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1. Introduction and Preliminaries 

Metric fixed point theory is one of the most important 
and fundamental area of analysis. Due to this a flood of 
research work have been generated from this area. As a 
part of this study generalisation of metric space becomes 
one of the most interesting topic in which many researchers 
have devoted and continued working. Since the introduction 
of metric space by Frachet, there is a lot of generalisation 
of this space. Some of them which can be mentioned are 
2-metric space, D-metric space, cone metric space, fuzzy 
metric space, Menger space, probabilistic metric space, 
partial metric space, quasi metric space, b-metric space, 
multiplicative metric space, modular metric space, cyclic 
metric space, S-metric space, b-cone metric space etc.  

In a recent paper, Aghajani et.al. [1] introduced a new 
generalisation of metric space. They used the concepts of 
both G-metric [2] and b-metric [3,4,5] and generated a 
new definition and named it as Gb-metric space. They also 
pointed out that the class of Gb-metric space is effectively 
larger than that of G-metric space and G-metric space 
becomes a particular case of Gb-metric space. They 
claimed that every Gb-metric space is topologically 
equivalent to a b-metric space. For more results on  
Gb-metric space one can study the research papers in [6-10] 
and references there in. 
Definition 1.1 [2]  

Let X be a nonempty set and G: X3 → R+ be a function 
satisfying the following properties: 

1. G(x, y, z) = 0 if and only if x = y = z; 
2. 0 < G(x, x, y) for all x, y ∈ X with x ≠ y; 
3. G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with z ≠ y; 
4. G(x, y, z) = G(x, z, y) = G(y, z, x) = . . .(symmetry in 

all three variables); 

5. G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X 
(rectangle inequality). 

Then the function G is called a G-metric on X and the 
pair (X, G) is called a G-metric space. 

Following definition was given by I. A. Bakhtin [3] 
Definition 1.2 [3]  

Let X be a (nonempty) set and b ≥ 1a given real number. 
A function d: X × X → R+ (nonnegative real numbers) is 
called a b-metric provided that, for all x, y, z ∈ X, the 
following conditions are satisfied: 

1. d(x, y) = 0 if and only if x = y; 
2. d(x, y) = d(y, x); 
3. d(x, z) ≤ b[d(x, y) + d(y, z)] 
The pair (X, d) is called a b-metric space with parameter b.  

Definition 1.3 [1]  
Let X be a nonempty set and b ≥ 1 be a given real 

number. Suppose that a mapping G: X × X × X → R+ satisfies: 
(Gb1) G(x, y, z) = 0 if x = y = z, 
(Gb2) 0 <G(x, x, y) for all x, y ∈ X with x, y, 
(Gb3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with y ≠ z. 
(Gb4) G(x, y, z) = G(p[x, y, z]), where p is a 

permutation of x, y, z (symmetry), 
(Gb5) G(x, y, z) ≤ b(G(x, a, a) + G(a, y, z)) for all x, y, z, 

a ∈ X (rectangle inequality). 
Then G is called a generalized b-metric and pair (X, G) 

is called a generalized b-metric space or Gb-metric space. 
It should be noted that, the class of Gb-metric spaces is 

effectively larger than that of G-metric spaces. Following 
example given by Aghajani [1] shows that a Gb-metric on 
X need not be a G-metric on X. 
Example 1.4 [1]  

Let (X, G) be a G-metric space, and G∗(x, y, z) = G(x, y, 
z)p, where p > 1 is a real number. Note that G∗ is a Gb-
metric with b = 2p-1. 

Also in the above example, (X, G∗) is not necessarily a 
G-metric space. For example, let X = R and G-metric G 
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be defined by G(x, y, z) =1/3(|x -y| + |y-z| + |x -z|), for all 
x, y, z ∈ R. Then G(x, y, z)2 = 1/9(|x-y|+|y-z|+|x-z|)2 is a 
Gb-metric on R with b = 22-1 = 2, but it is not a G-metric 
on R. To see this, let x = 3, y = 5, z = 7, a = 7/2 we get, 
G∗(3, 5, 7) = 64/9, G∗(3, 7/2, 7/2) = 1/9, G∗(7/2, 5, 7)= 
49/9, so G∗(3, 5, 7) = 64/9 ≤50/9 = G∗(3, 7/2, 7/2) + 
G∗(7/2, 5, 7). 

