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Abstract  This paper resolves the conflicts that exist between various cointegration tests for cases when different 
tests for cointegration provide different answers under the same data set. The tests considered are, Augumented 
Dickey Fuller (ADF) test, Hansen Lc test, Johansen’s test, and Stock and Watson (SW) test. The Monte Carlo 
experiments conducted show that the Stock Watson and Johansen tests can be grouped together while ADF test 
significantly shows different performances from that of Hansen Lc test. 
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1. Introduction 

The concepts of cointegration are being widely used in 
empirical studies in various areas of economics in order to 
analyze relationships among non-stationary time series. 
The cointegration hypothesis states that: among variables 
that are individually integrated of order one [I(1)], at least 
one linear combination of the variables exists that is 
stationary or integrated of order zero [I(0)].  

Since Granger (1981) introduced the concept of 
cointegration, a number of authors have suggested various 
tests to determine the number of cointegrating vectors in a 
system of [I(1)] variables. Engle and Granger [1] 
suggested an Augumented Dickey Fuller (ADF) test on 
ordinary least squares (OLS) residuals from regression of 
one variable upon the others. The asymptotic theory for 
this OLS “residual-based” approach has been developed 
by Engle and Yoo [2], Phillips and Ouliaris [3] and 
Hansen [4]. A likelihood ratio (LR) test using full 
information maximum likelihood estimation (MLE) was 
proposed and developed by Johansen [5,6]. Alternative 
test have been proposed by Phillips and Solo [7], Stock 
and Watson [8], Phillips and Ouliaris [3], and Park and 
Phillips [9] among others. 

Gonzalo [10] and Stock and Watson [8], among others 
addressed the issue of efficient estimation of cointegrating 
vectors with Monte Carlo method. Gonzalo recommended 
estimating the cointegrating vectors with Johansen’s 
method. However, Phillips et al [3] derived exact finite-
sample distributions of maximum likelihood estimators of 
cointegrating vectors and showed how Johansen’s 
procedure may produce unreliable estimates. Stock and 
Watson [8] gave an empirical example. Gregory (1990) 
compared the performance of two cointegrating tests in a 
specific linear quadratic model. Stock [11] conducted a 
limited Monte Carlo study of some cointegrating tests. 
Also, Kremers et al [12] demonstrated theoretically and 
with Monte Carlo method cases for which ADF test may 

have extremely low power, and Egn Zakrgsek [13], 
Boswik and Frances [14] reported a few Monte Carlo 
results for weakly independent regressors and two 
parameters settings for the ADF lamda max, and a  
Wald-type test. 

Despite the large number of papers, the theory is not yet 
fully developed. Applied researchers are given little or no 
guidance in the literature as to which test to apply. The 
large number of tests, each with their own non-standard 
distribution, is confusing to many applied researchers. 
Hence this paper addresses this problem by segregating 
the test choices as a basic example. 

The rest of the paper is organized as follows: section 2 
outlines the theoretical distribution of the tests and the 
modelling assumptions. In section 3, we present the result 
using Monte Carlo. In section 4, we give the conclusion 
remarks. The appendix contains the tables of critical 
values for the test statistics. 

2. Data Generating Process 

2.1. Theoretical Distribution of the Tests 

2.1.1. Engle and Granger’s Augmented Dickey – Fuller 
Test 

One of the most commonly used cointegration tes ts is 
Engle and Granger’s augmented Dickey-Fuller (ADF) test. 
In statistics, an augmented Dickey-Fuller test is a test for a 
unit root in a time series sample. It is a version of the 
Dickey-Fuller test for a larger and more complicated set of 
time series models. The augmented Dickey-Fuller (ADF) 
statistic, used in the test, is a negative number. The more 
negative it is, the stronger the rejections of the hypothesis 
that has a unit root at some level of confidence.  

