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Abstract  Besides climate change impacts on water availability and hydrological risks, the consequences on water 
quality is just beginning to be studied. This research concerns the impacts of climate change on surface water quality 
through multilevel analysis. Multilevel modeling is a relatively new statistical technique in environmental science 
research, although its roots can be traced back to several other fields. The objective of this study was to evaluate the 
surface water quality, its spatial variation and its dependence on climatic parameters. The water quality data for 
seven parameters, namely Color, Turbidity, pH, Electrical Conductivity, Chloride, Total Alkalinity and Total 
Hardness collected from 2012 to 2014 from 68 locations around Sri Lanka was used for the analysis. These monthly 
water quality measurements had been made on two occasions nested within locations within districts and thus had a 
multilevel structure. Hence a multilevel regression model was adopted using the Bayesian Markov Chain Monte 
Carlo method. Since, neither of the 95% credible intervals for chemical composition (0.682, 4.945) and physical 
composition (0.203, 0.485) of water included the value zero, district level variances are significant. The chemical 
composition of water varies more with the districts compared to the physical composition of water. Several locations 
in Anuradhapura and Monaragala districts contributed to this significant difference in chemical composition and 
several locations in Ampara district presented a significant contribution to the difference in the physical composition 
as shown by the non-inclusion of the value zero in their individual 95% confidence bands. Further, it was observed 
that rain (P<0.01), temperature (P<0.01) and humidity (P<0.05) have an impact on both the chemical and physical 
composition of surface water. Source type (P<0.01) has an impact only on physical composition of water. The main 
conclusion of the study was that drinking water quality varied geographically and over time according to climatic 
conditions. 
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1. Introduction 

The world is facing a serious problem of natural 
resource scarcity, especially that of water with a rapid 
growth of population and economic development. All 
known forms of life need water for their existence. The 
quality of water is usually described according to its 
physical, chemical and biological characteristics. But most 
of the freshwater bodies all over the world are getting 
polluted, thus portability of pure water is decreasing 
regularly. Water pollution occurs when a water body is 
adversely affected due to the addition of large amounts of 
waste materials. When harmful materials are released 
directly into a water body, water pollution occurs as a 
point source. A nonpoint source carries pollutants to the 
water body indirectly through environmental changes. As 
an instance, the nonpoint source of water pollution 
happens when fertilizer used in cultivation is carried into a  
 

water body by rain. Climate change influences are a key 
area of concern, especially when water is the underlying 
subject.  Uncertainty about the potential climate change is 
a factor which impacts the water quality. The changes to 
precipitation and its pattern, changes to soil moisture due 
to temperature variations and changes to quantities 
evaporated from irrigated lands and irrigation reservoirs 
have been reasonably recognized as climate changes. 
Projected changes in rainfall and air temperature could 
affect river flows. Then the mobility and dilution of 
contaminants could happen. Moreover, high temperatures 
will affect chemical reaction kinetics [1]. 

Data for this study were obtained from the National 
Water Supply and Drainage Board and Meteorological 
Department of Sri Lanka. It consists of monthly surface 
water quality details of 68 island-wide water intake 
locations and monthly mean rainfall (mm), mean 
temperature (°C) and mean humidity (%) covering 
selected districts during the period 2012-2014. There are 
seven response variables of interest named Color,  
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Turbidity, pH, Electrical Conductivity, Chloride, Total 
Alkalinity and Total Hardness. The study was limited to 
thirteen (13) districts in Sri Lanka due to the unavailability 
of data from the other districts. 

The data used in the study were gathered across three 
main levels. Monthly water quality measurements are 
clustered within the locations. Locations make the level-2 
units. Further, locations are grouped across the district and 
level-3 units can be considered as districts. There are a 
number of parameters which explain water quality 
collectively on different dimensions. Hence, methods for 
statistical analysis of such data should be under the 
umbrella of multilevel statistical methods. 

Furthermore, water quality measurements are taken 
from individual water bodies where water bodies are 
located in different districts. Therefore, it can be said that 
water bodies are grouped within each district. Hence the 
level of the water quality would depend on the attributes 
of different climate zones as well as other factors. Rather 
than either taking all of the data together or considering 
these separately, taking a hierarchical structure is more 
effective for data modeling. Analyzing hierarchical or 
clustered structured data using traditional methods have 
many problems. However, the multilevel analysis allows 

group-wise characteristics of such data to be included in 
models accounting for individual behavior. 

Table 1 presents the variables, their notations, respective 
categories and coding mechanism for preliminary analysis. 
Since there is a lack of methods for handling continuous 
data under the multilevel structure, categorized variables 
will be used in preliminary analysis as shown in Table 1. 
However, the advanced analysis will be carried out with 
some variables in their raw form. 