Following definitions and properties are given in 
Aghajani et. al. [1]. 
Definition 1.5 [1] 

A Gb-metric G is said to be symmetric if G(x, y, y) = 
G(y, x, x) for all x, y ∈ X. 
Definition 1.6 [1] 

Let (X, G) be a Gb-metric space then for x0∈X, r > 0, 
the Gb-ball with centre x0 and radius r is BG(x0, r) = {y ∈ 
X|G(x0, y, y)<r}. 

For example, let X = R and consider the Gb-metric G 
defined by 

 ( ) ( )2, , 1/ 9 | |G x y z x y y z x z= − + − + −  

for all x, y, z ∈ R. Then  
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By some straight forward calculations, we can establish 
the following. 
Proposition 1.7 [1]  

Let X be a Gb-metric space, then for each x, y, z, a ∈ X 
it follows that: 

(1) if G(x, y, z) = 0 then x = y = z, 
(2) G(x, y, z) ≤ b(G(x, x, y) + G(x, x, z)), 
(3) G(x, y, y)≤ 2bG(y, x, x), 
(4) G(x, y, z)≤b(G(x, a, z) + G(a, y, z)) 

Definition 1.8 [1] 
Let X be a Gb-metric space, we define dG(x, y) =  

G(x, y, y)+G(x, x, y), it is easy to see that dG defines a b-
metric on X, which we call it b-metric associated with G. 
Proposition 1.9 [1] 

Let X be a Gb-metric space, then for any x0 ∈ X and  
r > 0, if y ∈ BG(x0, r) then there exists a δ > 0 such that 
BG(y, δ) ⊆ BG(x0, r). 
Definition 1.10 [1] 

Let X be a Gb-metric space. A sequence {xn} in X is said 
to be: 

1. Gb-Cauchy sequence if, for each ε >0, there exists a 
positive integer n0 such that, for all m, n, l ≥ n0, G(xn, xm, xl) < ε; 

2. Gb-convergent to a point x ∈ X if, for each ε > 0, 
there exists a positive integer n0 such that, for all m, n ≥ n0, 
G(xn, xm, x) < ε. 
Proposition 1.11 [1] Let (X, G) be a Gb-metric space, 
then the following are equivalent: 

1. the sequence {xn} is Gb-Cauchy. 
2. for any ε > 0, there exists n0∈ N such that  

G(xn, xm, xm) < ε, for all m, n ≥ n0. 
Proposition 1.12 [1] Let (X, G) be a Gb-metric space, then 
following are equivalent: 

 

1. {xn} is Gb-convergent to x. 
2. G(xn, xn, x)→ 0 as n → ∞. 
3. G(xn, x, x)→ 0 as n → ∞. 

Definition 1.13 [1] A Gb-metric space X is called  
Gb-complete if every Gb-Cauchy sequence is Gb-
convergent in X. 
Definition 1.14 [1] Let (X, G) and (X, G') be two Gb-
metric spaces. Then a function f : X → X' is Gb-continuous 
at a point x ∈ X if and only if it is Gb-sequentially 
continuous at x, that is, whenever {xn} is Gb-convergent to 
x,{f (xn)} is G'b-convergent to f (x). 
Lemma 1.15 [1] Let (X, G) be a Gb-metric space with b≥1, 
and suppose that {xn}, {yn} and {zn} are Gb-convergent to 
x, y and z respectively. Then we have  
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In particular, if x = y = z, then we have lim
n→∞

G(xn,yn,zn) = ε.  