It is assumed that the variables yt and xit, i = 1, …, m, 
are individually I(1). The null hypothesis is that at least 
one linear combination is stationary or 1(0). The variables 
are then cointegrated under the alternative hypothesis. The 
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ADF test involves the ordinary least squares (OLS) 
residuals ut from the cointegration regression.  
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Under the alternative hypothesis of cointegration, tµ  is 
integrated of order zero and tµ  is hence stationary. The 
next step is to apply OLS to equation 1 get 

 1 .t t t ttu u vα ψ µ−∆ = + +  (2) 

and n should be chosen, so that, the residuals are serially 
uncorrelated. In order to choose the lag length n in the 
Monte Carlo study, a data-dependent lag selection 
criterion is applied: Akaike’s Information Criterion (AIC). 
This is a commonly used criterion in empirical research in 
connection with the ADF test.  

2.1.2. Stock and Watson’s SW test 
The p (=m + 1)- dimensional vector Xt is defined to 

contain the variables ty  and itx . The Stock-Watson 
method allows, unlike non-system-based tests, to 
determine how many cointegrating vectors exist in the 
vector autoregressive system 

 1 .t t tX X ζ−= Ψ +   (3) 

The covariance matrix estimate is given by 

 "
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using again the quadratic spectral kernel. In comparison to 
the single-equation model, the systems approach requires 
a first-order autogressive coefficient estimate for  
each element of the vector tζ which is (px1),  

where 1
t t tX T X−Ψ = − ∑ . Under the null hypothesis  

of no cointegration, min( 1)SW T λ= −  should not be 
significantly different from zero. The asymptotic 
distribution of the test statistic depends on p and critical 
values are given in Stock and Watson (1994). 

2.1.3. Johansen’s λmin Test 
Looking for cointegration between variables is currently 

widespread in empirical economics, namely: to find 
relationships among non-stationary variables, to test for 
convergence, to look at causality among variables, etc. In 
such research, the Johansen technique has been accepted 
as a powerful way to test for cointegration – justified by 
the works of Phillips [15] and Gonzalo [10], among others. 
Nevertheless, this technique can sometimes produce 
results that appear to be counter-intuitive. One of these 
outcomes is related to the transitivity property. 

Johansen [5,16] and Johansen and Juselius [17] developed 
two test to determine the number of cointegrating vectors 
in the p-dimensional vector Xt: 

 1 1 ,t t k t k tX X X vϕ− −= Π + +Π + +  (5)  

where tv  represents vector of i.i.d normal errors. This 
equation may be expressed in error correction form: 

 1 1 1t t k t k t k tX X X X vϕ− − + −∆ = Γ ∆ + + Γ ∆ +Π +  (6) 

with 

 1(1 ), 1, 2,............ 1i i i kΓ = − −Π − −Π = −  (7) 

and 

 1(1 ).kΠ = − −Π − −Π  (8) 

The matrix Π  gives information about a possible 
cointegrating vector among the variables in Xt. The 
number of cointegrating vectors, are identical to the 
number of stationary relationships in the Π -matrix. The 
rank of Π  matrix determines the number independent 
rows in Π , and therefore also the number of cointegrating 
vectors. The rank of Π  is given by the number of 
significant eigenvalues found in ˆ .Π  Each significant 
eigenvalue represent a stationary relation. Under the null 
hypothesis of { } ~ ( )tx I d , with d>1, the test statistics for 
determine the significance of the eigenvalues is non-
standard and hence must be simulated. 

If Π  has reduced rank, there are co-integrating relations 
among the x:s. Thus rank(Π )=0, implies that all x’s are 
non-stationary. There is no combination of variables that 
lead to stationarity, if rank( Π )=p, so Π  has full rank, 
then all variables in tx must be stationary. 

If rank Π  has full rank and then, Xt is stationary. If 
rank Π  = 0, then the model is the traditional first-
differenced vector autoregression. But if 0 < rank Π  = r < 
p, then iΓ = i tXΠ  where Γ  is a p x r matrix of error 
correction vectors and Π  is a p x r matrix of cointegrating 
vectors so that i tXΠ  is stationary even though tX  itself 
is nonstationary. 

