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Abstract  The purpose of this study was to evaluate the methods used to assess “optimism” in regression models. 
Particularly, focus was on the use of pseudo 2R  values of cox &snail and the Nagelkerke to identify the best statistic 
for measuring “optimism” in regression models, measure model performance and determine the relationship 
between “optimism” and over fitting. Different underlying data sets assume different models that fit their data 
accurately. However, the fitted regression models usually fit the data they are based on better than new data. This is 
what we call ‘optimism’. Specific focus will be on determining the best statistic for measuring optimism in 
regression models, assess model performance using ‘optimism’ through cross-validation and also determining  
the relationship between optimism and over fitting of regression models. The study focus on three models  
(Cox-regression, Logistic regression and Linear Regression) and bootstrap procedure was used. 
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1. Introduction 

Regression models are powerful tools that are frequently 
used variously by both researchers and scholars in studies 
[1] in his work on regression model and forecasting he 
found out that regression models provided the analysis 
and estimation of parameters for forecasts. Regression 
models can also handle partially observed (censored) 
responses [2] in his study on survival analysis censoring 
marked the difference between other statistical analysis 
and survival analysis. A fitted regression model will fit the 
data it was based on better than any other new data [3] in 
studying the procedure when adjusting for optimism  
and over fitting in measures of predictive ability using 
bootstrapping prognostic models performed differently 
with test data from the training data. It is a requirement for 
analysts to create prognostic models that have the ability 
to reflect accurately the patterns that exist in different 
underlying data sets. 

1.1. Measuring Prediction Error 
Usually it is paramount for a researcher to assess the 

quality of every model before using it in any data set. By 
virtue of natural grounds, common practice, most models 
are highly optimized for the data in which they were 
trained [4] when investigating the role of noise variables 
in model building the characteristics of the training  
data plays a major role in the complexity and overall 
performance of any model. Expected errors exhibited on 

new data will always be higher than the expected errors  
on training data [5] used model validation in studying 
optimism for training error where it was discovered that 
test data had higher values of optimism whenever used to 
test model performance. 

 
.

Trueprediction error
training error training optimism= +

 

When the modeler is more optimistic, then the training 
error will be better compared to the value of the true error. 

1.1.1. The Danger of Over Fitting 
From this perspective, a model that minimizes training 

error will automatically reduce the predication error for a 
new data set. It is therefore recommendable to ignore the 
distinction between training error and the prediction error 
to allow for model selection [6] when lying down the 
criteria for model selection the role of training and 
prediction errors were observed in the overall method 
assumed by the modeler and hence their assumption. The 
reason being that optimism is a function of model 
complexity, as complexity increases so does optimism. 
The relationship for the true prediction error takes the 
following form;  

 
( ).

Trueprediction error
Training Error f Model complexity= +

 

Model complexity increases when the number of 
parameters is increased and this will ensure the model 
does a better job for training data, which is a fundamental 
property of statistical models [7] when studying mathematical 
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and computer modeling it was seen that lack of methodology 
in choosing the best model fit stems from a poor 
understanding on the ways in which the study rely on the 
particular model.  

1.1.2. Data Reduction 
Excellent tools of prediction have always been models 

well fit [8] when studying level of crime in the city of 
Salinas, the absence of statistical tools in predicting was a 
major blow until when regression models were applied. 
The understanding is vested on the total predictor  
degrees of freedom (d.f) ,p  as the number of parameters 
examined during analysis.  

Use of informal analytical methods like graphical work 
makes one unable to determine the value of .p  Instead it 
is paramount to estimate the effective number of parameters 
considered according to the flexibility of fits considered at 
the initial stages of analysis. The predictor degrees of 
freedom ,p  is the number of parameters allowed for 
consideration, in other words, it is the number of regression 
coefficients estimated without algebraic restrictions. It is 
suggested that as a rough rule of thumb, in order for one to 
validate a new sample using predictive discrimination, the 
predictor degree of freedom should not be more than  
m /10, where m is the number of uncensored event times 
in the training sample. When we consider binary outcome, 
m is the number of outcome in the less frequent event. If 
the quantity /10p m≥  then the analyst has to choose a 
data reduction technique that takes care of this and 
shrinkage is the best method.  

