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Abstract  Receiver operating characteristic curve analysis is widely used in biomedical research to assess the 
performance of diagnostic tests. Estimation of receiver operating characteristic curves based on parametric approach 
has been widely used over years. However, this is limited by the fact that distribution of almost all diseases in 
epidemiology cannot be established quite easily. Semi parametric methods are robust as it allows computability and 
the distributions based on this are flexible. Furthermore, there is need for generalization of the receiver operating 
characteristic curve (since, the analysis largely assumes that test results are dichotomous) to allow tests to have more 
than two outcomes. The receiver operating characteristic curve was generalized to constitute a surface, which uses 
volume under the surface (VUS) to measure the accuracy of a diagnostic test. Dirichlet process mixtures of normals, 
which is a robust model that can handle nonstandard features in data in modelling the diagnostic data, were used to 
model the test outcomes. Semiparametric Dirichlet process mixtures of normals for receiver operating characteristic 
surface estimation were fitted using Markov Chain Monte Carlo with simple Metropolis Hastings steps. The Semi-
parametric simulation results indicate that even when the parametric assumption holds, these models give accurate 
results as the volume under the surface (VUS) for both methods were greater than 1/6, the value of a “useless test”. 
Graphically, the semiparametric receiver operating characteristic surface has the appealing feature of being 
continuous and smooth, thus allowing for useful interpretation of the diagnostic performance at all thresholds. 

Keywords: Bayesian Semiparametric Estimation, Dirichlet process mixtures of normals, Receiver operating 
characteristics, Volume Under Surface 

Cite This Article: Ben K. Koech, “Semiparametric Estimation of Receiver Operating Characteristic Surface.” 
American Journal of Applied Mathematics and Statistics, vol. 6, no. 6 (2018): 218-223. doi: 10.12691/ajams-6-6-1. 

1. Introduction 

The difficulty in generalizing the ROC curve to more 
than two disease classes results from the fact that a 
decision rule for a K-group classification will produce  
K true class rates and K(K-1) false class rates. 
Semiparametric approach, allows these problems to be 
addressed directly via inference about the relevant model 
parameters. The model can be implemented using data 
distributions derived as normal mixtures in the framework 
of mixtures of Dirichlet processes [1]. West [2] discussed 
these models in a special case of the framework by 
developing approximations to predictive distributions 
based on a clustering algorithm motivated by the model 
structure and draws obvious connections with kernel 
approaches. For single test designs, Erkanli et al. [3]  
used truncated Dirichlet process mixture models while 
Branscum et al. [4] developed mixture of finite Polya trees 
models for Bayesian nonparametric ROC data analysis 
when true infection status is unknown. Choi et al. [5] 
developed Bayesian parametric multivariate ROC 
methodology while Hall and Zhou [6] developed a 
multivariate distribution-free frequentist approach. Most 

applications have involved modelling univariate data 
because, unlike Dirichlet process priors, the initial 
development of PT priors focused on continuous 
distributions supported on the real line [7]. Heckerling [8], 
proposed a simple parametric frequentist approach  
under the assumption that test results all follow normal 
distributions. Li and Zhou [9] considered non-parametric 
and semi parametric estimation of the ROC surfaces  
by approximating the asymptotic ROC surfaces with 
multivariate Brownian bridge processes. The semiparametric 
approach attempts to generalize a parametric (normal) 
functional form of the ROC surface. However, this latter 
approach, as pointed out by the authors, relies heavily on 
the normality assumption. Parametric models are often not 
sufficiently flexible to capture skewness, multimodality, 
or other nonstandard features of the data. However, this 
generalization has the potential to make the inference 
robust to departures from an assumed parametric 
distribution while still having good performance if the 
actual distribution is the parametric one. 

This study sought to complement the modelling of 
diagnostic data of the test measurement using a three-
sample density ratio model. The advantage of applying 
Dirichlet process mixtures into the ROC surface analysis 
is that it not only allows estimation of the ROC surface 
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semi parametrically but also enables implementation of 
the method easy as the usual procedures in many 
statistical software packages can be employed. 

2. Methods 
Suppose that the normal means and variances, 𝜋𝜋 come 

from some prior distribution 𝐺𝐺(∙) on ℜ ×  ℜ+ . If 𝐺𝐺(∙) is 
uncertain and modeled as a Dirichlet process, then the data 
come from a Dirichlet mixture of normals [4,6,10].  