All water quality variables were categorized into two 
categories taking the maximum desirable limit of drinking 
water as a benchmark. The maximum desirable limit of 
certain drinking water parameter was taken from SLS 722. 
Discretization can be more effective when continuous data 
are divided into three categories than a binary split [2]. 
Furthermore, if the distribution of predictor variable has a 
short tail such as a uniform or normal distribution, 
dividing (1/3)rd split based on percentile is recommended 
and if the distribution shows long tail (i.e. Skewed), 
dividing (1/3)rd split based on lower and upper quantile is 
recommended through their simulation study. In order to 
categorize climatological variables, distribution of rainfall, 
temperature, and humidity were identified by drawing 
histograms for each variable. 

Table 1. Description of Variables 

Variable Name Identifier Category Coding 

Response Variables 

Physical Quality 

Color   (Hazen Unit) Color ≤ 5 1 

> 5 2 

Turbidity (NTU/FTU) Turbidity ≤ 2 1 

>2 2 

Chemical Quality 

pH pH 6.5-8.5 1 

Other 2 

Electrical Conductivity at 250C - (ms/cm) EC ≤ 750 1 

>750 2 

Chloride  ( as Cl−)   -mg/l Cl ≤ 200 1 

>200 2 

Total alkalinity  (as CaCO2) -mg/l Alkalinity ≤ 200 1 

>200 2 

Total Hardness (as CaCO3) -mg/l Hardness ≤ 250 1 

>250 2 
Explanatory Variables 

 Mean Monthly Rainfall Rain 
<66.36 1-Low 

66.36-233.09 2-Moderate 

>233.09 3-High 

Mean  Monthly Air Temperature Temp 
<26.30 1-Low 

26.30-28.65 2-Moderate 

>28.65 3-High 

Mean  Monthly Humidity Humidity 
<77.36 1-Low 

77.36-84.44 2-Moderate 

>84.44 3-High 

Source type of water Source Type Rivers, Oya & Stream 1- Running    Water 

Lakes & Reservoirs 2-Standing Water 
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2. Methods and Materials 

2.1. Univariate Analysis Using Zhang and 
Boos Test 

In order to identify the nature and the strength of the 
relationships between response variables and explanatory 
variables, it is essential to do a univariate analysis before 
going on to the advanced analysis phase. However, the 
usual Pearson Chi-square test fails to assess relationships 
accurately within the multilevel framework. The Generalized 
Cochran Mantel Haenszel test proposed by [3] can be used 
for correlated categorical data in order to assess the initial 
relationships among response variables and explanatory 
variables in a multilevel framework. It provides three 
different kinds of test statistics, namely TEL, TP and TU. 
Previous simulation studies [3] have proved that TP is the 
preferred test statistic over TU and TEL as when there are a 
small number of strata as in the dataset of interest. 

2.2. Principal Component Analysis 
Principal component analysis (PCA) is a multivariate 

technique which involves a mathematical procedure that 
converts a set of correlated response variables into a 
smaller set of uncorrelated variables called principal 
components (PCs). This technique is usually appropriate 
when the variables are highly correlated. A few artificially 
created linear combinations from the PCA, are used to 
explain the total variability of the data. When performing 
a PCA one needs to determine the actual dimensionality of 
the space in to which data fall. This is given by the 
number of eigenvalues that are not zero (or not close to 
zero). The eigenvector associated with the largest 
eigenvalues has the same direction as the first principal 
component. The direction of the second principal 
component is determined by the eigenvector which is 
associated with the second largest eigenvalue. The 
eigenvalues greater than one are selected since these 
account for most variance of data. 

2.3. Univariate Multilevel Linear Regression 
Model 

2.3.1. Single Level Regression Model 
Suppose there is only a single explanatory variable 𝑥𝑖 

for simplicity. A general model for a single normally 
distributed response is defined as follows, 

 0 1 1,2,, ,i i iy x e i nβ β= + + = …  (1) 

Assume that 𝑒𝑖 ~ 𝑁(0,𝜎2) 
Where 𝑦𝑖 is the 𝑖𝑡ℎ value of the response variable Y, 𝑥𝑖  is 
the 𝑖𝑡ℎvalue of the predictor variable X and 𝑒𝑖 is the error 
in the approximation of 𝑦𝑖  

Here, 𝛽1 is called the slope and 𝛽0 is called the constant 
coefficient or the intercept and these are the parameters in 
the model. 

2.3.2. Standard Regression Assumption 
For the purpose of inference or prediction using linear 

regression models, there are four principal assumptions 

which should be satisfied. These are the linearity and the 
additivity of the relationship between the response Y and 
the predictors, the normality of the error distribution, 
statistical independence of the errors and homoscedasticity 
of the errors. 