1.2. Problem Statement 
Assessing “Optimism” in regression models has been 

approached differently using different methods. There is 
need to evaluate some of these methods so that a better 
one is identified. However, these fitted regression models 
usually fits the data they are based on better than any new 
data. This is what we call ‘optimism’ of the model.  

1.3. Justification of the Study 
The main goal of this study is to assess the methods for 

evaluating “optimism” in regression models and the first 
step is to identify a statistic for measuring “optimism” 
focusing on pseudo 2R  values of Cox&Snell and the 
Nagelkerke. Using these statistics, the model performance 
would also be evaluated and again used to determine the 
relationship between “optimism” and over fitting. These 
methods have varied degree of measure and assessment. 
The tragedy is identifying the best out of these. The most 
important of all these techniques is the ability of a 
technique to ascertain the estimated model performance 
and the model’s variance and stability. 

1.4. Objectives of the Study 

1.4.1. General Objective 
The main objective of this study is to evaluate the 

methods of assessing ‘optimism’ in regression models.  

1.4.2. Specific Objectives 
i.  To determine the best statistic for assessing 

“optimism” in regression models 
ii.  To assess model performance using ‘optimism’ 

through cross-validation.  
iii.  To determine the relationship between “optimism” 

and over fitting of regression models.  

1.5. Hypotheses of the Study 
This study seeks to evaluate the methods of assessing 

“optimism” in regression models.  
The study seeks to test the following hypotheses; 
i.  Null hypothesis: there exists no statistic for 

assessing “optimism” in regression models 
ii.  Null hypothesis: there is no significant difference in 

performance among the three models (cox, logistic 
and linear regression models) 

iii.  Null hypothesis: there is no relationship between 
optimism and over fitting of regression models. 

1.6. Significance of the Study 
The common goal for every model builder, researchers, 

scholars and academicians is the zeal to come up with 
prognostic models reliable and accurate for training and 
unforeseen data [9] in studying prognostic models in 
chronic liver diseases, the prognostic structure in data can 
be studied in many different ways however the most 
recent and accurate method was the use of regression 
models, the cox regression models.  

1.7. Scope of the Study 
The study purports to rivet on assessment of optimism 

exhibited by cox regression, logistic and linear regression 
models. Bootstrapping resampling technique was used in 
evaluating the two pseudo-R-square measures of Cox&Snell 
and Nagelkerke for assessing optimism with regard to 
these three categories of regression models. This is due to 
the nature and wide use of these models by both scholars 
and researchers in different fields and applications.  

2. Literature Review 

2.1. Introduction 
In this chapter the study gave a detailed review of past 

studies on regression models, different types of regression 
models, more specifically cox regression models logistic 
and linear regression models.  

2.2. Types of Regression Models 
In predictive modeling, most people have considered 

linear and logistic regression models as the first 
algorithms [10] listed logistic and linear models as the 
most used models in data modeling and research. 
However it is paramount to understand the existence of 
several types and forms of regression models that have use 
and applications in different types of research data [7] 
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tried to use linear regression to model binary data but he 
resorted to logistic regression when he could not infer. 

2.2.1. Linear Regression 
Among the modeling techniques, linear regression 

occupies the first position. The metric R-Square can easily 
be used for model performance evaluation. The variance 
of coefficient estimates can increase due to the effect of 
multicollinearity, this makes the estimates very sensitive 
to minor changes in the model, prediction errors pronounced 
optimism [11] in his study on multiple regression, he found 
out that multicollinearity occurs when independent variables 
in a regression model are correlated. For the simple linear 
regression model we assume a model of the form;  

 0 1 ,y xβ β ε= + +  

Where 0β  and 1β  are two unknown constants that 
represent the intercept and the slope. They are also known 
as the coefficients or parameters and ε  are the error term. 

