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Abstract  The paper deals with the estimation of multicomponent system reliability where the system has  
k components with their strengths X1, X2, … Xk being independently and identically distributed random variables  
and each component is experiencing a random stress Y. The s-out-of-k system is said to function if atleast s out of  
k (1 ≤ s ≤ k) strength variables exceed the random stress. The reliability of such a system is derived when both 
strength and stress variables follow generalized Pareto distribution. The system reliability is estimated using 
maximum likelihood and Bayesian approaches. The maximum likelihood estimators are derived under both simple 
random sampling and ranked set sampling schemes. Lindley's approximation technique is used to get approximate 
Bayes estimators. The reliability estimators obtained from both the methods are compared by using mean squares 
error criteria and real data analysis is carried out to illustrate the procedure. 
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1. Introduction 

The study of stress-strength model has received 
attention by the researchers because of its practical 
applications in the field of science and technology. The 
“stress-strength" reliability can be described as an assessment 
of reliability of a component in terms of random variable 
Y representing “stress” experienced by the component and 
X representing “strength” of a component available to 
overcome the possible stress, if the stress exceeds the 
strength, then the system will fail. The idea of stress-strength 
reliability R = P(X > Y) was introduced by Birnbaum [1] 
and developed by Birnbaum and McCarty [2]. Estimation of 
reliability in stress-strength model are considered in the 
literature when the stress and strength variables follow 
distributions such as exponential, Weibull, normal, gamma 
etc. Raqab et. al., [3] estimated the reliability of the model 
for a 3-parameter generalized exponential distribution. 
Wong [4] obtained confidence intervals for P(X > Y) when 
the underlying distribution is generalized Pareto. Angali et 
al. [5] considered Bayesian estimators of reliability for 
four parameter of bivariate exponential distribution under 
different loss functions. 

The estimation of multicomponent stress-strength reliability 
for s-out-of-k and the other related systems have been  
 

extensively investigated by many authors in the literature. 
An s-out-of-k system functions when the system having  
k statistically independent and identically distributed 
components functions if s (1 ≤ s ≤ k) or more components 
with stand a common stress, which was first studied by 
Bhattacharyya and Johnson [6]. This type of systems can 
be seen in both industrial and military applications [7]. 
Estimation of multicomponent stress-strength reliability is 
considered for the log-logistic, generalized exponential, 
generalized inverted exponential, Rayleigh, Burr Type XII 
and generalized Rayleigh distributions respectively by 
Rao and Kantam [8], Rao [9,10,11,12] and Rao et al.  
[13]. Pandit and Kantu [14] considered estimation of 
multicomponent stress-strength reliability for parallel and 
series systems when strength and stress variables follow 
exponential distribution. Recently, Kizilaslan and Nadar 
[15] considered estimation of s-out-of-k stress-strength 
reliability using both classical and Bayesian approach 
when underlying distribution is Weibull. 

In this paper, s-out-of-k system in stress-strength 
environment which has k independent and identical 
strength components and a common stress is studied. 
These kinds of situations may occur in real life. For 
example, in an electrical power station containing eight 
generating units which produce the electricity only if at 
least six units are working; the demand for the electricity 
of a district is fulfilled only if s-out-of-k wind rose are  
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operating at all times and in a communication system for a 
navy can be successful only if six transmitters out of ten 
are operational to cover a district [15]. This paper 
considers the above problem when the underlying 
distribution are to follow generalized Pareto for the 
strength and stress variables. 

Rezaei et al. [16] proposed generalized Pareto distribution 
by assuming X and Y as independent generalized Pareto 
distribution with common scale parameter and different 
shape parameter.  

The probability density function and cumulative function 
of generalized Pareto distribution are given by: 

 1( ) (1 ) ; 0, , 0f x x xααλ λ α λ− += + > >  

and 

 ( ) 1 (1 ) ; 0, , 0,F x x xαλ α λ−= − + > >  

where α and λ are the shape and scale parameters, 
respectively. 