2.3.3. Multilevel Regression Model 
Here, the single level model extends to the multilevel 

model to allow the second level variation on the response 
variable. Therefore, it is considered by the random 
intercept or variance component model which allows the 
response variable to vary with the level- 2.  

Suppose there exists a single explanatory variable 𝑥1𝑖𝑗 
measured at the individual level, then (1) is extended to a 
two-level random intercept model as, 

 𝑦𝑖𝑗 =  𝛽0𝑗 + 𝛽1𝑥1𝑖𝑗 + 𝑒𝑖𝑗 (2) 

 𝛽0𝑗 =  𝛽0 + 𝑢0𝑗. 

In here, the intercept consists of two terms as a fixed 
component 𝛽0  and the level 2 specific component, the 
random effect 𝑢0𝑗. 
Assume,  

 0 0 Ω
~

0 Ω
N

j u

eij

u

e
   
   

   
 (3) 

Where, 𝑦𝑖𝑗is the dependent variable measured for 𝑖𝑡ℎ level 
1 unit nested within the 𝑗𝑡ℎ level 2 unit,  𝑥1𝑖𝑗 is the value 
of the level 1 predictor, 𝑒𝑖𝑗  is the random error associated 
with the 𝑖𝑡ℎ level 1 unit nested within the 𝑗𝑡ℎ level 2 unit, 
𝛽0𝑗  is the random intercept of the model, 𝛽1 is the 
regression coefficient associated with X for the 𝑗𝑡ℎ level 2 
unit. 

In general, wherever an item has two subscripts ij, it 
varies at both level 1 and level 2. Multilevel linear 
regression models also depend on the assumptions which 
are mentioned in single-level linear regression models 
previously. However, they may be modified for the 
multilevel scenario. The two-level model can easily be 
extended to higher levels. 

2.3.4. Variable Selection and Model Comparison 
The process of the variable selection determines the 

best subset of predictors which explain the response well. 
Backward Elimination Procedure, along with the Wald 
statistic and Deviance Information Criteria (DIC) was 
used to select the predictors. MLwiN uses Iterative 
Generalized Least Squares (IGLS) method to estimate the 
model parameters. It uses likelihood based frequentist 
methods. Due to this reason, models cannot be compared 
using the usual likelihood ratio test. Model comparison 
was based on the Deviance Information Criterion (DIC) 
value which is a powerful tool to compare models. In 
order to get the DIC value for each step, the Residual 
Iterative Generalized Least Squares (RIGLS) procedure is 
followed by Markov Chain Monte Carlo (MCMC) method. 
Further, the model selection procedure was implemented 
again under the robust method [4] in order to get more 
reliable results when the model assumptions are not 
satisfied. Moreover, robust methods are more reliable as 
these rely less on the underlying model assumption. 
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MLwiN software facilitates implementation of the robust 
standard error for fixed and random parts of the model. 

2.3.5. Residual Analysis and Model Adequacy 
After fitting a model it is essential to carry out a model 

diagnostics process in order to determine whether all the 
underlying assumptions are valid and the fitted model is 
adequate or not. Otherwise, invalid inferences may be 
made. In the multilevel structure, the residual analysis is 
much more complicated than in the classical approach. 
Moreover, it is important to note that the residual analysis 
and diagnostic testing of multilevel models is less well 
known. Even though the specification of the multilevel model 
differs with respect to the nature of the response variable, 
the theory behind the diagnostic testing is the same. 
Unlike other models, the multilevel models have residuals 
at each level. When the levels are increased, computations, 
as well as analysis of the residuals at different levels, 
become more difficult. [4] pointed out that, the higher level 
residuals are more important than the lower level residuals 
for the residuals analysis since, the sample size of the 
higher levels is relatively smaller than the lower level. 

2.4. Bayesian Inference and Markov Chain 
Monte Carlo (MCMC) Method 

While the frequentist approach makes population-based 
inferences only from the sample data, the Bayesian 
approach uses prior information along with the sample 
data to make inferences. Furthermore, frequentist inference 
assumes that the parameters of interest are a fixed constant. 
The flavor of Bayesian inference is the assumption that 
nature can be represented by the model of a probability 
distribution. Therefore, the Bayesian approach differs 
from the frequentist approach and it is sequential in nature. 

