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Abstract  This research is motivated by the correlated outcomes of survival times and counts particularly in 
medical data. Analysis on individual patient data consisting of recurrent events of disease progression and survival 
times/death times give better results when a bivariate model/joint model of ‘survival’ and ‘count’ is used rather than 
fitting separate univariate models. For this purpose, a joint model for a proportional hazard survival response and  
a Poisson count responses is presented. The methodological aspects of the proposed model is outlined including 
parameter estimation. The proposed model was examined on a large scale simulation study and superior 
performance was demonstrated over the separate univariate models. The model was further showcased on an actual 
clinical trial data and found out to be capable of capturing the correlation between the survival and count variables 
found in the data. 
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1. Introduction 

Time-to-event data resembles data scenarios where the 
duration to the occurrence of a particular event is of 
interest. This event of interest may be death/survival  
in medical data, failures/breakdowns in reliability  
data, marriage/divorce in social science data etc. The 
distinguishing feature among all such data scenarios is that 
the time taken for an event of interest to occur is recorded. 
In medical data, data on patients may be recorded from the 
onset of the disease until the death/survival of the patient. 
During this time period, patients usually experience 
recurrent episodes of the disease such as recurrences of 
tumors among cancer patients, recurrences of seizures 
among epileptic patients, recurrences of Myocardial 
infarctions among cardiovascular patients and etc. It is of 
paramount importance that the treatments/medication 
given to such patients should have an impact both on their 
recurrent episodes of the disease and also on the time to 
survival/death from the disease. Therefore, in evaluating 
the treatment procedures undergone by the patients, both 
the impact of the treatments on the number of recurrent 
episodes of the disease and the impact of the treatment on 
survival time are being used in analysis. Such analysis 
would reveal whether the treatment had reduced the 
number of disease recurrence and/or increased the survival 
time. Statistical models deployed for such analysis would 
either treat time to survival as the response variable 
leading to survival regression models or use of the number 
of recurrences as the response which leads to the use of 
Poisson regression models. 

Use of separate models for the two responses of 
‘survival time’ and ‘number of recurrences’ resembles 
fitting separate univariate models for the two responses.  

However, it is quite possible that these two responses 
are correlated with each other. That is, the recurrences of 
the disease has some bearing on the survival time of the 
patient whether the patients with higher number of 
recurrence episodes would have a shorter survival time or 
vice versa. When two or more response variables are 
found to be correlated with each other, fitting a 
multivariate model is more preferable than fitting separate 
univariate models to each response variable. Therefore, 
rather than fitting a separate Poisson regression model to 
the number of recurrent events and a survival regression 
model to the time to survival, it is desirable to fit a 
bivariate model or a joint model having two response 
variables of ‘survival time’ and ‘count’ because such a 
model capture the dependency between the responses and 
hence an improved analyses can be performed. This 
background manifested the objective of this research to 
propose a methodology for bivariate/joint modeling of 
‘survival’ and ‘count’ responses. 

2. Literature 

The intended data scenario of this research consists of a 
time-to-event/survival variable and a count variable which 
are correlated. The main particularity here is that both  
of these variables behave as response variables having 
common/different explanatory variables associated with 
each of the two responses. For example, in clinical trials in 
evaluating the treatment procedures given to patients, both 

 