If we consider some estimates 0β
∧

 and 1β
∧

 of the model 
coefficients parameters, we predict the future using; 

 0 1 ,y xβ β
∧ ∧ ∧
= +  

Where ŷ indicate a prediction for Y on the basis of 
.X x=  

Multiple linear regressions 
The expression for the multiple linear regressions 

assumes the following form; 

 0 1 1 2 2 ... p py x x xβ β β β ε= + + + + +  
'j sβ  give the average effect on Y  of unit increase of the 

independent variables ' ,j sX  holding all other factors 
constant.  
Interpretation of the regression coefficients 

Each of the coefficients can be estimated and tested 
separately. Correlations amongst predictors cause problems. 
When the predictors, 'j sX  change, then interpretation 
become hazardous since everything else changes. For 
observational data, claims of casualty should be avoided. 
Obtaining the likelihood function for linear regression 
model 

The simple linear regression model states that the errors 
are independent and normally distributed with mean 0  
and variance 2σ .  

The linearity condition;  ( )i i iY xα β χ ε= + − +  
Therefore implies 

 2
i~N( (x - ), )iY α β χ σ+  

Therefore the likelihood function is;  
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Taking the log of both sides; we obtain; 
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This is the log-likelihood function of the linear regression 
model. 

2.2.2. Logistic Regression 
The application of logistic regression is strictly on 

binary data (0/1, True/False, Yes/No). It is of great 
importance to note that the values of the response variable 
range from 0 to 1. The ideal equation for logistic 
regression is as shown below;  
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/ (1 )

ln( ) ln( / (1 ))
log ( ) ln( / (1 ))

.. .k k

odds p p
probability of eventoccurence

probabilitry of eventnotoccuring
odds p p
it p p p

x x x xβ β β β β

= −

=

= −
= −

= + + + +

 

Because logistic regression predicts probabilities rather 
than classes, we can fit it using the likelihood function. 
For each training data points, we have a vector of features 

iχ  and the observed class, iy . The probability of that class 
is either p  if, 1iy =  or 1 p−  if 0iy = . 

The likelihood is then;  
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Taking the log of both sides, the resulting equation 
becomes;   
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This is the log likelihood function for a logistic 
regression model.  

2.2.3. Cox Regression Model 
Cox regression model provides an estimate of the 

treatment effects on survival after adjustment of the 
explanatory variables. The regression employed by cox is 
proportional hazards regression analysis. The cox PH 
model takes the following form; 

 0
1

( , ) ( )exp ,
p

i i
i

h t X h t Xβ
=

 
=   

 
∑  

where 1 2( , ,..., )PX X X=X  are the predictor/explanatory 
variables. Explanation of the formula; product of two quantities; 

( )oh t  Is called the baseline hazard, exponential sum of iβ
and iX  

 



 American Journal of Applied Mathematics and Statistics 129 

'X s  Zero reduces to baseline hazard. The baseline hazard 
is an unspecified function.  

Important properties of the cox PH formula; 
The baseline hazard ( )oh t  does not depend on X  but 

on t  
The exponential involves the 'X s  but not t , the 'X s  

are time dependent. The proportional hazard function 
follows. There exist a number of reasons that make the 
cox PH model popular; 

1.  Robustness; the cox model is a “safe” choice of 
model in most modeling situations that researchers 
can go for.  

2.  The model form; 


10
0

( , ) ( ) exp
p

o i i
i

h t X h t Xβ
=≥
≥

 
= ×   

 
∑



 

makes the estimated hazards to be always  
non-negative. 

3.  ( , )h t X and ( , )s t X can be estimated for a cox 
model using a minimum of assumptions.  

4.  The cox model is preferred to logistic model in 
survival data modeling because logistic model 
ignores survival times and censoring information.  

Computing the hazard ratio; 
The hazard ratio is defined as;  

 ( , ) ,
( , )

h t XHR
h t X

∧
∗

∧
=   

where 1 2 3( , , ,...., )PX X X X X∗ ∗ ∗ ∗ ∗=  and  

 1 2 3( , , ,..., ).PX X X X X=  

Obtaining the likelihood function under censored data 
Assuming we have n  units whose lifetimes are 

governed by a survivor function ( )S t with associated 
density ( )f t  and hazard ( )tλ . Suppose unit i  is observed 
for a time it , if the unit died at it  its contribution to  
the likelihood function is the density at that duration 
which is the product of the survivor and the hazard 
function; 

 ( ) ( ) ( ).i i i iL f t S t tλ= =  

If the event is still alive at time it  then under  
non-informative censoring, the life time will exceed it  
with probability given as; ( )i iL S t=  which becomes the 
contribution of the censored observation to the likelihood. 
Let id  be a death indicator taking the value i  if one unit 
died and zero otherwise, then the likelihood will be 
written as; 