Markov Chain Monte Carlo (MCMC) methods are  
the estimation techniques which use Markov Chains for 
sampling from a probability distribution.  These methods 
can be used for both frequentist and Bayesian inference. 
However, MCMC methods are more common for the 
Bayesian framework and MLwiN also uses the MCMC 
procedure for Bayesian modelling. The Bayesian approach 
produces a posterior distribution to make inference using a 
prior distribution and a likelihood function of sample data 
with the distributional assumption. However, it is difficult 
to find the implicit form of the posterior distribution 
practically and it requires high computational power. 
MCMC methods give a solution to this problem following 
a simulation-based procedure. These have the ability to 
sample repeatedly each and every sample depending on 
the previous one, from any desired distribution. Monte 
Carlo integration calculates an expectation by averaging 
the Markov Chain samples. Since obtaining the joint 
posterior distribution directly is difficult, MCMC methods 
use conditional posterior distributions for unknown 
parameters as an alternative approach [5]. 

2.5. Robust Methods for Multilevel Analysis 
As in the other regression models, residuals play an 

important role in the model diagnostic process in 
multilevel modelling this is also the case. The assumptions 
underlying the distribution are always tested through the 

residuals. In general, the individual observations are not 
independent in the multilevel context. They have some 
dependencies within the clusters. Therefore, the errors 
cannot be assumed to be independent and identically 
distributed (i.i.d). Moreover, the sample sizes at the 
highest levels are by definition smaller than the sample 
sizes at the lowest level. Detection of outliers is also more 
difficult in the hierarchical structure [6]. All of these 
reasons may lead to the violation of the assumption of 
normally distributed residuals. When the assumption of 
normality is not met, standard errors can be biased. Simulation 
studies by [6] suggest that only the standard errors of the 
random effects at the higher levels can be highly 
inaccurate if the normality assumptions at higher levels 
are not satisfied. However, the regression coefficients and 
their standard errors show little or no bias. One method of 
overcoming this problem is to correct the asymptotic 
standard errors when the underlying distributional 
assumption does not hold. One well-known correction 
method is to use robust standard errors. 

Robust methods are statistical methods for the estimation 
and the establishment of confidence intervals that are not 
very sensitive to violation of the assumption of the underlying 
statistical [7]. For this purpose, robust methods which use 
the sandwich or Huber/White estimator of the standard 
error can be used. Furthermore, these corrected standard 
errors are called robust standard errors. These are 
available in several software packages which have the 
facility of multilevel analysis. MLwiN has an option to 
use, robust sandwich estimators for the standard errors of 
the variance components. These use the observed residuals 
to estimate the variance components in the model. 

2.5.1. Sandwich Estimators 
The usual estimator of the sampling variance and 

covariances in the maximum likelihood approach is the 
inverse of the Information matrix. The asymptotic variance 
co-variance matrix of the estimated coefficients can be 
defined as, 

 ( ) 1
A

ˆV β  H−=  

Where,  VA  is the asymptotic covariance matrix of the 
regression coefficients and H is the Hessian matrix. 

The sandwich estimator is given by, 

 ( ) 1 1
R

ˆV β  H CH− −=  

Where,  VR is the robust covariance matrix and C is a 
correction matrix which is sandwiched between the two 
H−1 matrices and it is based on the observed raw residuals. 
If the residuals follow a normal distribution, VA and VR are 
both consistent estimates of the covariance of the 
regression coefficients. However, the model based 
asymptotic covariance matrix VA is more efficient. If the 
residuals cannot be assumed to be normal, robust standard 
errors better reflect with the results while asymptotic 
standard errors tend to be biased [3]. 

3. Results 

With the presence of the hierarchical nature of the 
dataset of interest, the most commonly used tests such as 
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the chi-square test cannot be performed here. Hence, the 
GCMH test which is proposed for correlated categorical 
data was carried out under the univariate analysis. 
According to the structure of the data, the water quality 
measurements and all the explanatory variables are 
measured at the location level, monthly. Thus location and 
district can be considered as the second and third levels 
respectively. Hence, the univariate analysis was performed 
considering combinations of the district and location as a 
respective stratification factor. The test carried out was the 
GCMH test taking one response variable at a time for each 
explanatory variable. The results are given in Table 2. 