In particular, it is supposed that 𝐺𝐺 ~ 𝐷𝐷𝐷𝐷(𝛼𝛼𝐺𝐺0),  a 
Dirichlet process defined by 𝛼𝛼 , a positive scalar, and 
𝐺𝐺0(∙),  a specified bivariate distribution function over 
ℜ ×  ℜ+ . 𝐺𝐺0(∙)  is the prior expectation of 𝐺𝐺(∙),  so that 
𝐸𝐸{𝐺𝐺(𝜋𝜋)}  =  𝐺𝐺0(𝜋𝜋)  for all 𝜋𝜋 ∈ ℜ ×  ℜ+,  and  𝛼𝛼  is a 
precision parameter, determining the concentration of the 
prior for 𝐺𝐺(∙)  about 𝐺𝐺0(∙) .Write parameters of concern 
as 𝜋𝜋 =  {𝜋𝜋1, . . . ,𝜋𝜋𝑛𝑛 }.  

A key feature of the model structure, and of its analysis, 
relates to the discreteness of 𝐺𝐺(∙) under the Dirichlet 
process assumption [11] Briefly, in any sample 𝜋𝜋 of size n 
from 𝐺𝐺(∙) there is positive probability of coincident values. 
Thus, given 𝜋𝜋 , a sample of size n from 𝐺𝐺(∙) , the 
subsequent estimates represents a new, distinct probability 
values. In practical density estimation, suitable values of 𝛼𝛼 
will typically be small relative to the initial prior 𝐺𝐺0(∙). 
Dirichlet process mixture models are based on Dirichlet 
process priors for the primary parameters.  

Such a model assumes that the prior distribution 
function itself is uncertain drawn from a Dirichlet process 
in standard notation such as in Antoniak [10]. Hsieh and 
Turnbull [12] considered similar estimation methodology 
for binary ROC curves. For this research, the methodology 
was extended to accommodate three group test outcomes 
as a generalization of the binary ROC curves. 

A generic function that performs ROC surface analysis 
based on Dirichlet process mixture of normals models for 
density estimation was considered [13]. A diagnostic test 
in which subjects can be classified into three different 
ordered categories was assumed.  

Considering Y1 = (𝑌𝑌11,𝑌𝑌12  , … ,𝑌𝑌1𝑛𝑛1 )T test results on 𝑛𝑛1 
subjects from Class 1; Y2  = (𝑌𝑌21,𝑌𝑌22  , … ,𝑌𝑌2𝑛𝑛2 )T test results 
on 𝑛𝑛2 subjects from Class 2; and Y3 = (𝑌𝑌31 ,𝑌𝑌32 , … ,𝑌𝑌3𝑛𝑛3)T 
test results on 𝑛𝑛3 subjects from Class 3. 

The test results for the individuals from the three 
classes are modeled according to the distribution  
𝐺𝐺𝑌𝑌1𝑖𝑖  , 𝐺𝐺𝑌𝑌2𝑗𝑗  and 𝐺𝐺𝑌𝑌3𝑘𝑘 ; continuous probability distributions 
on ℝn. Functional form of Dirichlet Process Mixtures of 
Normals for 𝑌𝑌1𝑖𝑖  is given by: 
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This can be substituted for 𝑌𝑌2𝑗𝑗  and 𝑌𝑌3𝑘𝑘  as well. The 
distribution for 𝑌𝑌1𝑖𝑖  (distribution for the non-diseased or 
healthy group) can be expressed as follows: 
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where, the baseline distribution is the conjugate normal-
inverted-Wishart, 
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Similarly for 𝑌𝑌2𝑗𝑗   (distribution for the transition or 
suspicious group) 
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It was assumed the baseline distribution is the conjugate 
normal-inverted-Wishart,  
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Finally, for 𝑌𝑌3𝑘𝑘    (distribution for the diseased group) 
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It was also assumed that the baseline distribution is the 
conjugate normal-inverted-Wishart,  

 3 3 3 330 3 3 3( / , (1/ )σ ) (σ / , )Y Y Y Yk k kG N m k IWµ ν ψ=  

To let part of the baseline distribution fixed at a 
particular value, the corresponding hyperparameters of the 
prior distributions were set to null in the hyperprior 
specification of the model.  