Jungck [11] introduced the concept of compatible 
mappings in metric spaces. Jungck, Murthy and Cho [12] 
introduced the concept of compatible mappings of type (A) 
on metric spaces and proved some common fixed point 
theorems for compatible mappings of type (A). In 1995, 
Pathak, Kang and Beak [13] introduced the concept of 
weak compatible mapping of type (A) and proved some 
common fixed point theorems for weak compatible 
mappings of type (A) on Menger spaces. Readers can see 
about various forms of compatible mappings in the 
research papers in [14-33] and references therein. We state 
the following definitions in the setting of Gb-metric space. 
Definition 1.16 Let (X, G) be a Gb-metric space. A pair  
{f, g} is said to be compatible mappings if lim

n→∞
G(fgxn, 

gfxn, gfxn)=0, whenever {xn} is a sequence in X such that 
lim

n→∞
fxn= lim

n→∞
gxn=t for some t in X. 

Definition 1.17 Let (X, G) be a Gb-metric space. A pair  
{f, g} is said to be compatible mappings of type (A) if 
lim

n→∞
G(fgxn, ggxn, ggxn)=0 and lim

n→∞
G(gfxn, ffxn, ffxn)=0, 

whenever {xn} is a sequence in X such that lim
n→∞

fxn= lim
n→∞

gxn=t for some t in X. 
Definition 1.18 Let (X, G) be a Gb-metric space. A pair  
{f, g} is said to be weak compatible mappings of  
type (A) if lim

n→∞
G(fgxn, ggxn, ggxn)=0, whenever {xn} 

 is a sequence in X such that lim
n→∞

fxn= lim
n→∞

gxn=t for 

some t in X. 
The following propositions are easy to prove and hence 

we omit their proofs. 
Proposition 1.19 Let f, g: (X, G)→(X, G) be mappings. If 
f and g are weak compatible mappings of type (A) and 
ft=gt for some t in X, then fgt=ggt. 
Proposition 1.20 Let f, g: (X, G)→(X, G) be mappings. If 
f and g are weak compatible mappings of type (A) and 
lim

n→∞
fxn= lim

n→∞
gxn=t for some t in X. Then we have  

lim
n→∞

gfxn=ft, if f is continuous. 
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The aim of this paper is to prove a common fixed point 
theorem for two pairs of weak compatible mappings of 
type (A) in Gb-metric space. 

2. Main Results 

Our first result is the following common fixed point 
theorem. 
Theorem 2.1 Suppose that f, g, M and T are self-mappings 
on a complete Gb-metric space (X, G) such that f(X) ⊆ 
T(X),  g(X) ⊆ M(X). If 
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holds for each ,x y X∈ with 0 < q <1 and 3
2

b , then f, 

g, M and T have a unique common fixed point in X 
provided that M and T are continuous and pairs {f, M} 
and{g, T}are compatible. 
Proof. Let x0∈X. As f(X) ⊆ T(X), there exists x1∈X such 
that fx0 = Tx1. Since gx1∈  M(X), we can choose x2∈X 
such that gx1 = Mx2. In general, x2n+1 and x2n+2are chosen  
in X such that fx2n= Tx2n+1 and gx2n+1 = Mx2n+2. Define  
a sequence yn in X such that y2n= fx2n= Tx2n+1, and  
y2n+1 = gx2n+1 = Mx2n+2, for all n ≥ 0. Now, we show that yn 
is a Cauchy sequence. Consider 
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which is a contradiction.  
So, max = 2bG(y2n-1, y2n, y2n) and we have 
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i.e., G(y2n, y2n+1, y2n+1) ≤ 2q/b5G(y2n-1, y2n, y2n). 
Let λ = 2q/b5. Since b ≥ 3/2 we have that 0 < λ <1.  
Now, 
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and so on. 
Hence, for all n ≥ 2, we obtain  
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On taking limit as m, n →∞ , we have G(ym, yn, yn) 
0→  as bλ<1. Therefore {yn} is a Cauchy sequence. Since 

X is a complete Gb-metric space, there is some y in X such 
that 

2 2 1 2 1 2 2lim lim lim lim .
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We show that y is a common fixed point of f, g, M and 
T. Since M is continuous, therefore 
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Since the pair {f, M} is weak compatible type (A), lim
n→∞

G(fMx2n, Mfx2n, Mfx2n) = 0. So by proposition 1.20, we 
have  
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Lemma 1.15, we get 
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Consequently, G(My, y, y) ≤ qG(My, y, y). As 0 < q <1, 
so My = y. Using continuity of T, we obtain lim

n→∞
T2x2n+1 = 

Ty and lim
n→∞

Tgx2n+1 = Ty. 