Here, reliability in a multicomponent stress-strength 
based on X, Y are two independent random variables, 
which follow generalized Pareto distributions with shape 
parameters α and β and with common scale parameter λ. 

Let the random variables Y, X1, X2, … Xk be 
independent, G(y) be the cummulative distribution 
function of Y and F(x) be the common cummulative 
distribution function of X1, X2, … Xk. The reliability  
in a multicomponent stress-strength model developed by 
Bhattacharyya and Johnson [6] is 
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The estimators of multicomponent system reliability are 
derived using maximum likelihood method under simple 
random sampling (SRS) and ranked set sampling (RSS) 
schemes. Also the Bayesian estimates are obtained using 
Lindley's approximation. The RSS method was introduced 
by McIntyre [17] and several authors are interested to 
study statistical inference related to reliability under RSS, 
as it has applications in different fields such as, reliability 
[18,19], environment [20,21,22].Estimation of reliability 
based on RSS is considered by Sengupta and Mukhati [23]. 
Muttlak et al. [24] estimated reliability when X and Y 
follow exponential distribution. Hussian [25] discussed 
estimation of stress-strength model for generalized 
inverted exponential distribution based on RSS and  
SRS, using maximum likelihood method to estimate  
R. Hassan et al. [26] studied the estimation of R when X 
and Y are independently distributed Burr XII random 
variables under different sampling schemes. 

In section 2, reliability of the system is derived. Section 
3 and 4, deals with Maximum likelihood estimation  
of Rs,k based on Simple random sampling (SRS) and 
ranked set sampling(RSS) respectively. In section  
5, Bayes estimators of Rs,k is obtained using Lindley's 
approximation. Section 6 is devoted to simulation study in 
which the comparison of estimators of reliability are 
studied. In section 7, real data application is given and the 
conclusions are given in section 8.  

The multicomponent stress-strength reliability 

In this section multicomponent system reliability is 
considered when X and Y follow generalized Pareto 
distribution with parameters (α1, λ) and (α2, λ) respectively, 
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2. MLE of ,s kR  under SRS 

Let 1 2( , ,..., )nX X X  and 1 2( , ,..., )mY Y Y  be two ordered 
random samples of size n, m respectively. Here, Strength 
and stress variables follow generalized Pareto distribution 
with shape parameters α1, α2 and scale parameter λ, then 
the likelihood function is given by 
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Thus, the log-likelihood function is 
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The likelihood equations for estimating α1, α2 and λ are  
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From (3), (4) and (5), the MLE of α1, α2 and λ is  
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where λ̂  can be obtained as the solution of non-linear 
equation of the form, 

 ( )H λ λ=  
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here, λ̂  can be obtained by using any iterative scheme 

 ( )( 1) ( )aa Hλ λ+ =  

where, ( )aλ  is the tha  iterate of ˆ.λ  The iteration 

procedure should be stopped when ( ) ( 1)a aλ λ +−  is 

sufficiently small. After obtaining λ̂ , the MLEs of α1 and 

α2 are obtained from (6) and (7). Hence, the MLE of ,
ˆs kR  

is obtained by using the invariance property of MLEs, that 
is,  
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3. MLE of ,s kR  under RSS 

Let ( : ) , 1,..., , 1,...,i m j x xxX i m j r= = be a ranked set 

samples with sample size ,x x xn m r= where xm  is the set 
size and xr is the number of cycles drawn from 
generalized Pareto distribution with parameters 1α  and λ 
and ( : ) , 1,..., , 1,...,k m l y yyY k m l r= =  be a ranked set 

samples with sample size ,y y yn m r=  where ym  is the set 

size and yr is the number of cycles drawn from 

generalized Pareto distribution with parameters 2α  and λ 
respectively. For convenience, denote ( : )i m jxX  and 

( : )k m lyY as ijX and klY  respectively.  