 
1

( ) ( ).
n di

i i i
i i

L L t S tλ
=
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Taking the log and recalling the initial expression that 
links the survival function ( )iS t  and the cumulative 
hazard function ( ),tΛ  we obtain the log likelihood 
function for the survival model given as; 

 { }
1

log log ( ) ( ) .
n

i i i
i

L d t tλ
=

= −Λ∑  

Interpretation of the Hazard ratio 
The hazard for one individual is divided by the  

hazard for a different individual. During interpretation, 

one usually wants 1HR ≥ . That is; ( , )h t X
∧

∗ ≥ ( , )h t X
∧

. 
This therefore means  

X ∗ : the group with larger hazard and X the group 
with the smaller hazard. 

2.3. Model Validation and Assessment 
Scrutiny of the manifest accuracy of a multivariable 

model is not useful when using training dataset [12] when 
applying parametric spectral analysis to multichannel 
event related potentials during cognitive experiments 
found out that model assessment was crucial for proper 
data processing and prediction. 

3. Research Methodology 

3.1. Introduction 
This chapter gives stringent interrogatory features that 

were palpable in the study.  

3.2. Design of the Study 
The study design was simulation. The simulated data 

formed our population and original data from where the 
bootstrap samples were obtained. The discrimination 
statistics which are the two pseudo R-square values,  
the cox&snail and the Nagelkerke (Cragg & Uhler’s) r-
squared were be compared.  

The cox&snell;  

 

2

2
&

( )
1

( )
NINTERCEPT

cox snell
FULL

L M
R

L M
 

= − 
 

 

value together with the Nagelkerke:  
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were obtained from the simulated data 
Where; 

( )INTERCEPTL M  is the likelihood of the intercept model 
(model without predictors) 

( )FULLL M  is the likelihood of the model with parameters 
N  is the number of observed data sets 

3.2.1. General Bootstrap Procedure for Measuring 
Optimism 

1.  The first step is to develop the model using all the  
n subjects and carry out any testing that may be 
necessary. Let 2

&cox snellappR  denote the apparent 
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2
&cox snellR  from the model formed. This is the 

scaled chi-square computed on the same sample 
from which the fit has been derived from. 

2.  It follows that we generate a sample of size n with 
replacement from the original sample considering 
both predictors and response.  

3.  From the bootstrap sample compute the apparent 
2

&cox snellappR  from this model and denote it as
2

&cox snellbootR  

4.  Let 2
&cox snellorigR  denote the apparent 2

&cox snellR  
from the original dataset. Then ‘freeze’ the developed 
model and evaluate its performance on the original 
dataset.  

5.  Compute the optimism by 2
&cox snellbootR -

2
&cox snellorigR  

6.  Steps 2 to 6 are then repeated 100-B times 
The corrected bootstrap performance of the original 

stepwise model is 2
&cox snellorigR -0 this difference is 

closer to the unbiased estimate of the expected value of the 
external predictive discrimination that generated 

2
&cox snellorigR  which is an estimate of internal validity 

penalizing over fitting.  
Using data from a hypothetical population, simulations 

were conducted at individual setting of variables. Averages 
of performance measure were taken over B repetitions for 
a chosen m number events on the predictor variables.  

From the model for obtaining optimism;  

Optimism
sample measure statistic apparent measure statistic= −

 

we obtain optimism for the two statistics for the three 
models as follows; 

 2 2
& &1 cox snellboot cox snellorigOptimism AverageR R= −  

2 2
& &cox snellboot cx cox snellorig cxAverageR R− −−   For the  

cox-regression model 
2 2

& lg & lgcox snellboot t cox snellorig tAverageR R− −− -  For the 
logistic regression model 

2 2
& ln & lncox snellboot cox snellorigAverageR R− −−  For the 

linear regression model 
Optimism 2 

2
kerNagel kebootAverageR - 2

kerNagel ke origR −  
2

kerNagel keboot cxAverageR − - 2
kerNagel keorig cxR −    For the 

cox-regression model 
2

ker lgNagel keboot tAverageR − - 2
ker lgNagel keorig tR −  For the 

logistic regression model 
2

ker lnNagel kebootAverageR − - 2
ker lnNagel keorigR −    For the 

linear regression model 
It is from these measures that the least optimism was be 

obtained and hence the one that was closer to zero was the 
best statistic.  

