝑧𝛾 is the upper 𝛾 th quantile of the standard normal 
distribution. Using R, we can easily compute the Hessian 
matrix and its inverse and hence the standard errors and 
asymptotic confidence intervals. 

We can compute the maximized unrestricted and 
restricted log-likelihood functions to construct the 
likelihood ratio (LR) test statistic for testing on some 
transmuted LD sub-models. For example, we can use the 
LR test statistic to check whether the WLD distribution 
for a given data set is statistically superior to the LD 
distribution. In any case, hypothesis tests of the  
type 𝐻0 ∶  𝜃 =  𝜃0 versus 𝐻1 ∶  𝜃 ≠  𝜃0 can be performed 
using a LR test. In this case, the LR test statistic for 
testing 𝐻0  versus 𝐻1  is 𝜔 =  2(ℓ�𝜃�;  𝑥� −  ℓ(𝜃�0;  𝑥)), 
where 𝜃�  and 𝜃�0  are the MLEs under 𝐻1  and 𝐻0 , 
respectively. The statistic 𝜔 is asymptotically (as n → ∞)  
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distributed as 𝜒𝑘2 where k is the length of the parameter 
vector θ of interest. The LR test rejects 𝐻0  if 𝜔 > 𝜒𝑘,𝛼

2  
where 𝜒𝑘,𝛼

2  denotes the upper 100 𝛼% quantile of the 𝜒𝑘2 
distribution. 

6. Application 

In this section, we use a real data set to show that the 
WLD distribution can be a better model than one based on 
the LD distribution. The data set given in Table 1 taken 
from Lawless [11] page 228. The data are the number of 
million revolutions before failure for each of the 23 ball 
bearings in the life tests and they are: 

Table 1. The number of million revolutions before failure for each of 
the 23 ball bearings in the life tests 

17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.80, 51.84, 51.96, 54.12, 
55.56, 67.80, 68.44, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 
127.92, 128.04, 173.40. 

 
We will use this data minus the general average of the 

experiment; it was 68, in order to fit the data with both 
Laplace LD and Weighted Laplace WLD. 

Table 2. Estimated parameters of the Laplace and Weighted Laplace 
distribution for the data 

Model Parameter 
Estimate Standard Error −𝑙(. ; 𝑥) 

Laplace 𝛽̂ = 28.304 0.278 115.83 

Weighted Laplace 
β� = 28.304 
α� = 0.515 

0.26 
0.078 

233.92 

 
The variance covariance matrix of the MLEs under the 

Weighted Laplace distribution is computed as 

 ( )1 0.11 0.011ˆ .
0.011 0.009

I θ− − 
=  − 

 

Thus, the variances of the MLE of 𝛽  and 𝛼  are  
𝑣𝑎𝑟(𝛽̂)  = 0.41 and 𝑣𝑎𝑟(𝛼�)  = 0.0132. Therefore, 95% 
confidence intervals for 𝛽  and  𝛼  are [27.449 - 28.749], 
and [0.329 - 0.701] respectively. 

The LR test statistic to test the hypotheses H0: 𝛼 =  0 
versus H1 ∶  𝛼 ≠  0  is 𝜔 =  236.18 >  3.841 = 𝜒1,0.05

2 , 
so we reject the null hypothesis. 

7. Conclusion 

Here we propose a new model, the so-called the 
Weighted Laplace distribution WDL, which extends the 
Laplace distribution in the analysis of data with real 
support. An obvious reason for generalizing a standard 
distribution is because the generalized form provides 
larger flexibility in modeling real data. We derive 
expansions for moments and for the moment generating 
function. The estimation of parameters is approached by 
the method of maximum likelihood; also the information 
matrix is derived. An application of WDL distribution to 
real data shows that the new distribution can be used quite 
effectively to provide better fits than LD distribution. 

Also 95% confidence intervals are calculated for the 
distribution, depending on the standard error for each 
estimator obtained from the variance covariance matrix, 
which is the inverse of Fisher matrix. 
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