If Π  has reduced rank, 0 r p< < , the cointegrating 
vectors are given as αβ ′Π =  where iβ  represents the i:th 
co-integrating vector, and jα  represents the effect of each 

co-integrating vector on the ,p tx∆  variables in the model. 
Once the rank of Π  is determined and imposed on the 
model, the model will consists of stationary variables or 
expression, and estimated parameters follows standard 
distributions. 

The next step is to compute the residuals Rkt and Rot 
from OLS regressions o [X2t-k1]’ on Xt-1, on the same set 
of regressors. The product moment matrices are then 
given by  

 1 1

1
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where I, j = 0, k and the eigenvalues 1̂
ˆ................ pλ λ> >  

are the solutions from  

 1
00 0 0.kk ko kS S S Sλ −− =  (10) 

The likelihood ratio test statistic (trace test) for the 
hypothesis that there are at most r cointegrating vectors is 
given by  
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Johansen and Juselius suggested an additional, possibly 
more powerful test λmax (maximum eigenvalue test):  

 max
ˆ(1 ).rTInλ λ= − −  (12) 

For testing the null hypothesis of r-1 cointegrating 
vectors against the alternative of r cointegrating vectors. 
Both tests have nonstandard distributions, which are 
functionals of Wiener processes and are generalizations of 
scalar Dickey-Fuller Wiener processes. Critical values for 
both tests are tabulated in Johansen and Juselius. The  
λ,max test is directly comparable to the other tests when 
setting r = 1 and therefore1 had been use in the Monte 
Carlo study this test.  

Where îλ denotes the estimated values of the characteristic 
roots obtained from the estimated π , and T is the number 
of observations. 

The first statistics tests the null that the number of 
distinct cointegrating vectors is equal to or less than r, 
against a general alternative. traceλ =0 when all 0iλ = . 
The further the estimated characteristic roots are from zero, 
the more negative is (1 ),iIn λ−  and the greater is traceλ . 
The second tests, the null that the number of cointegrating 
vector is r, against the alternative of r+1. Critical values 
for both of these have been calculated by Johansen & 
Juselius [17]. One of the most interesting aspect of the 
Johansen procedure is that it allows for testing restricted 
forms of the cointegrating vector. 

2.1.4. Hansen’s Lc Test 
The Hansen method introduced in Hansen [4] is a 

generalization of the semiparametric method for a model 
with changing parameters.  

 1t t t ty xβ µ= +  (13) 

 [ ]1 2,t t tx x x=  (14) 

 1 1t tx k=  (15) 

 0
2 1 1 2 2 2t i t tx k k x= Π +Π +  (16) 

 0 0
2 2 1 2t t tx x µ−= +  (17) 

where tβ is a vector of time-dependent parameters, 

1 2andΠ Π  are matrices of (constant) parameters 1tk  and 

2tk . 

1tk  is a deterministic polynomial, contains a constant and 
a linear trend. 

2tk is also a polynomial in t ( but it does not appear in the 
regression 2tx ). 

The long run covariance matrix Ω  is defined by 
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and then Λ matrix, which represents bias due to 
endogeneity of tx , is defined as  

 
1 1

1lim ( )
T T

j t
T t j

E
T

µ µ
→∞ = =

′Λ = ∑∑  (19) 

where [ ]1 2t tµ µ ′′ ′ . 
Matrices Ω and Λ are nuisance parameter matrices. Ω  

is approximately equal to the long-run variance of 1tµ  
conditional on 2tµ . For a weakly stationary innovations 
vector tµ is proportional to the spectral density matrix 
evaluated at zero frequency. 

The equation (11) estimated with use of OLS gives 
estimate of the parameter ˆ

tβ  and OLS residual 1ˆ tµ . From 
equation (13), we obtain OLS residual 2ˆ tµ . 

Let  
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The matrices Ω and Λ are estimated with use of 
spectral density method applied to the series ˆtµ . 

Hansen [4] suggests that when serial correlation is 
present, then the approach of Andrews and Monahan 
(1992) should be adopted, namely: first ˆtµ  should be 
prewhitened, after estimation of VAR 

 1ˆ ˆ ˆ .t t teµ ρµ −= +  (21) 

The residual t̂v are used in subsequent steps of the 
estimation of Ω and Λ . 