Although the baseline distribution, 𝐺𝐺𝑌𝑌10  , 𝐺𝐺𝑌𝑌20  and 𝐺𝐺𝑌𝑌30 , 
are conjugate priors in the model specifications, the 
algorithms with auxiliary parameters described in 
MacEachern and Muller [14] and Neal [15] are adopted. 

The ROC surface using a Monte Carlo approximation 
to the posterior means  E(𝐺𝐺𝑌𝑌1𝑖𝑖  | 𝑌𝑌1𝑖𝑖) , E(𝐺𝐺𝑌𝑌2𝑗𝑗  | 𝑌𝑌2𝑗𝑗 ) , and 
E(𝐺𝐺𝑌𝑌3𝑘𝑘  | 𝑌𝑌3𝑘𝑘) , which is based on MCMC samples from 
posterior predictive distribution for a future observation. 
𝑌𝑌1𝑖𝑖 , 𝑌𝑌2𝑗𝑗  and 𝑌𝑌3𝑘𝑘  are the vectors containing the diagnostic 
marker measurements in the non-diseased, transition or 
suspicious group and diseased subjects, respectively. The 
optimal cut-off point is based on the efficiency test, EFF = 
TP + TTR+TN, and is built on Cohen’s kappa as defined 
in Kraemer [16]. 

3. Analysis of Data and Results 

The simulation study to assess the performance  
of the Non-parametric estimation method covers test 
scores for the three classes generated from three different 
normal populations: 𝑌𝑌1𝑖𝑖  ~N(1,1.5),  𝑌𝑌2𝑗𝑗~N(2,1.5)  and 
𝑌𝑌3𝑘𝑘  ~N(3,1.5), where sample sizes 𝑛𝑛1 and 𝑛𝑛2, and 𝑛𝑛3were 
set to 100, 50 and 100. The means are ordered to ensure 
that the observations are monotonically increasing while 
the sample sizes were considered under conditions for 
diagnostic tests in clinical practice [17]. To fit the 
Semiparametric density estimation, Dirichlet Process 
Mixtures (DPM) of normals model for density estimation 
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was used. The prior parameters are defined as; 𝛼𝛼=1 gives 
the value of the precision parameter, 𝑚𝑚𝑖𝑖  replicated for the 
values i=1,2 and 3 gives the mean of the normal part of 
the baseline distribution. In addition, 𝜓𝜓𝑖𝑖

−1of a solution of 
scale matrix gives the hyperparameters of the inverted 
Wishart prior distribution for the scale matrix, 𝜓𝜓𝑖𝑖 , of the 
inverted Wishart part of the baseline distribution. Further, 
𝜈𝜈𝑖𝑖  represents the hyperparameters of the inverted Wishart 
part of the baseline distribution. 𝜏𝜏1 = 1  and 𝜏𝜏2 = 100 
gives the hyperparameters for the gamma prior 
distribution of the scale parameter 𝑘𝑘𝑖𝑖  of the normal part of 
the baseline distribution. The 𝑘𝑘𝑖𝑖  and 𝜓𝜓𝑖𝑖  parameters 
replicated for the values 1, 2 and 3 fitted in the posterior 
distribution represents the scale parameter of the normal 
part of the baseline distribution and the scale matrix of the 
inverted-Wishart part of the baseline distribution 
respectively.  

3.1. Data Plots under Semiparametric 
Estimation 

Plots of posterior parameters; 𝑘𝑘𝑖𝑖  and 𝜓𝜓𝑖𝑖 − 𝑌𝑌𝑖𝑖𝑗𝑗   showed 
that the processes appear to be stationary. All plots 
suggested that convergence was achieved after 1000 
iterations of the Metropolis Hastings steps Sampler. 
Inference thereof is that each plot seemed to confirm  
that the parameter posterior parameters converged to 
stationarity after 1000 or so iterations. Further, the fitted 
distribution was analysed by comparing it with the data 
plots and kernel density estimate plots. It was shown that 
the posterior distribution curve- DPM of normals model 
curve fit and kernel density estimate curve fit for the data. 
The kernel density estimate curve fits for the posterior 
estimates represented by faint line while dark line 
represented the posterior distribution curve fit.  

