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1. Introduction 

The univariate exponential distribution which is 

analytically very simple plays an important role in 

describing the life time of a single component [see, e.g., 

Balakrishnan and Basu (1995)] [1]. The reliability is the 

domain in which most of the bivariate distributions with 

exponential marginals arise. Several versions of this 

bivariate exponential distribution are encountered in the 

literature and have been used for modeling the two 

components systems. Indeed, a complete class of bivariate 

distribution respectively with normal and exponential 

conditional were identified, Castillo and Galombos (1987a) 

[4], Barry C. Arnold and David Strauss (1988) [3]. 

The marginal densities of the bivariate exponential may 

not be exponential. It can be a mixture of exponential. In 

such case the bivariate distribution is often called a 

bivariate exponential mixture distribution (see, Kotz et al. 

[8]). Many authors proposed the multivariate form of the 

exponential distribution (see, Johnson et al. [7]). 

Recently Filus and Filus [6] have proposed for 

modeling lifetimes of multi-component system, a new 

class of probability distributions based upon a linear 

combination of independent random variables. 

In this paper, we define a bivariate distribution with a 

two-parameters (a, b) exponential conditional which can 

be used for modeling lifetime of two component system. 

The bivariate distribution with conditional a two-parameters 

exponential distribution is introduced in section 2 below 

with some characteristics such as the marginal densities, 

the moments, the product moments, the conditional 

moments, the moment generating function, the survivor 

distribution and the entropies. In section 3, we infer about  

 

the parameters of our bivariate distribution by giving their 

maximum likelihood likelihood estimators (MLEs) and 

intervals of confidence. 

In section 4, we introduce the distribution of the 

concomitants of the order statistic. Finally in section 5 the 

multivariate case is studied with its related properties. 

2. The Bivariate Distribution with 

Conditional a Two-parameters 

Exponential Distribution 

Let X be a two-parameter exponential distribution 

random variable. The probability density function (p.d.f ) 

of X is given by 

 

2

1
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 (2.1) 

The cumulative distribution function of X  is given by 

 ( | , ) 1 , , 0.

x a

b
XF x a b e x a b




     (2.2) 

Now, let Y  be a random variable such that the 

distribution of Y  given X  is a two-parameters  ,x c  

exponential distribution. The p.d.f of |Y X  is given by 

 |
1

( | , ) , , 0 ( ).

y x

c
Y Xf y x c e y x c c b

c




    (2.3) 

Thus the joint density of the random variables X  and 

Y  defined above is given by 
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 (2.4) 

It can be easily verified that equation (2.4) integrates to 

1, so it is a joint probability distribution. 

The plot of this joint distribution for different values of 

a, b, and c is given in Figure 1. 

 

Figure 1. Graphs of , ( , )X Yf x y  

Thus the cumulative distribution of the random 

variables X and Y is 
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2.1. Marginal and Moments of Y 

As the marginal of X is given by (2.1), the marginal of 

Y is derived as follows 

Theorem 2.1. 
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Proof. 
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 (2.5) 

Consequently the cumulative distribution of Y is 
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Remark 2.2. The marginal ( )Yf y  of , ( , )X Yf x y  is not 

an ( , )Exp    but a mixture of exponential, so , ( , )X Yf x y  

is a bivariate exponential mixture distribution. 

The 
thm  moments of Y  are given by 

Theorem 2.3. The 
thm  moments of Y  are: 
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By analogy 
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Remark 2.4. From (2.6) we deduce that: 

1. ( ) .E Y a b c    

2. 2 2( ) .V Y b c   

The (p, q)th joint moment of (X, Y) can also be obtained 

as follows 

Theorem 2.5. 
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Proof. 
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Expanding 
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b ce

 
 in power series and putting 
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c
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By the same way we prove that 2
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(2.9) 

2.2. The Moment Generating Function 

The moment generating function of (X, Y) is given as 
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The product moment exists if 1 2
1

t t
b

   with 2
1

.t
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From (2.10) we can deduce: 
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2. 2( , ) ( ) ( ) ( )cov X Y E XY E X E Y b    
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as ( , ) 0X Y  , X and Y are positively correlated. 

4. The matrix of Variance-Covariance of X and Y is 
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2.3. Conditional Moments 

The conditional distribution of |X Y  ant that of |Y X  

are 
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(2.11) 

and 
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Using (2.11) we get the pth conditional moments of X as 

Theorem 2.6. 
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Similarly, using (2.12) we get the qth conditional 

moments of Y as 

Theorem 2.7. 
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Remark 2.8. From (2.13) and (2.14) we can easily obtain 

the conditional means and variances of |X y  and | .Y x  

2.4. The Joint Survivor Function 

For the mixture distribution (2.4) the joint survivor 

function ( , ) ( , )S x y X x Y y    which can be used in 

the reliability study of systems, is given by 
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(2.15) 

The failure rates of the random variables X and Y 

having p.d.f fX(x) and fY(y) given by (2.1) and (2.5), 

respectively, are 
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The plot of the failure rate of Y for different values of a, 

b, and c is given in Figure 2. 

 

Figure 2. Graphs of ( )Yr t  

2.5. Entropies 

In this section we introduce the entropy between X and 

Y which is defined as ( , ) [ { ( , )}]H x y E ln f X Y   and 

interpreted as the quantity of information on X we gain by 

learning Y. So, for the bivariate mixture distribution the 

entropy is 
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3. Inference 

3.1. Parameters Estimation For the Bivariate 

Distribution with Exp(a,b) Conditional 

We introduce here, the maximum Likelihood estimation 

for the bivariate model. 