3.2.3. To Assess Model Performance Using ‘optimism’ 
through Cross-validation 

Using the optimal statistic lets denote this as optimC

obtained in procedure above between 2
&cox snellR  and 

2
kerNagel keR

 
the values were compared across the three 

models. Build the original model from the training data 
and obtain the values of optimC  B Bootstrap samples serve 
as the testing sets for B -cox, logistic and linear models. 
For each of the model obtain the difference for the values 
of optimC  average them to get the value of “optimism”. 

The model with its value of optimC  closer to zero will be 
regarded as the best performing under optimism.  

3.2.4. Using the Number of Parameters to Determine 
the Relationship between “optimism” and over 
Fitting 

Build models with at least three parameters and obtain 
the value of optimC  for each of the three categories of 
interest (cox, logistic and linear) regression models. From 
the models initially built, increase the number of 
parameters from three to four, five, six, seven and if 
possible eight parameters. Obtain the values of optimC . 
Obtain the values of “optimism” and compare across the 
models with reference to the number of parameters 
modeled. 

4. Results and Discussions 

4.1. Data 
The data for this study was obtained through simulations 

of hypothetical populations. For the cox regression and 
logistic models, at least two categorical variables formed 
part of the predictor variables. The package “simstudy” 
alongside “survival” and “BaylorEdPsych” in R were used.  

4.1.1. Diagnostic Checks for Simulated Data 
The study was mainly based on simulated data and 

therefore to ensure it was fit for use in the achieving the 
objectives of the study, it was exposed to a number of 
checks.  

4.1.2. Trend Test for Survival Data 
To perform a trend test, the cox model was fit with a 

factor predictor variable scored as 1, 2, 3… and later a 
post hoc trend test was conducted.  

Table 1. Trend test for survival data 

 coef exp(coef) se(coef) z p 
factor (v4)1 0.369 1.446 0.199 1.86 0.063 
factor (v4)2 0.916 2.500 0.225 4.08 4.5e-05 
factor (v4)3 2.208 9.097 1.026 2.15 0.031 

Likelihood ratio test=18.4   on 3 df, p=0.000356 

 
It can be noted that for the status variable status=0 

which is implicitly part of the contrast. The full coefficient 
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vector is (0, 0.369, 0.916, and 2.208) and the linear 
contrast zz is 0,1,2,3. Thus the data is fit for continued 
analysis. 

4.1.3. Random Forests Model 
These give the average probability of an event 

surviving within a given period of time as shown in the 
graph below;  

The qqplots below provide a visual diagnistics for 
binary data and the simulated data for linear modelling. 

4.2. Identifying the Best Statistic for 
Assessing “optimism” in Regression 
Models 

The two inferential Pseudo r-square discrimination statistics 
were obtained forming our apparent values of interest. The 
values from the three models were as shown below; 

From Table 2, the original values were 0.07347012  
and 0.078304671 for the cox regression model for  
the cox&snell and Nagelkerke pseudo R-square values 

respectively. The average pseudo r-square values after 
running 800 bootstrap samples were 0.07998 and 
0.85951625.This gave an optimism value of 0.00651  
and 0.00765 for the cox&snell and Nagelkerke pseudo  
R-square values respectively. For the linear regression 
model the original values were 0.516475 and 0.711327 
again for the cox&snell and Nagelkerke pseudo R-square 
values in that order while the average Pseudo R-square 
values after 800 bootstrap samples were 0.519114 and 
0.672839 giving an optimism value of 0.00264 and 
0.03849. Thirdly for the logistic regression model the 
original values were 0.018877 and 0.012092 while the 
average Pseudo R-square values were 0.121288 and 
0.148447 yielding an “optimism” value of 0.10241 and 
0.13636. The different values  of “optimism” exhibited  
by the two statistics for the three models nicely confirms 
the fact that “optimism” in measure of predictive ability  
of a model is a function of  the size of data set holding 
other things constant. In reference to [3] this does not rule 
out the fact that “optimism” is also a function of the 
complexity of the fitted model.  

