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Abstract
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1. Introduction

The univariate exponential distribution which is
analytically very simple plays an important role in
describing the life time of a single component [see, e.g.,
Balakrishnan and Basu (1995)] [1]. The reliability is the
domain in which most of the bivariate distributions with
exponential marginals arise. Several versions of this
bivariate exponential distribution are encountered in the
literature and have been used for modeling the two
components systems. Indeed, a complete class of bivariate
distribution respectively with normal and exponential
conditional were identified, Castillo and Galombos (1987a)
[4], Barry C. Arnold and David Strauss (1988) [3].

The marginal densities of the bivariate exponential may
not be exponential. It can be a mixture of exponential. In
such case the bivariate distribution is often called a
bivariate exponential mixture distribution (see, Kotz et al.
[8]). Many authors proposed the multivariate form of the
exponential distribution (see, Johnson et al. [7]).

Recently Filus and Filus [6] have proposed for
modeling lifetimes of multi-component system, a new
class of probability distributions based upon a linear
combination of independent random variables.

In this paper, we define a bivariate distribution with a
two-parameters (a, b) exponential conditional which can
be used for modeling lifetime of two component system.

The bivariate distribution with conditional a two-parameters
exponential distribution is introduced in section 2 below
with some characteristics such as the marginal densities,
the moments, the product moments, the conditional
moments, the moment generating function, the survivor
distribution and the entropies. In section 3, we infer about

the parameters of our bivariate distribution by giving their
maximum likelihood likelihood estimators (MLEs) and
intervals of confidence.

In section 4, we introduce the distribution of the
concomitants of the order statistic. Finally in section 5 the
multivariate case is studied with its related properties.

2. The Bivariate Distribution with
Conditional a Two-parameters
Exponential Distribution

Let X be a two-parameter exponential distribution
random variable. The probability density function (p.d.f)
of X is given by

X—a

1 —_
—Zg b
fx(xla,b)_be , X=a, b>0 (2.1)

with, E(X)=a+b and V(X)=b2

The cumulative distribution function of X is given by
X—a

Fy(x|ab)=1-e b, x>a b>0. (2.2

Now, let Y be a random variable such that the
distribution of Y given X is a two-parameters (x,c)
exponential distribution. The p.d.fof Y | X is given by

y—X

fY|X(y|X,C)=%€‘7C, y>x, ¢>0 (c#h).(2.3)

Thus the joint density of the random variables X and
Y defined above is given by
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It can be easily verified that equation (2.4) integrates to

fx v (6 y) = fyx (yIx.0) fx (x]a,b) -an De € oo e ke
a 1, so it is a joint probability distribution.
bl Y (2.4) The plot of this joint distribution for different values of
e e cLacx<y, b0, a, b, and c is given in Figure 1.
bc
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Figure 1. Graphs of fy v (X,Y)

Thus the cumulative distribution of the random Proof.

variables X and Y is y
fy (y) = Ia fx v (X, y)dx
= 11 11 y a
ceb | -C—"x ) || L — a
FX,Y(Xay):_ e bc —e bcllec_ec| b Y _X(E_E)
c-b e C.fye b ¢ dx
bc a
a<x<y,b,c>0. a
_ b Xl g ,X(%i) " (2.5)
2.1. Marginal and Moments of Y e 1 1 a
As the marginal of X is given by (2.1), the marginal of b c
Y is derived as follows 1 (y-a)  (y-3)
Theorem 2.1. =——~|g ¢ _g b
c-b
_(y-a)  _(y-3)

y
‘CY()/):_[a fx,Y(X,y)dX=—_b e ¢ —e b | Consequently the cumulative distribution of Y is
L[ vy
a<y, bc>0. Rr(y)=1-——|ce ¢ —be b |, a<y, bc>0.
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Remark 2.2. The marginal fy (y) of fyy(x,y) is not
an Exp(a, B) but a mixture of exponential, so fy y (X, y)
is a bivariate exponential mixture distribution.