Distribution of 𝑌𝑌1𝑖𝑖   (test outcomes for the nondiseased 
group) under Semiparametric estimation 

The data plot for 𝑌𝑌1𝑖𝑖   (test outcomes for the non-
diseased group) was represented using a histogram. The 
posterior distribution of the test outcomes for the non-
diseased group and curve fits for DPM of normals model 
and kernel density estimate were also fitted on the same 
data plot. Figure 1 below shows the data plot, DPM of 
normals model curve fit and kernel density estimate curve 
fit. 

 
Figure 1. Distribution of 𝑌𝑌1𝑖𝑖  (test outcomes for the nondiseased group) 
under Semiparametric estimation 

Figure 1 above shows that plot for Y1i (test outcomes 
for the nondiseased group) portrays that the data assumes 
some distribution, evident in the presence of peaks. The 
DPM of normals model posterior distribution fit for the 
test outcomes is a near symmetric curve fit indicating that 

the posterior distribution fits the data well. The kernel 
density smooth curve fit further confirmed that that the 
DPM of normals model fits the data convincingly. 

Distribution of 𝑌𝑌2𝑗𝑗   (test outcomes for the transition or 
suspicious group) under Semiparametric estimation 

The plots for 𝑌𝑌2𝑗𝑗   (test outcomes for the transition or 
suspicious group) were computed using a histogram. The 
posterior distribution of the test outcomes for the 
transition or suspicious group and curve fits for DPM of 
normals model and kernel density estimate were also fitted 
on the same data plot. DPM of normals model curve fit 
and kernel density estimate curve fit are shown in Figure 2 
below.  

 
Figure 2. Distribution of 𝑌𝑌2𝑗𝑗   (test outcomes for the transition or 
suspicious group) under Semiparametric estimation 

The presence of peaks in data plot for 𝑌𝑌2𝑗𝑗   (test 
outcomes for the transition or suspicious group) portrays 
that the test outcomes assumes some distribution. The 
DPM of normals model posterior distribution fit for these 
test outcomes was a near perfect symmetric curve or 
normal distribution fit indicating that the posterior 
distribution fits the data well. The kernel density smooth 
curve fit further confirmed that   that the DPM of normals 
model fits the data convincingly, especially a true 
parameter values. 

Distribution of 𝑌𝑌3𝑘𝑘   (test outcomes for the diseased 
group) under semiparametric estimation 

The data for 𝑌𝑌3𝑘𝑘   (test outcomes for the diseased group) 
was also plotted using a histogram. The posterior 
distribution of the test outcomes for the diseased group 
and curve fits for DPM of normals model and kernel 
density estimate were also fitted on the same data plot. 
DPM of normals model curve fit and kernel density 
estimate curve fit are shown in Figure 3 below.  

 
Figure 3. Distribution of 𝑌𝑌3𝑘𝑘   (test outcomes for the diseased group) 
under Semiparametric estimation 

The histogram or data plot representing posterior 
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distribution of 𝑌𝑌3𝑘𝑘   (test outcomes for the diseased group) 
reveals that the test outcomes follow some distribution. 
The fit The DPM of normals model posterior distribution 
for these test outcomes lacked smooth fit though it 
exhibited peak at true parameter values. The kernel 
density smooth curve fit and the DPM of normals model 
curve fit were found to be adjacent indicating that the 
DPM of normals model fits the data well.  

3.2. Semiparametric Estimation of ROC 
Surface  

Having seen that the properties semiparametric density 
estimators; the posterior parameters were desirable, 
samples were drawn to estimate the ROC surface. 
Random samples for the three test outcomes using the 
DPM of Normals procedures. These data represents test 
outcomes of a simulated diagnostic test that classifies 
disease or condition into three ordered groups namely D- 
(non diseased), D0 (transition or suspicious) and D+ 
(diseased). It was assumed that the test outcomes are 
ordinal and that the simulated diagnostic test classifies the 
groups without overlap. Table 1 below provides a 
summary of the test outcomes drawn from the distribution.  