The next step of the Hansen method is based on spectral 
density estimation of the residuals, and estimation of Ω
and Λ  matrices. The covariance matrices Ω and Λ  could 
be estimated directly from the residual ˆtµ  via a kernel. In 
most applications, the cointegration residual 1ˆ tµ  has a 
significant degree of serial correlation. In this event, the 
kernel estimate will be highly biased, unless a large 
bandwidth parameter is used, which increases the variance 
of the estimator. In such cases, an estimator based on 
prewhitening is often preferable in moderate sample sizes. 
VAR (vector autoregressive), a higher order can be used. 
One first fit a VAR to the residual 1ˆ ˆ ˆt t teµ ρµ −= + . A 
kernel estimator is the applied to the whitened residual t̂e . 
These take the form  
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where w(.) is a weight function (or kernel) that yields 
positive semi-definite estimates and M is a bandwidth 
parameter. The estimator ˆ eΩ  can be seen as a scaled 
estimate of the spectral density of te  (when te  is 
covariance stationary) and has its origin in the literature 
on spectral density estimation. 

2.2. Data Generating Process 
The Monte Carlo study is based on the modified data 

generating process of Dolado et al [18], David Bernstein 
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and Bent Nielson [19], which has been used in several 
papers in the literature. The canonical form of the process 
allows us to see the dependence of the test performance on 
some key parameters. 

Let yit be a p-dimensional vector, where i is the index 
for the cross-section, t is the index for the time dimension 
and p denotes the number of variables in the model. The 
data generating process has the form of a VAR(1) process. 
The general form of the modified Dolado process for a 
system of three variables in the absence of a linear trend in 
the data is, 
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where the initial values of itv  which can be represented as 

ity  are zeros. The error terms for each cross-section has 
the following structure: 
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The true cointegrating rank of the process is denoted by 
r and 1 2,it itε ε t are the disturbances to the stationary and 
non-stationary parts of the data generating process, 
respectively. ε  represents the vector of instantaneous 
correlation between the stationary and non-stationary 
components of the relevant cross-section. 

Taking into account (equation1), when a b cφ φ φ= = =1, 
a cointegrating rank of r = 0 is obtained. Thus, the data 
generating process becomes, 

 3 1 ,it it ity yσ ε−= +  (26) 

where ( )3. . 0 ,it i i d N Iε  which means that the process 
consists of three non-stationary components and these 
components are instantaneously uncorrelated. The VEC 
representation of (eq2) is: 

 1 .t it it ity y ε−∆ = Π +  (27) 

Here, ( )3 1it iI AΠ = −  and 1 2iA I=  represents the 

coefficient matrix of the VAR(1). As itΠ  is a null matrix, 
(3) turns into: .t ity ε∆ =  

2.3. Derivation of Model 

Generating the data tX  by a random walk without a 
drift: 

 1 , ~ (0,1)t t t tX X Nη η−= +  (28) 

tY  is defined as 

 ,t t tY X V= +  (29) 

where Vt is an AR(1) process, 

 2
1 , ~ (0, )t t t t wV V w w Nρ σ−= +  (30) 

tX  and tY  are cointegrated if ρ <1, and are not 
cointegrated if ρ =1. 

Consider the models in equations (1),(3),(5), and (11), 
therefore, the bivariate case of the general model is given 
by 
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3.1. Simulation Results 
The simulation results of the experiments and selected 

tests for cointegration equation are described below. The 
choice of values for ρ and θ is motivated by earlier studies 
conducted by Hansen and Phillips [20]. All results reported 
below are for a 5% and 1% significance level. The results 
reported in Table 1 to Table 3 are based on explanatory 
variable x for (for the above DGP with m = 1, a = 1). 