The m™™ moments of Y are given by
Theorem 2.3. The m" moments of Y are:

E(Y )_ibi [ J m—k(ck+1_bk+1).

Proof.

1 _by-a)  _(y-a)
my__+ [®. m _ b
E(Y )_c—b-[O y'le ¢ e dy

= u
Ia ye ¢ dyz.[o u+a)me ¢ du, (withu=y-a)

m u u

o M) mk. ¢ (M) mkT ko
a’ e Cdu= a u'e Cdu
Y S (Rp

k=0 k=0 0

m m_kck”the‘t dt, (with t = 2)
0 k 0 c

m
(mjam—kckﬂr(k -3 k![m]am—kckﬂ
o\k ko \K

By analogy

[ [
M= S

k

I
M=

k

_(y-3)
o0 m b
Ja e

U M) mkpk+l
dy=> k! " |am" b, then:
koo \K

E(Y )_Lbi [ ] am K (kL _pk+l) (2.6)

Remark 2.4. From (2.6) we deduce that:
1. E(Y)=a+b+c.

2. V(Y)=b?+c?.
The (p, q)th joint moment of (X, Y) can also be obtained

as follows
Theorem 2.5.

oy
EQXPY9)=[ [ xPya 1y v (x y)dxdy

a

eb coof ¢y p (x| oY
bCJ j pe b ¢ dx yqe Cdy

[t

11
n0k=o k'(b C)n n+p+g—-k+1
n(n+ p+1)b™icnk
{n+ p+q+1j
+ea(i_i)§:n+p+q+l k

k'(b C)n altP+a- k+1

ni(n+ p+1)b"+icn X

Proof.

a

pyay_ €0 | py p_(%_%)x age
E(XFY ):Eja j x"e dx [y“'e cdy.

a

11
—(=—)x
Expanding e (b C) in power series and putting
azi—l, and ,B—E we get
b ¢ c
E(XPY9)
a
eb & (-)"q

=

q n+p+l_an+p+l e—ﬂyd .
o NN+ p+1)~[y (y ) y

Let I, = J': yPa+le=AYqy and
— gt P+ A -BY
I,=a Ia y'e 7ldy

Il = efaﬂ J.a yn+ p+q+1efﬂ(y7a)dy

_ﬂa

e 0 _

=—j U+ pa)"Pratle gy
ﬁn+p+q+2 0

(withu = g(y -a))

e—,Ba ot p+q+l (

S k
ﬂn+ p+g+2

><uk (ﬁa)n+ p+q—k+le—u

n+ p+q+1] Y
k J'uke’“du
k=0 _
><(ﬁa)n+p+q k+1 |0

e—ﬁaan+p+q+1 n+p+q+1[n+ p+q+l} Kl

n+ p+q+1j
du
k=o

e—ﬂa n+p+q+1 (
:ﬁn+p+q+2

B k=0 k (aﬁ)k
_ A”+piq+l[n+ p+q+1j k! :
- k (ap)
—pan+p+g+l
with A= €T -
,g .
k!
By the same way we prove that I, = AZ( J
@p)
then
a
b n=oo 1)nan
Ex -y Ve
( )= bczn'(n+p+1)(1 2)
a n+p+q+1(n+ p+q+1j k1
_e T (D)"a" ) kJ@p~

A A e A
bc s ni(n+p+1) q (q] k1
kgo k) @p)*
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a

e ()" A"
Z o nl(n+p+1)

X éﬂ“ e

”*piq”(n+p+q+lj k!
k@~

(k]

k'(b C)nan+p+q k+1
bn+1 n-k

+

k=q+1

n=0k=0

n'(n+ p+1)

n+p+q+1
) o N+p+g+1 k

ebCZ

n ,n+p+g—-k+1
n=0 k=g+1 k'(b c)"atPra-

ni(n+ p+1)b" "k

2.2. The Moment Generating Function

The moment generating function of (X, Y) is given as
M (. t) = E {20}

= [ 762V £y y (x, )by

11,y (2.10)