Table 2. T_p statistic test results for explanatory variable with the 
response 

Response 
variable 

Explanatory 
Variable Tp DF P-Value 

pH 

Rain 5.48266 2 0.064485 
Temperature 3.06667 2 0.215815 

Humidity 16.69753 2 0.000237 
Source Type 10.08277 1 0.001497 

EC 

Rain 11.28184 2 0.00355 
Temperature 2.37806 2 0.304517 

Humidity 1.55616 2 0.459287 
Source Type 35.92562 1 2.05E-09 

Cl 

Rain 3.83997 2 0.146609 
Temperature 0.21671 2 0.89731 

Humidity 3.61201 2 0.16431 
Source Type 1.8698 1 0.48967 

Alkalinity 

Rain 23.59 2 0.000008 
Temperature 8.66163 2 0.013157 

Humidity 4.58005 2 0.101264 
Source Type 101.9664 1 5.65E-24 

Hardness 

Rain 10.07652 2 0.006485 
Temperature 0.52562 2 0.768887 

Humidity 3.07403 2 0.105022 
Source Type 25.53675 1 4.34E-07 

Color 

Rain 134.9747 2 0 
Temperature 41.21924 2 1.12E-09 

Humidity 13.34148 2 0.001267 
Source Type 22.11825 1 2.56E-06 

Turbidity 

Rain 6.11833 2 0.046927 
Temperature 1.34591 2 0.510199 

Humidity 7.81117 2 0.020129 
Source Type 0.00444 1 0.946897 

 
The 20% for the significance was considered as the 

liberal level at this univariate stage. The Generalized 
CMH results indicated that the rain has a significant 
impact on all the chemical as well as the physical water 
quality parameters. The source type has shown a 
significant impact on most of the chemical parameters 
except Cl of water. Only the color of the water depicts a 
significant association with source type when considering 
the physical parameters. The humidity has a significant 
impact on most of the chemical as well as physical 
parameters except EC of the water. It indicates that the 
temperature has a significant impact only on the alkalinity 
and color of the water, not on others. 

Since there are 7 correlated response variables, it leads 
to a more complex situation in the modeling phase. In 
order to overcome this, principal component analysis 
(PCA) which is a dimension reduction technique, was 

used to decompose the response variables into several sets. 
Since different parameters are measured in different units, 
the correlation matrix was used to perform PCA. The first 
principal component explains 58% of the total sample 
variance and the second component explains 28.8% 
individually. Hence, the first two principal components 
collectively explain 86.8% of the total sample variance. 
The eigenvalues indicate that the two components provide 
a reasonable summary of the data, accounting for about 
86.8% of the total variance. Subsequent components, each 
contributes about 9.5% or less. Consequently, sample 
variation is summarized very well by the first two 
principal components. The first component has equally 
large positive loadings on all the chemical quality 
parameters. This suggests that the first component is 
primarily a measure of water quality chemically. The 
second component has high positive loadings on all the 
physical quality components. This suggests that the 
second component is primarily a measure of water quality 
physically. 

 
PC1 0.005Colour 0.025Turbidity 0.388pH

0.481EC 0.385Cl 0.478Alkalinity 0.491Hardness
= − + +

+ + + +
 

 
PC2 0.699Colour 0.698Turbidity 0.133pH

0.011EC 0.104Cl 0.018Alkalinity 0.009Hardness
= + +

− − − −
 

From this point, the whole analysis was done separately 
for physical and chemical water quality parameters as 
suggested by the PC’s. 

3.1. Fitting a Multilevel Regression Model 
The advanced analysis basically focuses on the score 

values derived from the Principal Component Analysis. 
Initially, three-level linear regression models were fitted to 
the score values of the first and second principal components 
separately. The first level consists of the monthly water 
quality measurements, the second level consists of the 
locations and the third level consists of the districts. The 
model building procedure was carried out using MLwiN 
v2.19. In order to get the DIC values which can be used 
for model selection [8] the Markov Chain Monte Carlo 
(MCMC) method was implemented with a burn-in of 200 
and a chain length of 5000. The MCMC method for each 
model was used after convergence with Restrictive 
Iteration Generalized Least Squares (RIGLS) method. 

All climatological variables were taken in their continuous 
form since the discretization of continuous variables may cause 
the loss of power. However, due to some non-convergence 
problems which arose with the “Rain” variable, its natural 
logarithm was used for the model building process. 

Two univariate multilevel models for the first and 
second principal components which explain the chemical 
and physical water quality respectively were fitted 
following the backward elimination procedure. Model 
fitting was carried out stepwise starting from the model 
with all main effects and all two-way interaction terms. 
MLwiN could not fit the full model which has all the main 
effects and all possible higher order interactions due to 
non-convergence. In order to determine the most non-
significant variable in the model, the Wald statistic 
together with the DIC value was used at each stage in the 
model building procedure. Furthermore, MLwiN v 2.19 
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takes the lowest category as the base with the presence of 
the categorical variables. 

For example, the Table 3 shows that the base level of 
“Source” variable which is one of the factors in this study, 
is running water. 