 
Figure 1. Diagnostic plot-survival data 

 
Figure 2. Diagnostic plots-binary and linear data 

Table 2. Best statistic for assessing “optimism” in regression models 

Model Cox-regression model Linear regression model Logistic regression model 

Sample 2
&cox snellR  

2
kerNagel keR  2

&cox snellR  
2

kerNagel keR  2
&cox snellR  

2
kerNagel keR  

Original 0.07347012
 

0.078304671
 

0.516475332
 

0.711327013
 

0.018877944
 

0.012092061
 

sampleaverage 0.07998105
 

0.085951625
 

0.519114265
 

0.672838729
 

0.121288194
 

0.148447378
 optimism 0.006513

 
0.00765334

 
0.0026453

 
0.03849556

 
0.1024150

 
0.1363632
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The Cox & Snell pseudo R-square is given as; 
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While the Nagelkerke pseudo R-square takes the form; 
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Where ( )INTERCEPTL M is the likelihood function for the 
intercept model i.e. the model with only the intercept 
variable. While ( )FULLL M is the likelihood function of 
the full model.  

The ratio of the likelihoods shows the improvement of 
the full model over the intercept model (the smaller the 
ratio the better the improvement). If there are N  
observations in the data set, then ( )L M  is the product of 

N such probabilities. Thus obtaining the thn  root of the 
product ( )L M  provides an estimate of the likelihood of 
each Y  value.

 It is clear from the results above that indeed Cox 
&Snell pseudo r-square statistic has a good measure of 
“optimism”. 

4.3. Assessing Model Performance Using 
‘optimism’ through Cross-validation 

For the second objective on assessing model performance 
using “optimism” through cross validation, the focus was 
on the optimal statistic from the first objective and this 
was the Cox &Snell pseudo r-square statistic. The 
simulated data was partitioned into two; the training and 
the testing data set. Seventy five (75%) percent was used 
for developing (training) the model while twenty five 
percent (25%) was used to test and validate the model. 
The optimism values for the three models were obtained 
as shown in the table below; linear regression model  
had the lowest “optimism” value of 0.04438 followed by  
cox-regression model with an “optimism” value of 
0.06473 and coming third was logistic regression model 
with an “optimism” value of 0.15682. 

Table 3. Model performance “optimism” using cross validation 

Model Training Testing “optimism” 
Cox-regression model 0.05417 0.11890 0.06473

 

Logistic regression model 0.44214 0.59895 0.15682 
Linear regression model 0.02032 0.06470 0.04438 
 
This means therefore linear regression models perform 

better in prediction compared to cox and logistic regression 
models. According to Oredein et al, (2011) model validity is 
the reasonableness and stability in performance on prognostic 
measures of interest. These results show that indeed  
the value of “optimism” can be used to measure model 
performance under cox&snell pseudo r-square statistic. 

4.4. Determining the Relationship between 
“optimism” and Over Fitting of 
Regression Models 

To achieve this objective, the study employed two 
strategies that influence prediction and performance of 
prognostic models. These were sample size and the 
number of predictor variables. 

4.4.1. Determining the Relation between “optimism” 
and Sample Size 

Boot strap samples of different sizes were drawn and 
the size of “optimism” using the Cox & Snell statistic 
determined. These were compared across the three models; 
cox regression model, logistic model and linear regression 
model. The results were as shown in the table below; 
small sample sizes have low “optimism” while large 
samples experience increasing “optimism” as can be seen 
for n=400, the value of optimism is 0.00805740 while for 
n=3000, ‘optimism’ is 0.0520398 for the cox regression 
model, similarly for the logistic regression models and 
linear models, “optimism” increases with increase in sample 
size. This confirms the Peduzzi and Concato (1995) 5-10 
events per variable rule that indeed it results to small 
sample sizes leading to over fitting and optimism. The 
correlation between sample size and optimism for the 
three models is a positive one increasing with an increase 
in sample size. Correlation between sample size and 
optimism for the cox regression model is 0.3696021, for 
logistic regression we have 0.4388737 and 0.6382342 for 
the linear regression model. 