=[] Y lxtay) €0 T e dxdy
a Ja bc
ea(t1+t2)

~ (L—bt, —bty)(L—cty)

The product moment exists if t; +t, <% with t; < 1.
c

From (2.10) we can deduce:

1.
o (oM (ty,t,)
E(XY) = {E[#ﬂ fy=tp-o0

=(a+b)® +b® +c(a+h)

2. cov(X,Y) = E(XY)—E(X)E(Y) =b?
cov(X,Y) b2

\/V(X)\/V(Y) \/b2+02\/_ Vb? +c?
as p(X,Y) >0, XandY are positively correlated.
4. The matrix of Variance-Covariance of X and Y is

2 2
Cov(X,Y):{b b ]

b% b2 +c?

3. p(X,Y)=

2.3. Conditional Moments

The conditional distribution of X |Y ant that of Y | X
are

f _f(xy) c-b -aC-p) -C-D-x)
X|y(X|y)_W_We € (2.11)
y>Xx, b,c>0

and

=X

fY|x(Y|X):%e ¢ ,y>xc>0. (2.12)

Using (2.11) we get the pth conditional moments of X as
Theorem 2.6.

y
E(XPy)= ], xPf (x| y)dx
11 11
_ e_a(E_B)e_(E_E)y
n+p+l

§ 0 (_1)n [C_bjnﬂ yn+p+1_a
o Nt bc n+p+1
Proof.

E(XPy)= [ xP T (x] y)ax

11, 11 1
:_C_be_a(?b) 7 .[V Pe (- b) dx
bc

y xP ((1 %) j
=K[ x Z o
withK = b - (7_7) _(7_7)
B bc
> 1(b-c Y e
K3 [[eva]

yn+p+1
(E_E)yi( 1)n (C_b\Jml _an+p+1
bc

n+p+1 '

(2.13)

_a(l_,)
e C

I
n=0 W

Similarly, using (2.12) we get the gth conditional
moments of Y as
Theorem 2.7.

X—a

q ® q — a) k g-k
E(Y |><)=ja yaf(y|x)dy=e ¢ > k! (e
k=0

Proof.
—X

g * 0 =yl o
B0 =[, v (yIxdy=[ e dy

X—a

e ¢ ["ct+a)letdt [withE - t)
0 c

X—a
_ ecj‘g{é@](ct)kaq_k }_tdt

X—a q
=e ¢ ZEE} a¥” kjt eldt=e ¢ Zkl(kj ckadk

k=0 k=0
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Remark 2.8. From (2.13) and (2.14) we can easily obtain
the conditional means and variances of X |y and Y | x.

2.4. The Joint Survivor Function

For the mixture distribution (2.4) the joint survivor
function S(x,y)=P(X >x,Y >y) which can be used in

the reliability study of systems, is given by
S(x,y) =1-Fx () -R (V) +Fx y (x,y)

_x-a L[ oy oy
—1-|1-e b —1——bce C —pe b

N 11 11 y a

b | -E-)x -—a(=-= - -
&e(bc)_e (bc) ecC_pgc
c-b

a
= 11 1 1
b | —(=-= - =
— ce e (b C)X —e a b C
c-b
xa _y-a _y-a
+e6 b 4+~ lce ¢ —pe b |-1.
c-b

The failure rates of the random variables X and Y
having p.d.f fx(x) and fy(y) given by (2.1) and (2.5),
respectively, are

fx® _1

" O= 1T © b

and
_(ta  _(t-a)
fy(t) e ¢ —e b

1-R () _ta )’
ce ¢ —be b

R (t) =

The plot of the failure rate of Y for different values of a,
b, and c is given in Figure 2.