Table 3. Base Category of “Source Type” of water 

Variable Base Category 

Source Type Running Water 

3.1.1. The Multilevel Regression Model for the First 
Principal Component Which is Related to the 
Chemical Water Quality 

The score values of the first principal component were 
used as the response variable to model the chemical water 
quality. Only main effects and two-factor interactions were 
considered in the initial stage as MLwiN crashed when 
fitting the full model with all possible interactions. In order to 
identify the most non-significant variable, the P-value of 
the Wald statistic for each variable was tested at the 5% 
level of significance. With the best-fitted model, it is 
essential to check the suitability of the multilevel concept 
by checking the significance of the level 2 (Location) and 
the level 3 (District) variance by the following hypothesis.  

Ho: Unexplained level i variance is zero 
H1: Unexplained level i variance is not zero. 
Since the value zero does not lie within the 95% 

confidence intervals ([0.888, 1.969] and [0.682, 4.945]), 
both location level and district level variance are 
significant respectively implying that of the suitability of 
the multilevel approach.  

In multilevel modeling, the requirement of adequacy 
tests applies most forcefully to the highest levels, since 
these generally have the smaller sample size [3]. Initially, 
Normal probability plots were drawn for level 2 and level 
3 and Anderson Darling test was also performed to check 
the normality. Even though district level residuals satisfy 
the assumption of normality, location level residuals do 
not satisfy the normality as seen from both the normal 
probability plot and the Anderson Darling test. The 
problem of non-normality in residuals usually occurs in 
the practice of multilevel modeling. However, [3] 
recommend two approaches to address the violation of the 
normality assumption in the multilevel regression model 
with the discussion of their strengths and weaknesses. 
These two methods are the use of robust standard errors 

and Bootstrapping. Furthermore, they explain that only the 
standard errors for the random effects at the higher level 
are highly inaccurate if the distributional assumptions 
concerning the higher level errors are not fulfilled. Robust 
standard errors turn out to be more reliable than the 
asymptotic standard errors. The robust standard errors 
were used to refit the model as it is one of the 
recommended approaches and MLwiN also provides the 
facility to use robust standard errors for the parameter 
estimation in the model. The model selection procedure 
was performed again applying the robust standard errors. 

The robust standard errors were equal or very close to 
the asymptotic standard errors, except for the random variance 
in all the levels. However, the robust standard errors do 
not completely correct this, but they do result in more 
accurate significance tests and confidence intervals. However, 
there were no significant differences between the estimates in 
the two models and it was decided to go with the model 
under robust standard errors. Therefore, the fitted model 
under the robust method was considered as the final model 
for the scores of the first principal component to explain the 
chemical component in the water quality. PC1 is assumed to 
follow a Normal distribution and is denoted by 

 PC1~ N(XB, )Ω  

Where, XB is the fixed part of the model  

 
( )

( ) ( )
ijk 0 jk ijk

ijk ijk

ijk

PC1 β 0.391 0.144 Temp

0.110 0.049 Humidity 0.078 0.015 Rain

0.004(0.002)Temp*Humidit .y

= −

− +

+

 

 ( )0ijk 0 0β 10.025 3.960 k jkv u= + +  

 
0 , 1.683

~ 0 , 1.248
0 , 0.

N
523

               
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3.1.2. Residual Analysis of the Final Model for PC1 
After fitting the model, the model adequacy was checked 

by using the Anderson Darling test, Normal probability 
plots, and Caterpillar plots. Since the P-values for the 
Anderson Darling test statistic for district and location 
level residual are more than 0.05, the district and location 
level residuals satisfy the assumption of normality. 

 

Figure 1. Caterpillar plot for level 3 residuals 
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Figure 2.  Caterpillar plot for level 2 residuals 

 

Figure 3. Significant Locations with positive deviation for 1st PC 

The Caterpillar plot for level 3 residuals in Figure 1 
depicts that five residuals do not contain zeros in their  
95% confidence bands and Caterpillar plot for level 2 
residuals in Figure 2 shows that 14 residuals do not 
contain zeros in their 95% confidence bands. These imply 
a significant difference from the overall mean predicted by 
the fixed part from the model. Moreover, it can be seen 
that some locations show a negative residual deviation 

while others show positive deviations. 
Figure 3 and Figure 4 depict the locations which have a 

positive and negative deviation from the overall mean 
predicted by the fixed part of the model respectively. 
Figure 3 indicates locations within districts that show a 
higher chemical properties compared to the average. 
Figure 4 shows locations within districts that show lower 
chemical properties than the average. 
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Figure 4. Significant Locations with negative deviation for 1st PC 

3.1.3. Interpretation and Calculation of the Parameter 
Estimates 

Effects of Rain on the Response variable 
As “Rain” is a continuous variable, 0.078 represents the 

difference in the predicted value of Y which is the score of 
the first PC for each one unit difference in logarithm value 
of the “Rain”, if others variables are held constant. This 
means that if the log of “Rain” is increased by one unit 
and others do not change, PCA 1 will differ by 0.078, on 
average. For the regression coefficient for the log of 
“Rain”, the 95% confidence interval runs from 0.0486 to 
0.1074. 
Effects of Temp*Humidity on the Response variable 