Let ( , )i ix y  for 1,...,i n  be a sample of size n from 

the bivariate distribution defined in (2.4). Then the log 

likelihood function is 
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We have to maximize this function under the constraints 

i ia x y   for 1,...,i n  (5.14), b > 0, and c > 0. 

Theorem 3.1. The maximum likelihood estimators of a, b, 

and c are given by 

 (1) 1 (1)
ˆˆ ˆmin , , and .i n ia X X b X X c Y X        

Proof. From (2:4) we deduce that (1) .x x y   

More, it will be assumed that 

1. ,i j n   such that i jx x  not all ix  equal 

2. k n   such that k ky x  (which means k ky x ). 

So (1)x x y  , and the unique constraint on a  

is ia x \,for all 1 i n  , which can be written as 

(1)a x . 

The function ( , , )l a b c  is increasing linear with respect 

to the variable a when we fixe b>0 and c>0. Therefore its 

maximum is attained for (1).a x  So we have just to 

maximize the following function with respect to the 

variables b and c 
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This function g can be written as 1 2( , ) ( ) ( )g b c g b g c    
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Maximize g with respect to (b, c) is equivalent to 

minimize g1 with respect to b and minimize g2 with respect 

to c. 

Those two functions g1 and g2 are of the form 

 ( ) ln( ), 0.h x x
x


    

( (1)x x    for 1,g and x y    for 2g ). 

We can easily prove that h has a unique global 

minimum on ]0, [  attained at 0x  such that 

0 02
00

1
( ) 0 i.e. : .h x x

xx


       

So 0 (1) 0b x x    and 0 0c y x    are the global 

minimum for 1( )g b  and 2 ( )g c  respectively. 

Therefore the function l has a global maximum (under 

the constraints) attained at 

 0 0 0 (1) (1)( , , ) ( , , ).a b c x x x y x    

So (1) (1),X X X  and Y X  are the MLEs of a , b , 

and c  respectively. 
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estimator of c) 

6. 

  2

ˆ ˆ( ) ( ) ( ) ( ) 2 ( , )

( ) ( ) 2
( , ) .

V c MSE c V Y V X cov X Y

V Y V X c
cov X Y

n n n n

   

   
 

Remark 3.2. 
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â , b̂  and ĉ  are consistent estimators of a, b and c 
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2. â  and b̂  are asymptotically unbiased estimators of 
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3.2. Intervals of Confidence for the 

Parameters of the Bivariate  

Distribution with Exp(a,b) Conditional 

We introduce here, the intervals of confidence for the 

three parameters a, b, and c. 
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4. Concomitants of Order Statistics 

In this section we introduce the distribution of the 

concomitants of the order statistic for the bivariate 

exponential mixture distribution. The density of 

probability of the rth concomitant is given by [5] as 

 [ : ] :( ) ( | ) ( )dr n r ng y f y x f x x
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(4.20) 

Theorem 4.1. The density of the rth concomitant is given 

by 
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The pth moment of the concomitant of the order 

statistic is given by 

Theorem 4.2. 
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Proof. Using the same techniques of integrations as in 

theorem 4.1 above we get our result. 

Remark 4.3. From theorem 4.2 we can deduce the 

expected value and variance of [ : ].r nY   

The expression of the survivor function  
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Proof. Obvious. 

5. Multivariate Case 

Let 1, ,..., nX Y Y  be 1n  random variables, the 

multivariate case is built as  
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2 2 2
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where |iY X  and |jY X  are independent random 

variables for i j  and , 1,2,...,i j n  and 0,i   

1,..,i n . HhUsing the same arguments as in the 

univariate case above, the joint component model is built 

and the marginal density function for each random 

variable iY  is derived. In general, iY  has the following 

density 
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 (5.21) 

Based on the independence assumption of the above 

model, the joint density of 1,..., nY Y  has the following 

form 
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The joint density of 1,..., ny y  is obtained by integrating 

the joint density , ,..., 11
( , ,..., )X Y Y nn

f x y y  with respect to 

the variable X . 
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Remark 5.1. For example, substituting 2,n   1,a   

1
,

2
b   1 1,   2 2,   1 3,   and 2 2  , into the 

above formula, we get: 
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that can be rewritten as 
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, 1 21 2
( , )Y Yf y y  integrates to 1 so it's a legitimate 

distribution. 

Using the density of iY  defined by (3.9) and by analogy 

with theorem 2.3, the expression of the 
thm  moments of 

iY  is 
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(5.23) 

Remark 5.2. From (3.11) we deduce that for all 

1,2,...,i n  

1.  ( ) .i i iE Y a b     

2. 2 2 2( ) .i i iV Y b    

The covariance between X  and iY  for 1,...,i n  is 

derived as: 
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 (5.24) 

Bivariate case will reduce to equation (2.8). 

6. Conclusion 

Unlike the bivariate exponential with conditional 

exponential [3], and the bivariate distribution with normal 

conditional [4], the bivariate exponential distribution with 

( , )Exp a b  conditional has the great advantage of giving us 
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explicit, consistent, unbiased and asymptotically unbiased 

estimators of our parameters a, b and c with reliable 

confidence intervals for them. 
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