+ a=1,b=1,c=2 a=-1,b=2, c=3
a=2_b=4_c=5
0.5 /‘,,W"
4‘.
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T
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/
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Figure 2. Graphs of K (t)

2.5. Entropies

In this section we introduce the entropy between X and
Y which is defined as H(x,y)=E[-In{f(X,Y)}] and
interpreted as the quantity of information on X we gain by
learning Y. So, for the bivariate mixture distribution the
entropy is

H(x,y) = E[-In{fx v (X,Y)}]

a 11 Y
eb —(-)X -
=—E|In| —e b ¢ e C
bc

:In(bc)—%+[%—%)E(X)+%E(Y) (2.16)

=|n(bc)—%+(%—%)(a+b)+%(a+b+c)

=In(bc) + 2.

3. Inference

3.1. Parameters Estimation For the Bivariate
Distribution with Exp(a,b) Conditional

We introduce here, the maximum Likelihood estimation
for the bivariate model.
Let (x;,y;) for i=1,..,n be a sample of size n from

the bivariate distribution defined in (2.4). Then the log
likelihood function is

I(a,b,c)
=F—n|n(b) nIn(c)——Zx,——Z( yi —%; ) (3.17)
—1
:E—nln(b)—nm(c)—@— (y-x)
b c

We have to maximize this function under the constraints
asx <y; fori=1..n (5.14),b>0,andc>0.
Theorem 3.1. The maximum likelihood estimators of a, b,
and c are given by

a= X(]_) :minKign Xi,BZ )?—X(l),and(S:V—)?.

Proof. From (2:4) we deduce that Xq SX<Y.

More, it will be assumed that

1. 3i,j <n suchthat X # x; notall x equal

2. 3k <n such that y, = x, (which means y, > x ).

So Xp <X<Vy , and the unique constraint on a
is a<x \for all 1<i<n, which can be written as
a< X(l) .

The function I(a,b,c) is increasing linear with respect
to the variable a when we fixe b>0 and ¢>0. Therefore its
maximum is attained for a=Xxq. So we have just to

maximize the following function with respect to the
variables b and ¢
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g(b,c) :%I(x(l),b,c)

X (3.18)

X X V-

&) X ¥
=—=—In(b)-In(c)- -

5~ i) =In(c) ==

X —X V-—X
=20 ) -Ine)- X=X,
b c

This function g can be written as g(b, ) =—g;(b) — g, (c)

X=X, V—X
with gy (b) = — & y—X

+In(b), gz(c) =

Maximize g with respect to (b,c) is equivalent to
minimize g, with respect to b and minimize g, with respect
to c.

Those two functions g; and g, are of the form

+1In(c).

h(x) = %+ In(x), & > 0.

(a=X-Xxgq for g;,and a =X -y forg,).

We can easily prove that h has a unique global
minimum on ]0,cof attained at X; such that

a 1 .
h(x)=——+—=0ie:x =«
5 %o
So bO:Y—x(l) >0 and ¢ =y—-X>0 are the global

minimum for g;(b) and g,(c) respectively.

Therefore the function | has a global maximum (under
the constraints) attained at

(20,09, Co) = (X(1), X =Xy, ¥ = X).

So Xy, X =Xy and Y —X are the MLEs of a, b,

and c respectively.
Lawless (1982) [6]

b=X-Xgqy are independent with

proved that a=Xq and

2n(@-a) 2

b x5 and Z—C)b ~ ;(Zzn_z. (3.19)

Using (3.19) and ¢=Y —X we get the following
results:

1. E@d) =%+a. (4 is a positively biased estimator of

a with bias equal E)
n

o b? o s o2 2b
2. V(a)=—2 and MSE(&) =V (4) + (bias) =—
n n

3. E(b) =w. (b is a negatively biased estimator
n

of b with bias equal (—%))

(n—1)b?

n2

4.V (b) = and

2
MSE(b) =V (b) + (bias)? = w

5. E(€)=E(Y - X) =E(Y)-E(X) =c. (¢ is an unbiased
estimator of c)
6.

V(€)= MSE(€) =V (Y) +V (X)—2cov(X,Y)
2
=m+m_zcov(le) =C__
n n n n
Remark 3.2.
1. lim MSE(4) = lim MSE(b) = lim MSE(¢) =0, then
n—oo n—oo

n—o

a ,5 and ¢ are consistent estimators of a, b and ¢
respectively.