Table 1. Simulated diagnostic test Raw Data Summary for 
Semiparametric model  

 
ROC surface plot  

From the simulated diagnostic test classification of test 
outcomes, a three way ROC surface corresponding to the 
three test outcomes was plotted. The Semiparametric 
model defined in to estimate the ROC surface plot were 
used. Figure 9 below represents three dimensional surface 
plot depicting trade-offs between the predictive measures 
for classification of the three test outcomes.  

 
Figure 4. Three-dimensional ROC surface plot depicting tradeoffs 
between the predictive measures for classification of the three test 
outcomes under semiparametric model 

Figure above represents a plot to estimate the ROC 
surface under the semiparametric model assumptions. It 

was evident that the semiparametric model gives a near 
smooth ROC surface indicating that the ROC surface has 
good coverage thus the simulated diagnostic test performs 
well in classifying the test outcomes.  

3.3. Semiparametric Estimation of Volume 
under ROC Surface (VUS) 

For the simulated diagnostic test that classified the test 
outcomes into the three groups to estimate the volume 
under ROC surface, volume under surface group of test 
outcomes under the Semiparametric assumptions based on 
DPM of normals model was computed. It was found out 
that the volume under the surface VUS= 0.3411. The 95% 
confidence interval was also computed where the lower 
confidence interval was found to be 0.317 while the upper 
confidence interval was found to be 0.4598.  

Additionally, optimal cut-points off points were 
computed whereby the best lower cut-point was found to 
be 0.0935 while the upper cut-point was found to be 
0.2307. The group correct classification probabilities were 
found to be; specificity= 0.48, true transition rate=0.74 
and sensitivity=0.42. It was also derived that the estimate 
of the sample size=115 for the predefined precision. As 
such, to better estimate the diagnostic accuracy of the 
marker or group of test outcomes, minimum sample size 
of 115 will be desired for each group in order to estimate 
the VUS of the marker within a 5% margin of error. 

3.4. Scatter Plot and a Boxplot for the Semi-
Parametric VUS  

To provide a summary of the semiparametric volume 
under ROC surface, a general scatter plot and a boxplot 
were plotted. The graphical summary of the data for D- , 
D0 and D+ colored in green, blue and red, respectively 
and the estimated summary measure for the confidence 
interval (CI) is provided in the legend while the optimal 
cut-points are labeled for the Semiparametric VUS. Figure 
10 below gives the summary. 

 
Figure 5. Scatter plot and a boxplot of the marker under semiparametric 
model 

From Figure 5 above, the dashed lines show the lower 
and uppercut points for the Semiparametric VUS. The 
value of the VUS 0.34 is also shown. The box plots 
portrays that the test outcomes show some ordering and 
that the test outcomes are ordinal or values are 
monotonically increasing.  

4. Discussion 

The simulation studies were conducted to assess the 
semiparametric estimator of ROC surface. In every 

Simulated diagnostic test Raw Data Summary for Semiparametric model 
 n=Sample size 𝜇𝜇= means 

D-  (non diseased) 100 0.1313193 
𝐃𝐃𝐃𝐃 (transition/suspicious) 50 0.1606993 

D+ (diseased) 100 0.1867411 
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simulation, true-negative, true transition or suspicious and 
true-positive samples for the two methods were generated. 
Samples for the semiparametric approach; the true-
negative class, true transition or suspicious and the true-
positive class follows normal distributions with standard 
deviation of 1.5 with varying mean values. The set of 
simulations, test outcomes were assumed to have different 
sample sizes according to definite class ratio 2:1:2 as 
recommended by [18]. As expected, the methods perform 
better when the sample size is larger. The estimators had 
some drawbacks, and it may suffer from large variability, 
particularly for small sample sizes. However, this is not a 
major problem as small samples are common-place in 
clinical practice [17].  

The parameter plots suggested that the Metropolis 
Hastings steps sampler used achieved convergence and 
were valid for subsequent analysis. It was deduced  
from the trace plots for all parameters that inference  
based on the parameters was robust. In particular, the 
semiparametric posterior parameters were all stationary at 
the true parameter values and that all the MCMC chains 
were all convergent. That is, the high acceptance rate does 
indicate that the algorithm is behaving satisfactorily since 
it correspond to the fact that the chain is moving too faster 
on the surface.  The plots for the posterior distributions for 
the three test outcomes under the Semiparametric case 
(DPM of normals) were all smooth and symmetric except 
for 𝑌𝑌3𝑘𝑘  which had asymmetric data plot; this can be 
attributed to the small sample size used. It was noted that 
the Kernel Density Estimation for both Semiparametric 
and non-parametric posterior distributions tend toward the 
true density therefore it is convincing that a much 
narrower variation on the sample values can be obtained. 
The Semiparametric posterior distribution fit was found to 
have smooth and more adjacent fit to kernel density 
estimate fits compared to the nonparametric posterior 
distribution fits.  