Since g and T are weak compatible type (A),  
lim

n→∞
G(gTxn, Tgxn, Tgxn) = 0. So, by proposition 1.20, we 

have lim
n→∞

gTx2n= Ty. Putting x = x2n and y = Tx2n+1 in (1), 

we obtain 
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G Mx T x T x

G fx Mx Mx
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 
 ≤  
 

  
  
  +
  

 (4) 

Taking upper limit as n →∞ in (4) and using Lemma 
1.15, we obtain 
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which implies that Ty = y. Also, we can apply condition (1) 
to obtain 
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 (5) 

Taking upper limit n →∞ in (5), and using My = Ty = y, 
we have 
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which implies that G(fy, y, y) = 0 and fy= y as 0 < q <1. 
Finally, from condition (1), and the fact My = Ty = fy = y, 
we have  
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which implies that G(y, gy, gy) = 0 and gy= y. Hence My = 
Ty = fy= gy= y. If there exists another common fixed point 
x in X for f, g, M and T, then 
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which further implies that G(x, y, y) = 0 and hence, x = y. 
Thus, y is a unique common fixed point of f, g, M and T.  
Example 2.2 Let X = [0, 1] be endowed with Gb-metric 
G∗(x, y, z) = (|y +z -2x|+|y- z|)2, where b = 4. Define f, g, M 
and T on X by  

 ( ) ( )8/ 4 ,f x x=  

 ( ) ( )4/8 ,g x x=  

 ( ) ( )4/ 4 ,M x x=  

 ( ) ( )2/8 .T x x=  

Obviously, f(X) ⊆ T(X) and g(X) ⊆ M(X). Furthermore, 
the pairs {f, M} and {g, T} are weak compatible mappings 
of type (A). For each x, y ∈  X, we have 
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( ) ( )( ) ( ) ( )( )
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fx gy x y

x y x y

G Mx Ty Ty
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= + −
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where 4
25
4

≤q ≤ 1 and b = 4. Thus, f, g, M and T satisfy all 

condition of Theorem 2.1. Moreover 0 is the unique 
common fixed point of f, g, M and T. 
Corollary 2.3 Let (X, G) be a complete Gb-metric space 
and f, g: X → X two mappings such that 

 
( )

( ) ( ) ( )
( ) ( )( )6

, ,

, , , , , , , , ,
max

1/ 2 , ,  , ,

G fx gy gy

G x y y G fx x x G gy y y

G x gy gy G fx y
q

b y

  ≤  
+  

 

holds for all x, y ∈  X with 0 < q <1 and b ≥ 3/2. Then, 
there exists a unique point y in X such that fy= gy = y. 
Proof. If we take M = T = IX (identity mapping on X), then 
theorem 2.1 gives that f and g have a unique common 
fixed point.  
Note. If we take f and g as identity maps on X, then 
Theorem 2.1 gives that M and T have a unique common 
fixed point.  
Corollary 2.4 Let (X, G) be a complete Gb-metric space 
and f: X → X mapping such that 

( )
( ) ( ) ( )

( ) ( )( )6

, , , , , , , , ,
, , max

1/ 2 , , , ,

G x y y G fx x x G fy y y
G fx fy fy

G
q

b x fy fy G fx y y

  ≤  
+  

 

holds for all x, y ∈  X with 0 < q <1 and b ≥ 3/2. Then f 
has a unique fixed point in X. 
Proof. Take M and T as identity maps on X and f = g and 
then apply Theorem 2.1. 
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