The pdf of the random variables ijX  and klY  are given 
by 
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The likelihood function of α1, α2 and λ is given by 
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Thus, the log-likelihood function of α1, α2 and λ is 
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where *ξ is a constant. The likelihood equations are  
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A closed form expression for equations (12)-(14) is 
difficult to obtain analytically. Hence, one can use any 
iterative technique to solve these equations. The MLE of 
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,
ˆs kR  is obtained by using the invariance property of 

MLEs, that is, 
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4. Bayes Estimation of Rs,k 

Here we assume that all the parameters α1, α2 and λ are 
unknown and independent random variables with gamma 
priors ( , ) , 1, 2,3.i ia b i =  
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substituting 1 2( , , )sL α α λ  and 1 2( , , )g α α λ , the 
corresponding joint posterior distribution is given by 
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Then the Bayes estimator of ,s kR  under squared error 
(SE) loss function is given by 
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It can be seen that, equation (16) cannot be reduced to a 
closed form. Hence, one can use Lindley's approximation 
method. 

The simplest method to approximate is Lindley's [27] 
approximation method which approaches the ratio of the 
integrals as a whole and produces a single numerical result. 
If n is large, according to Lindley approximation, any ratio 
of the integrals of the form 
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where 1̂,θ  2̂θ  and 3̂θ are the MLEs of 1 2,θ θ and 3θ
respectively, 
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and ijσ is the ( , )thi j element of the inverse of the matrix 

having elements { }ijL− . 

In our case, 1 2 3 1 2( , , ) ( , , )θ θ θ α α λ≡  and  
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The quantities , ,i ij iju u σ and Lijk, i, j, k = 1, 2, 3 are 

evaluated by replacing 1 2( , , )α α λ  by 1 2
ˆˆ ˆ( , , )α α λ . 

Then, the Bayes estimator of ,s kR is 
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5. Simulation Study 

Simulation study consists of estimating multicomponent 
stress-strength reliability when the sample is generated 
from generalized Pareto distribution under SRS and RSS 
using ML and Bayesian approaches. The comparison of 
the estimates are done though mean squared error criteria 
based on 100000 random samples of size n, m, mx, my,  
rx and ry for the strength and stress populations, with 
different parameter values. The values of 1 2( , , )α α λ  used 
for comparison are (1,1,0.6), (1,1.5,0.5) and (0.5,0.2,0.5). 
The corresponding true values of stress-strength reliability 
for s-out-of-k system with (s, k) =(1,3) are 0.75, 0.8476, 
0.4747 and that for (s, k) = (2,4) are 0.6, 0.7229, 0.3315. 
The Bayesian estimates under squared error loss function 
using gamma prior are a1 = 9, a2 = 4, a3 = 1, b1 = 3, b2 = 2, 
b3 = 1 (prior1) and a1 = 1, a2 = 1, a3 = 1, b1 = 1, b2 = 1,  
b3 = 1 (prior2). 

From the simulation study, it is observed the MSEs for 
the estimates decreases as the sample size increases in all 
the cases. The Bayes estimates of the ,s kR  under the squared 
error loss function have the smaller MSEs. It is also be 
seen that when comparing the maximum likelihood 
estimates under SRS and RSS, RSS performs better as it 
has smaller MSE when compared to SRS. 
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Table 1. MLEs under SRS and RSS, Bayes estimators and MSEs for the estimators of ,s kR  

1 21, 1, 0.6, 5, 5, 1x yr r priorα α λ= = = = =  

(s, k) Rs,k n m (mx, my) ,
ˆ Msrs
s kR  ,

ˆ Mrss
s kR  ,

ˆ B
s kR  MSE( ,

ˆ Msrs
s kR ) MSE( ,

ˆ Mrss
s kR ) MSE( ,

ˆ B
s kR ) 

 
 

(1, 3) 

 
 