Table 1. Power of 5% level test with he null hypothesis of no cointegration when ( ρ  = 0.85) 

 σ =0.25 

η  -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

ADF 0.024 0.035 0.028 0.029 0.034 0.035 0.052 0.054 0.068 0.062 0.063 0.064 0.062 0.061 0.067 0.066 0.065 

SW 0.259 0.324 0.331 0.338 0.345 0.359 0.368 0.374 0.388 0.386 0.366 0.349 0.341 0.337 0.332 0.315 0.302 

maxλ  (SC) 0.511 0.432 0.441 0.422 0.384 0.376 0.372 0.371 0.176 0.174 0.175 0.184 0.245 0.251 0.278 0.293 0.341 

Lc 0.046 0.048 0.052 0.053 0.054 0.054 0.057 0.058 0.061 0.058 0.060 0.059 0.057 0.032 0.031 0.030 0.029 

Table 2. Power of 5% level test with he null hypothesis of no cointegration when ( ρ  = 0.85) 

 σ = 1 
η  -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

ADF 0.136 0.138 0.146 0.156 0.158 0.169 0.184 0.212 0.284 0.263 0.301 0.304 0.305 0.324 0.324 0.425 0.462 
SW 0.258 0.289 0.312 0.339 0.343 0.362 0.369 0.374 0.385 0.366 0.354 0.346 0.341 0.337 0.325 0.318 0.309 

maxλ  (SC) 0.335 0.328 0.322 0.311 0.304 0.286 0.265 0.221 0.176 0.182 0.194 0.201 0.213 0.229 0.241 0.253 0.256 

Lc 0.058 0.059 0.061 0.063 0.065 0.066 0.068 0.071 0.073 0.071 0.069 0.064 0.061 0.059 0.054 0.052 0.042 
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Table 3. Power of 5% level test with he null hypothesis of no cointegration when ( ρ  = 0.85) 

 σ = 3 
η  -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

ADF 0.174 0.179 0.187 0.198 0.213 0.245 0.268 0.273 0.287 0.284 0.281 0.275 0.269 0.264 0.254 0.248 0.243 
SW 0.224 0.236 0.251 0.267 0.277 0.285 0.301 0.308 0.311 0.282 0.281 0.263 0.261 0.252 0.248 0.235 0.231 

maxλ  (SC) 0.242 0.226 0.214 0.205 0.195 0.187 0.154 0.122 0.111 0.146 0.158 0.185 0.201 0.235 0.244 0.269 0.285 

Lc 0.038 0.039 0.040 0.042 0.043 0.045 0.046 0.047 0.048 0.045 0.044 0.043 0.042 0.041 0.040 0.039 0.038 
 
The relative performance of each test and focus are 

discussed first, for the ADF test, and for the SW test. Then, 
the effect of choosing different lag lengths for the ADF 
test and the λmax test follows. In Table 1, when ρ  equals 
0.85, and the equivalent σ is 0.25, the following results 
were obtained. ADF recorded highest value of 0.068 when 
η  is 0 and lowest value of 0.024 when η  is –0.8. SW has 
highest value of 0.388 when η  is –0.1 and lowest value of 
0.259 when η  is –0.8. λmax

 (SC) has highest value of 
0.511 when η  is -0.8 and lowest value of 0.175 when η is 

0.2. ˆ uΡ and ˆ zΡ  have 0.036 and 0.388 as their highest 
values when η  is –0.1 and 0.8 respectively. The lowest 
values are 0.015 and 0.320 when η  is –0.8 for the two. 
Hansen Lc has highest value of 0.060 when η  is zero and 
lowest value 0.029 when η is –0.8.  

In summary, for σ = 0.25 in Table 1, the power of all 
tests is relatively low and the null hypothesis of ‘no 
cointegration’ is not often enough rejected. The Lc test and 
ADF test have the lowest power and, on the hand, the SW 
test and λmax test have the highest powers. The power of 
the residual based tests, except for the Lc test is 
substantially lower than the power of the systems-based 
tests SW. When η  deviates from zero, the power of all 
tests decreases (especially for negative values of η except 
for the (SW) test that shows an increase in power. Hence 
Johansen and SW can be grouped together while ADF 
performances significantly differs from Lc. 
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