Table 4. Relationship between “optimism” and sample size 
Model Cox-regression model Linear regression model Logistic regression model 

Sample size(n) Optimism1 Optimism2 Optimism3 

400 0.00805740 0.0143361 0.02325167 

500 0.0206130 0.0147324 0.05234892 

600 0.02095420 0.0218329 0.03351217 

700 0.02514201 0.013616 0.07224059 

800 0.06027282 0.051221
 

0.05497586 

900 0.03695850 0.0187048 0.07786700 

1000 0.03825738 0.0162528 0.07790918 

1500 0.04084817 0.0162528 0.08108266 

2000 0.05010051 0.016803 0.08188801 

3000 0.0520398 0.0215589 0.08040247 
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This is a clear indication that there exist a positive 
relationship between sample size and “optimism” for 
prognostic models.  

4.4.2. Determining the Relationship between 
“optimism” and Over Fitting of Regression 
Models Using the Number of Predictor Variables 

To achieve this study obtained the ‘optimism’ values of 
model fit with a minimum of four predictors.  Using three 
predictors as the reference measure of “optimism”, the 
values of “optimism” for the other models were obtained 
are as shown in the table below; “optimism” was 
increasing with increase in number of predictor variables 
for the three models. When the predictors were four in 
number, the value of optimism was 0.083384358 for the 
cox regression model, 0.00711203 for linear model and 
0.081523 for logistic model. When the predictors were 

increased to eight, the optimism values obtained were 
0.088940566 for cox regression model, 0.03582399 for 
linear model and 0.0853161 for logistic model. 

According to [13] over fitting results to “optimism” 
about a model’s performance on new data. In over fitting, 
a model describes the random error or the noise instead of 
the underlying relationship. This agrees with the theory of 
model complexity that an attempt to over fit a prognostic 
model will automatically result to the model becoming 
optimistic. Hence it can be drawn from the result that over 
fitting has a direct positive relation with optimism.  

The multiple line graphs below give a pictorial 
presentation of the relationship between ‘optimism’ and 
over fitting for the three prognostic models.  

It can be seen logistic model has the highest ‘optimism’ 
values when the predictor values are increased. Linear 
regression models have the least tendency of being ‘optimistic’. 

Table 5. Relationship between “optimism” and over fitting-number of predictor variables 
Model Cox-regression model Linear regression model Logistic regression model 

Number predictor variables Optimism Optimism1 Optimism2 

4 0.083384358 0.00711203 0.081523 

5 0.084218083 0.01359329 0.0749533 

6 0.088714951 0.02405008 0.0694775 

7 0.088730511 0.0332091 0.0658123 

8 0.088940566 0.03582399 0.0853161 

 
Figure 3. Multiple line graph showing the relationship between ‘optimism’ and over fitting 

5. Conclusions and Recommendation 
The main objective of the study was to evaluate 

methods used to assess “optimism” in regression models; 
the use of inferential pseudo r-square statistics through 
bootstrapping is indeed very informative and reliable. The 
use of cox&snell pseudo r-square statistic provided a 
platform to measure optimism in models that cannot be 
determined using the ordinary r-square statistic; a special 
case is the logistic regression model.  Note that choosing 
cox&snell pseudo r-square as the best statistic to measure 
optimism does not leave out Nagelkerke statistic since 

they all determine model performance which is an 
important element to every model builder. Under large 
samples, they both give similar results. Levels of 
Optimism have a direct influence to model performance. 
Optimistic models will give unreliable results since they 
will only predict well the data that was used to develop 
them.  

Larger samples minimize prediction errors however, 
when the noise variables are modeled as opposed to the 
underlying variables of interest then the model fails to 
stand the test of good fit and prediction. When the samples 
are large we have a wide window of modeling noise 
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variables as opposed to smaller samples however care 
should be taken when deciding the sample size to avoid 
under fitting, where underlying model fails to capture the 
trend of the data at hand. The more the predictor variables 
the more optimistic the model becomes rendering the 
model less reliable in prediction. From the results of the 
study it would be plausible to recommend the use of 
pseudo r-square statistics in determining “optimism” of 
regression models.  

Further studies need to be conducted on assessing the 
discrimination ability of models using the pseudo r-square 
statistics, Possibility of using the pseudo statistics when 
inferring on model fit as opposed to the ordinary r-square 
since they can be computed for all prognostic models.  
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