When the interaction terms are significant, the change 
in response varies for each level or value of the variables 
in the interaction term. Therefore, it was decided to interpret 
interaction terms by using the following calculations. 

 ijk 0 jk ijk ijk

ijk ijk

PCA1 β 0.391Temp 0.110Humidity

0.078Rain 0.004Temp*Humidity

= − −

+ +
 

 Temp x 1, Humidity z= + =  (1) 
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When humidity remain at its average value (z = 80.9) and 
other variables remain as unchanged while temperature 
increases from x to x+1 then there is a decrease of 0.067 
for PC1. 

 Temp x, Humidity=z+1=  (1) 

 Temp x, Humidity z= =  (2) 
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When temperature remains at its average value (x = 27.8) 
and remains unchanged while humidity increases from z 
to z+1 then there is a decrease of 0.008 for PC1.  

Using the same argument, when temperature increases 
from x to x+1 and humidity increases from z to z+1 when 
x and z are both on average then there is a decrease of 
0.00622. 

3.1.4. Multilevel Regression Model for the Second 
Principal Component which Relates to the 
Physical Component of Water Quality 

The score values of the second principal component 
were used as the response variable to model the physical 
component of water quality. Similarly, the above model 
building process was followed for the second principal 
component. P-value of the Wald statistic for each variable 
was tested at 5% level of significance to determine the 
significance of the estimates at each stage. After the final 
model was fitted, the suitability of the multilevel concept 
was checked by testing the significance of the level 2 and 
level 3 variance. 

Ho: Unexplained level i variance is zero 
H1: Unexplained level i variance is not zero 
As the value zero does not lie within the 95% 

confidence intervals ([0.010, 0.453] and [0.203, 0.485]), 
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both location level and district level variance are 
significant respectively implying that of the suitability of 
the multilevel approach.  

Priori concluding the fitted model is adequate, it is 
important to check the assumptions underlying the regression 
model. Therefore, as the first step normality of the level 2 
and level 3 residuals were examined by drawing normal 
plot as well as performing Anderson Darling tests. 

As in the previous case which is the model for PC1, 
level 2 residuals violate the normality assumption even 
though level 3 residuals follow the normal distribution. 
Therefore, it was decided to refit the model again estimating 
the parameters using robust standard error as previously 
done. The backward elimination method was adopted for 
the model selection procedure. The significance of the 
parameter wholly depends on the Wald statistic. The fitted 
model for PC2 is given below. 

 PC2 ~ N(XB, )Ω  

Where, XB is the fixed part of the model. 
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3.1.5. Residual Analysis of the Final Model for PC2 
Similarly, the model adequacy was checked by using 

the Anderson Darling test, Normal probability plots, and 
Caterpillar plots. The district and location level residuals 
satisfy the assumption of normality as the P-values for the 
Anderson Darling test statistic for district and location 
level residual are more than 0.05. 

Caterpillar plot depicts that three residuals do not 
contain zeros in their 95% confidence bands. These 
districts are Ampara, Hambantota, and Kegalle. They 
imply significant differences from the overall mean 
predicted by the fixed part from the model. 

Furthermore, it can be seen that Ampara and 
Hambantota districts show negative residual deviation 
while Kegalle district presents positive residual deviation 
according to the Figure 5. Therefore, these districts show a 
high district effect on the second principal component. 

In Figure 6, it is interesting to see that there are 11 
water intake locations that exhibit 95% confidence bands 
that do not include zero. Furthermore, it implies that 4 
locations have positive deviations, and seven locations 
have a negative deviation from the overall mean predicted 
by the fixed part of the model. Thus, these locations give a 
high contribution to the location effect of the model. 

 

Figure 5. Caterpillar plot of level 3 residuals 

 

Figure 6. Caterpillar plot of level 2 residuals 
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Figure 7. Significant Locations for 2nd PC 

This indicates that the 4 locations in Kegalle have a 
higher physical component compared to the average and 
the 7 locations in Ampara and Hambantota have a lower 
physical component compared to the average. 

3.1.6. Interpretation and Calculation of the Parameter 
Estimates 

The intercept-only model estimates the intercept as  
-21.5454, which is simply the average score value of 
PCA2 across all locations and districts. 

Effects of Temp*Humidity on the Response variable 
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 Temp x 1, Humidity z= + =  (1) 
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When humidity remain at its average value (z = 80.9) and 
other variables remain as unchanged while temperature 
increases from x to x+1 then there is an increase of 0.103 
for PC2. 