As such, the Semiparametric estimator provides a  
good mathematical model under assumed population 
distributions for the test results in three classes. It was  
also noticed that the choice of normal distribution  
in semiparametric model may be replaced by other  
well-known parametric families such as Weibull or 
gamma, where appropriate. The results compared with the 
semiparametric approach of Carvalho et al. [19] shows 
that the model performs competitively. The Bayesian 
nonparametric approach developed as based on mixtures 
of finite Polya trees priors outperforms the estimators 
proposed by Inácio [20]. However, the developed methods 
are prone to overlap between test outcomes. The ROC 
surface under the Semiparametric and nonparametric 
models were found to have good coverage thus the  
two surfaces was considered useful to examine the 
diagnostic accuracy of the test for the three classes at 
different threshold values. The computed semiparametric 
ROC surface had similar methods used by Nakas  
and Yiannoutsos [21]. The estimated VUS under 
Semiparametric model was 0.34 and a 95% credible 
interval was (0.317, 0.460). On the other hand, the 
estimated VUS under Nonparametric model was 0.26 and 
a 95% credible interval was (0.232, 0.204). These values 
was contrasted to the VUS of a useless test or 

uninformative level of VUS=1/6 =0.167, which led us to 
conclude that the assumed marker has a reasonable 
discriminative power under both model assumptions. 
From these results, it can be concluded that for this 
particular analysis all methods lead substantially to the 
same conclusions. Even with small sample sizes, the DPM 
of normals model behaves quite well. Moreover, it was 
experienced that these approaches fits normal data well 
and is robust enough to fit data generated from other 
distributions for example gamma and for exponential 
distributions as mixtures of such distributions.  

It was also noted that full inference is available with the 
Bayesian approach employed since the pair of thresholds 
that should be used to make the diagnostic decision was 
obtained. Nakas et al. [22] earlier suggested that once 
models have been fitted, a posterior distribution for the 
optimal thresholds can easily be obtained.  

5. Conclusion  

In summary, diagnostic tests for three ordinal groups 
are important in biomedical practice. A useful summary 
measure (VUS) which can be adopted to evaluate the 
discriminative ability of a diagnostic test when there are 
three ordinal groups was computed. The applicability of 
DPM model in solving difficulty in the modelling of 
continuous diagnostic data with skewness, multimodality 
or other nonstandard features were discussed. These  
data-driven models provided robust inference for the  
ROC surface and for the volume under the ROC surface 
(VUS). Further, the summary of ROC surface under the 
semiparametric case indicated that the method perform 
equally well in the simulation studies. The produced  
ROC surface plots has the appealing feature of  
being continuous and smooth, thus allowing for useful 
interpretation of the diagnostic performance at all 
thresholds. The surface plots produced are useful to 
examine the diagnostic accuracy of the test for the  
three classes at different threshold values. Notably, the 
volume under surface for semiparametric model depicted 
relatively higher accuracy which can be attributed to the 
fact that the semiparametric model is largely centred  
on the Gaussian distribution. It is noteworthy that 
semiparametric modelling of diagnostic data does not 
mean that there are no parameters in the model that was 
assumed was massively parametric as the posterior 
parameters for the models were fitted. The terms were 
used to indicate that the models are free of restrictive, 
inappropriate constraints that are implied particular 
parametric models. This study recommends for a 
generalization of more than three classes (K > 3), to 
produce a ROC hypersurface. The Hypervolume Under 
the ROC Manifold (HUM) can be used for inferences for 
the ROC manifold especially in genetics where gene 
classifications involve several categories. It is also 
recommends that researchers who are interested  
ROC surface methodology use the Comprehensive  
R Archive Network repository and contribute to further 
developments of R-packages for the implementation  
of ROC surface analysis in order to facilitate more 
researchers to implement ROC surface methodology.  
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