2. 4 and b are asymptotically unbiased estimators of
a and b respectively.

3.2. Intervals of Confidence for the
Parameters of the Bivariate
Distribution with Exp(a,b) Conditional

We introduce here, the intervals of confidence for the
three parameters a, b, and c.

We can use the pivotal quantity ZT:b in (3.19) to make

inference on b, and a (1—«) confidence interval for b is
given by

2nb 2nb
2 T2
n-21-% Ton2%
2 2

It follows also from (3.19) that

a-a 1

—~—F 0.
g n_p 222

d-a
6 1
(1- ) confidence interval for a can be derived as

By the same way, using the pivotal quantity

b b
a-—F a-—F .
{ n-1 2,2n—2,1—% n-1 2,2n—2,‘;‘J

Also for n enough large (n>30), ¢=Y — X follows

o2
N| c,— | and then
n

N

¢
n
confidence interval for c can be derived and it is given by

c-z 2é+z éz—ézéé+zé
AT o S

So for V(€)= as an estimator of V(€), a (1-«)

:|O>
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4. Concomitants of Order Statistics

In this section we introduce the distribution of the
concomitants of the order statistic for the bivariate
exponential mixture distribution. The density of
probability of the rth concomitant is given by [5] as

Orny (V) = I:J f(y %) frn (X)dx

where f..,(x) is the density function of the rth order
statistic for the variable X given by

i (X) = (HHM][LFWW*

n!
(r-)¥n-
Given (2.1), (2.2), and (2.3), the distribution of the rth
order statistic for X is

fr:n (X)

x—g [T+l w—a 71
:n—![e_b:| |:1_e_b:|
b(r-1)!(n—r)!

a(n-r+1) r-1
x(n-r+1) Xx—a
nle b b {1—e b] (4.20)

N

a(n-r+1)

_X(n-r+1) _x-a r-1 | b
=Ke b l1-e b K=—°

b(r-1)!(n-r)!

Theorem 4.1. The density of the rth concomitant is given
by

Oty (V) = [ £ (Y1) Fr (900

n!
S (r=Dn-r)!
y-a y-a
(_1)k (r _1]{6—(: _e—b(n—r+k+1)]
r-1 k
X .
) c(n—-r+k+1)-b

Proof.

y
Irrn (Y) = .[a f(y %) frn (x)dx
ar1
y—X _X(n r+l) x-a |"
:K'[yle ce b 'l1_e b dx
c

y n-r+ 2
=—¢e C e b C

Y4 - —a(a+B)
:56 Cr b{l’—lj(_ )k gh [S]
k=0 k ab+k y(a+)
a(n-r+l1)
nle b -y
= e C
(r=i(n-r)!
ka

Xk% « Y s b
{ o™ r+171) (- r+11)}
x| e —e

y—a

r-1 ¢
(D" ,a
7T(nfr+k+1)

—e
c(h-r+k+1)-b

(- 1)'(n—r) Z=:

The pth moment of the concomitant of the order
statistic is given by
Theorem 4.2.

Vb)) = I, Y9 (V)

K r=1\p p—m
~ m!(-1) ( ‘ J(mja

p
cin-r+k+1)—b
~(r-D)(n-n)! 1)'(”_r)'k OmZ—:o { .
x Cm+

bm+1

(n—r+m+1)m+1}

Proof. Using the same techniques of integrations as in
theorem 4.1 above we get our result.