 Temp x, Humidity z 1= = +  (1) 
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 Temp x, Humidity z= =  (2) 

 

( )
0 jk

ijk

ijk

0 jk

ijk

1 (2)

β 5.383Source 0.912*x

0.250*(z 1) 0.138Rain

0.064Source*(z 1)
0.111Source.Rain 0.010*x*(z 1)

β 5.383Source 0.912*x 0.250*z

0.138Rain 0.064Source*z

0.111Source.

ijk

ijk

−

− + 
 
+ + − 

=  + + 
 + − + 

− + +

− − +

+ ijk

0.250 0.064*Source 0.

Rain 0.01

010

0* *

x

x z

 
 
 
 

= + −

 − 

 

Base category of the Source variable is “Running”. Its 
value is 1 which is defined in the introduction chapter. 
Therefore, it takes value of one.  

 
0.250 0.064*1 0.010*27.48
0.0392
0.04.

= + −
=
=

 

There is an increase of 0.04 units for PC2 when 
humidity is increased by one unit while temperature 
remains at its average (27.48), Source variable is at its 
base level (running water) and all other variables remain 
the same irrespective of their values. 

Effects of Source*Humidity on the Response variable 
This interaction term can be interpreted while considering 

the base category (running water) of the Source variable. 
It takes the value of one. Calculations are same as above. 

 Source 1, Humidity z 1.= = +  

There is an increase of 0.039 units for PC2 when 
humidity is increased by one unit while temperature 
remains at its average (27.48), Source variable is at its 
base level (running water) and all other variables remain 
the same irrespective of their values. 

Effects of Source*Rain on the Response variable 

 Source 1, Rain y 1.= = +  

There is an increase of 0.249 units for PC2 when 
logarithmic value of the rain is increased by one unit while 
Source variable is at its base level (running water) and all 
other variables remain the same irrespective of their values. 

When the Source variable is not at its base level, that’s 
standing water, same variables which predict PC1 are 
effected to the PC2 also. The running water more related 
with physical component of the water than the standing 
water source.  As there are three interactions in this model 
it is tedious to calculate the scenario of x+1, z+1 
compared with x, z. However, using the same principles as 
in the case of PC1 this can be achieved. 

4. Discussion 

The temperature, Humidity, Rain and the interaction effect 
Temperature*Humidity showed significance in the model 
for the first principal component. The 1st PC is composed 
of pH, EC, Cl, Alkalinity, and Hardness of the water. The 
Rain which was significant with all these chemical water 

quality variables in the univariate analysis was also significant 
in the advanced analysis phase. However, Source type was 
significant with most of the chemical water quality 
variables, it fails to be significant in the advanced analysis.  

The Source Type, Temperature, Humidity, Rain and the 
interaction effect Source*Humidity, Source*Rain and 
Temperature*Humidity, showed significance in the model 
for the second principal component. The 2ndPC is 
composited of Color and Turbidity of the water. In the 
univariate analysis, while all the covariates were 
significant with the color of the water, only Rain and 
Humidity were significant with Turbidity of water. 
However, all the covariates were significant with the 
physical component of the surface water. 

Since the rain was significant in both chemical and 
physical components of the surface water, it can be 
concluded that the rain has an impact on the surface water 
quality. Past evidence is also available to prove this 
relationship. A study conducted in South Korea has shown 
that the amounts of the rainfall or patterns of rainfall event 
have an impact on changes of water quality [9]. 

It can be concluded that the temperature has an impact 
on the surface water quality since it was significant in both 
models. Moreover, when looking at the available literature, 
there is a study in France which discusses climate change 
on water quality. The study revealed that the relationship 
between temperature and water quality further concluding 
stream temperature changes could have occurred 
approximately due to air temperature changes [10] 

Furthermore, when considering 3rd level variation for 
the chemical and physical component of water, it can be 
seen that the chemical component varies most with the 
districts compared to the physical component. However, 
both chemical and physical components vary with water 
intake locations in the same way. 

4.1. Limitations of the Study 
In the advanced model building phase, MLwiN crashed 

with the 3 level multivariate multilevel model for both 
physical and chemical parameters. Therefore, two 
univariate multilevel models were fitted for both first and 
second principal components which explain the chemical 
and physical component of water respectively. 

Non-convergence of the model occurred with the “Rain” 
variable and MLwiN crashed. Therefore, the natural 
logarithm of “Rain” was used instead of “Rain” variable 
in both the model building process. 

5. Conclusion 
The conclusion of the study was that water quality 

varied geographically and over time according to climatic 
conditions. Furthermore, higher consideration should also 
be given to climatic factors such as rain, temperature, and 
humidity to improve water quality. 
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