0.75 

10 10 (2,2) 0.7721 0.7595 0.7616 0.0092 0.0063 0.0042 

10 15 (2,3) 0.7682 0.7584 0.7592 0.0067 0.0042 0.0023 

10 25 (2,5) 0.7596 0.7536 0.7523 0.0046 0.0037 0.0019 

15 25 (3,5) 0.7542 0.7526 0.7521 0.0023 0.0019 0.0011 

25 25 (5,5) 0.7536 0.7502 0.7511 0.0009 0.0006 0.0002 

 
 

(2, 4) 

 
 

0.6 

10 10 (2,2) 0.6909 0.6834 0.6796 0.0082 0.0069 0.0063 

10 15 (2,3) 0.6889 0.6491 0.6376 0.0061 0.0053 0.0050 

10 25 (2,5) 0.6646 0.6382 0.6315 0.0047 0.0035 0.0026 

15 25 (3,5) 0.6414 0.6212 0.6185 0.0036 0.0022 0.0019 

25 25 (5,5) 0.6084 0.6020 0.6007 0.0029 0.0016 0.0011 

Table 2. MLEs under SRS and RSS, Bayes estimators and MSEs for the estimators of ,s kR  

1 21, 1.5, 0.5, 5, 5, 2x yr r priorα α λ= = = = =  

(s, k) Rs,k n m (mx, my) ,
ˆ Msrs
s kR  ,

ˆ Mrss
s kR  ,

ˆ B
s kR  MSE( ,

ˆ Msrs
s kR ) MSE( ,

ˆ Mrss
s kR ) MSE( ,

ˆ B
s kR ) 

 
 

(1, 3) 

 
 

0.8476 

10 10 (2,2) 0.8592 0.8493 0.8477 0.0098 0.0090 0.0081 

10 15 (2,3) 0.8671 0.8496 0.8461 0.0076 0.0024 0.0014 

10 25 (2,5) 0.8484 0.8479 0.8462 0.0028 0.0016 0.0012 

15 25 (3,5) 0.8482 0.8452 0.8471 0.0016 0.0013 0.0010 

25 25 (5,5) 0.8480 0.8477 0.8460 0.0010 0.0009 0.0005 

 
 

(2, 4) 

 
 

0.7229 

10 10 (2,2) 0.7318 0.7297 0.7277 0.0098 0.0090 0.0085 

10 15 (2,3) 0.7291 0.7276 0.7267 0.0065 0.0057 0.0029 

10 25 (2,5) 0.7273 0.7244 0.7229 0.0032 0.0015 0.0013 

15 25 (3,5) 0.7244 0.7233 0.7206 0.0016 0.0010 0.0009 

25 25 (5,5) 0.7240 0.7230 0.7222 0.0012 0.0008 0.0004 

Table 3. MLEs under SRS and RSS, Bayes estimators and MSEs for the estimators of ,s kR  

1 20.5, 0.2, 0.5, 5, 5, 1x yr r priorα α λ= = = = =  

(s, k) Rs,k n m (mx, my) ,
ˆ Msrs
s kR  ,

ˆ Mrss
s kR  ,

ˆ B
s kR  MSE( ,

ˆ Msrs
s kR ) MSE( ,

ˆ Mrss
s kR ) MSE( ,

ˆ B
s kR ) 

 
 

(1, 3) 

 
 

0.4747 

10 10 (2,2) 0.4858 0.4812 0.4792 0.0123 0.0092 0.0089 

10 15 (2,3) 0.4796 0.4772 0.4765 0.0111 0.0082 0.0079 

10 25 (2,5) 0.4779 0.4765 0.4769 0.0110 0.0036 0.0030 

15 25 (3,5) 0.4781 0.4731 0.4749 0.0066 0.0018 0.0014 

25 25 (5,5) 0.4763 0.4722 0.4714 0.0014 0.0010 0.0009 

 
 

(2, 4) 

 
 