Remark 4.3. From theorem 4.2 we can deduce the
expected value and variance of Y[y

The expression of the survivor function

SY[r:n] ®= IP)(Y[l’ir‘] > t)

of Y[r:n] is.
Theorem 4.4.
k(r-1
E(s . n! o D ( k j
( Y[r:n]( )= (r_1)!(n—r)!kzzé)c(n—r+k+l)—b

of _y-a
x_[ e ¢
t

n! r-1

YR k)
_e b y
K r-1

-1
"

T r=Dl(n-n)! 2 c(n—-r+k+1)—b

k=0

t-a t-a

—_— ——(n—r+k+1)
x[ce c —Le b }

n-r+k+1



American Journal of Applied Mathematics and Statistics 208

Proof. Obvious.

5. Multivariate Case

Let X,Y;,...Y, be n+1 random variables, the
multivariate case is built as
X :Exp(a,b)

Y1 | X Exp(egX, Br)
Y, | X Exp(aox, fo)

Yi | X Exp(anX B),

where Y;|X and Y;|X are independent random

variables for i=j and i,j=12..,n and ¢ =0,
i=1.,n . HhUsing the same arguments as in the
univariate case above, the joint component model is built
and the marginal density function for each random
variable Y; is derived. In general, Y; has the following

density

1 _Yita%i  yj-ag
bi b
= € —€ )
()= Bi - (5.21)
i =12,..,n with ag; < i b>0, ﬂl > 0.

Based on the independence assumption of the above
model, the joint density of Y,...,Y,, has the following

form
fx ¥y (X Y100 Vo)
= vy (V1 Y2ie Y [X) i (%)
= (1) (2 [%)..F(yn [X) fx (%)
= fx (X)H f(yi %)
i=1
The joint density of yy,...,y,, is obtained by integrating
the joint density fy v, v, (X Y1,... ¥n) with respect to
the variable X .
Yi

minj (=)

Ay (x)Hf<y. | ) dx

B 1
h N g |0
1-bY LA
izlﬁi i=1
wn Sanf3a i 8
xﬁe bi _eb A=V =T ]
i=1
Remark 5.1. For example, substituting n=2, a=1,
b:%, =1 a=2 p=3 and pr =2, into the

above formula, we get:

-l yp-2
11e 3 e 2
f , -= (5.22)
Yo (Y1 ¥2) > 2—fmm,(y')—ﬂ—y2
e 3 2
that can be rewritten as
1l yp-2 Y2
l[e 30 2 o X ZJ,
2
if1<y1<y—22, Yo >2
fY]_,YZ (yl’ yZ) =
yi-1  yp-2 V1
lesez_ezseyzy
2
if2<y2<2y1, y1>1

fY1,Y2(Y1’Y2) integrates to 1 so it's a legitimate
distribution.
Using the density of Y; defined by (3.9) and by analogy

th

with theorem 2.3, the expression of the m™ moments of

Yi is

E(Yim)

Zkl{ j )m—k(ﬂik+1_(bai)k+1).(5.23)

ﬂ| alko

Remark 5.2. From (3.11) we deduce that for all
i=12,..,n
1. E(Yi):ai (a+b)+ﬂi.

2. V(Y;) = B +afb?
The covariance between X and Y,
derived as:

Cov(X,Y;) = E(XY;)— E(X)E(Y;)
= E(XE(Y; | X))-E(X)E(Y;)
=E(X (X +f))—-(a+b)(ai(a+b)+4)
as Y| X :Exp(eiX, f)
= 4 E(X?)+ BE(X)-a;(a+b)* - B (a+b)
= o;b? + ¢ (a+b)% + Bi(a+b)
—a;(a+b)® - f(a+b)

=(Zib2.

for i=1..,n is

(5.24)

Bivariate case will reduce to equation (2.8).

6. Conclusion

Unlike the bivariate exponential with conditional
exponential [3], and the bivariate distribution with normal
conditional [4], the bivariate exponential distribution with
Exp(a,b) conditional has the great advantage of giving us
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explicit, consistent, unbiased and asymptotically unbiased
estimators of our parameters a, b and ¢ with reliable
confidence intervals for them.
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