0.3315 

10 10 (2,2) 0.3471 0.3416 0.3411 0.0092 0.0082 0.0072 

10 15 (2,3) 0.3479 0.3392 0.3408 0.0089 0.0062 0.0052 

10 25 (2,5) 0.3381 0.3364 0.3341 0.0082 0.0044 0.0035 

15 25 (3,5) 0.3362 0.3346 0.3326 0.0065 0.0026 0.0021 

25 25 (5,5) 0.3317 0.3310 0.3307 0.0056 0.0019 0.0011 

 
6. Data Analysis 

In this section, we present a real data which  
was originally reported by Badar and Priest [28]. The  
data represents the strength measured in GPA for  

single carbon fibers and impregnated 1000-carbon  
fiber tows. Single fibers were tested under tension at 
gauge lengths of 20 mm (Data sets I) and 10 mm  
(Data set II), with sample sizes n = 69 and m = 63 
respectively. 
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Data set I: 
1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 

1.944, 1.958, 1.966, 1.997, 2.006, 2.021, 2.027, 2.055, 
2.063, 2.098, 2.140, 2.179, 2.224, 2.240, 2.253, 2.270, 
2.272, 2.274, 2.301, 2.301, 2.359, 2.382,2.382, 2.426, 
2.434, 2.435, 2.478, 2.490, 2.511, 2.514, 2.535, 2.554, 
2.566, 2.570, 2.586, 2.629, 2.633, 2.642, 2.648, 2.684, 
2.697, 2.726, 2.770, 2.773, 2.800, 2.809, 2.818, 2.821, 
2.848, 2.880, 2.954, 3.012, 3.067, 3.084, 3.090, 3.096, 
3.128, 3.233, 3.433, 3.585, 3.585 

Data set II: 
1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 

2.397, 2.445, 2.454, 2.474, 2.518, 2.522, 2.525, 2.532, 
2.575, 2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 2.738, 
2.740, 2.856, 2.917, 2.928, 2.937, 2.937, 2.977, 2.996, 
3.030, 3.125, 3.139, 3.145, 3.220, 3.223, 3.235, 3.243, 
3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 3.408, 3.435, 
3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 3.852, 3.852, 
3.871, 3.886, 3.971, 4.024, 4.027, 4.225, 4.395, 5.020 

For the above data sets, we fit the generalized Pareto 
model and also checked the validity of the model using 
Kolmogorov-Smirnov (K-S) test for each data set. It was 
found that for data set I and II, the K-S distanced are 
0.0479 and 0.0986 with the corresponding p value are 
0.5638 and 0.6425 respectively. From the result, it shows 
that generalized Pareto distribution fits better for the data 
sets. The maximum likelihood estimate and Bayes estimate, 
based on the parameters 1ˆ 0.46909,α =  2ˆ 2.7786α =  and 

are obtained as 1,3
ˆ 0.5953,MsrsR =  1,3

ˆ 0.4498BR =  under 

prior1 and 1,3
ˆ 0.5847,MsrsR =  1,3

ˆ 0.5634BR =  under prior 2. 
For s =2 and k = 4 MLE and Bayes estimators  
are 2,4 1,3

ˆ ˆ0.4245, 0.4285Msrs BR R= = under prior1 and 

1,3 1,3
ˆ ˆ0.4591, 0.4587Msrs BR R= =  under prior2. 

7. Conclusion 

The main aim of this article, is to study the 
multicomponent system reliability which has k independent 
and identical strength components and each component 
exposed to a common random stress by assuming both 
strength and stress variables follow generalized Pareto 
distribution. The reliability of the system is estimated 
using maximum Likelihood under SRS and RSS scheme 
and Bayes approaches. The performance of these estimates 
are compared using MSEs, the results show that the MLE 
has greater MSE when compared to Bayes estimates. The 
ML estimates under RSS have lesser MSE than SRS. 
However, as sample size increases, MSEs of both the 
approaches, i.e., SRS and RSS are close to each other. 
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