73 American Journal of Applied Mathematics and Statistics  

the number of recurrences of the disease and time to 
survival are regarded as responses and the effect of the 
treatment and/or other predictors are tested against each 
response variables. Therefore, the literature review was 
focused on researches conducted on data with survival and 
count data. As per [15], the old practice was to take the 
survival variable as the response variable while the count 
variable was introduced to the survival model as a fixed 
effect covariate. But, treating the count variable as a 
covariate ignores the randomness in the count variable 
within individuals [5]. A count variable such as the 
number of recurrent events (seizures/tumors) experienced 
by patients would better be treated as a random 
component of a patients and hence treating it as a fixed 
covariate is not so desirable. In line with this, [4] 
suggested to take the count as a covariate measured with 
some error which can be regarded as an improved 
approach than treating it as a fixed effect covariate. 
Surpassing these ideas, [5] indicated through an extensive 
simulation study performed over correlated survival and 
count data that joint models provide more precise 
estimates than standard survival models which take count 
as a covariate and is obviously better than fitting two 
separate univariate models as well. Then, the literature 
review was narrowed down on to instances where joint 
modelling of survival and count data was performed. 
Immense literature is available on joint modeling of two 
or more survival processes such as use of multivariate 
frailty models [7]. Reference [10] has deployed a frailty 
proportional hazard model for jointly modeling survival 
and hospitalization data where data on hospitalizations 
and survival of the patients was considered. The timing of 
hospitalizations was also taken as a time-to-event process 
and time to death was taken as another survival variable. 
Reference [2] have developed such a joint frailty model 
for modeling a recurrence process and a survival process 
and have demonstrated its application for analyzing data 
on some colon cancer patients. In contrast, this study 
considered the cumulative count of the recurrent events 
and overall time to survival/death. Further, the joint model 
presented in this study can be generalized to any count 
response not necessarily a recurrent event count, which is 
perceived to be correlated with the patients’ overall 
survival time such as number of affected organs, number 
of malignant cells. Reference [6] used a Poisson process 
approach for jointly modeling a survival and a count 
variable assuming Poisson distribution for the count 
variable and an Exponential distribution for the survival 
variable. Using the connection between Poisson and 
Exponential distribution and using the memory-less 
property of Poisson processes, they assumed that the rate 
of the Exponential distribution assumed for the survival 
response is similar to the rate of the Poisson distribution 
assumed for the count variable. Then, assuming the 
treatments given to patients had affected multiplicatively 
on the survival, the rate parameter of the Exponential 
distribution is multiplied by a treatment factor. Their 
model is adjusted for possible heterogeneity associated 
with the count variable and also for heterogeneity that 
may be associated with the survival variables [6]. Some of 
the shortcoming of this approach highlighted by them 
were on assuming the rate of the survival variable to be 
same as the rate of the event count and on assuming the 

treatment to be effected multiplicatively on the time to 
survival. The main reason behind these assumptions is to 
use a Poisson process to resemble the joint model. But, 
when considering a general situation such as when the 
count variable resembles some recurrent event of disease 
progression and when the survival variable is the time to 
death, this assumption of having the same rate in the 
Poisson distribution assumed for the count variable with 
the rate of the Exponential distribution assumed for the 
time to death is rather unrealistic. In contrast, the proposed 
methodology of this research is not succumbed to such an 
assumption and the method proposed here is capable of 
fitting a Poisson model/negative Binomial model for the 
count variable selecting the best model for the count 
variable while the survival variable is free to assume any 
parametric/non parametric distribution without being 
constrained on the choice of the distribution made for the 
count variable. 

Another hot topic in joint modelling is on joint 
modelling of survival and longitudinal data where repeated 
measurements of patients are reported and the association 
between these repeated longitudinal measurements and the 
survival is concerned. However, in some situations a batch 
of repeated measurements over a particular variable might 
not be available but a single outcome [9]. This research 
also focuses on such a situation where joint modelling is 
required between a survival response and a single Poisson 
response variable. Generally, joint models of survival and 
longitudinal data have been developed by specifying two 
sub models for survival and longitudinal data and then 
combing the estimates of the sub models to estimate the 
joint models [12]. These joint models use random effects 
to resemble the correlation between observations of the 
same patient while estimates from sub models are 
combined to represent the dependency between the two 
responses of longitudinal and survival. In contrast, this 
research explores the possibility of using random effects 
to denote the association/dependency between two response 
variables. 

3. Methodology 

The theoretical aspects of the proposed joint model is 
outlined in this section. The joint likelihood of the model 
is derived and parameter estimation is discussed 

3.1. Joint Model 
The development of the joint model for a Poisson 

distributed Count response and an Exponential survival 
responses is presented here where it is not assumed that 
the rate of the Poisson and the mean of the Exponential 
distribution are identical as in the method of proposed by 
[6]. 

The correlation between the survival and count 
responses is represented by patient specific random effects 
which are assumed to normally distributed. It is assumed 
that the censoring mechanism of the survival variable is 
non-informative. The notations of the model are as 
follows. 

Let 𝒀𝒀𝒊𝒊 and 𝑻𝑻𝒊𝒊  denotes respectively the count response 
and the survival response of the 𝒊𝒊𝒕𝒕𝒕𝒕 patient for =
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𝟏𝟏,𝟐𝟐, … . . ,𝒏𝒏 . The censoring indicator of the 𝒊𝒊𝒕𝒕𝒕𝒕 patient is 
denoted δi where δi =1 denotes actual survival times and 
δi =0 denotes censored survival times. Let 𝑮𝑮𝒊𝒊 denotes the 
covariate vector of the Poisson model assumed for the 
count responses with a corresponding parameter vector 
denoted by β. Similarly, 𝑾𝑾𝒊𝒊  denotes the q×1 vector of 
covariates of the survival model and γ denotes the 
corresponding q×1 parameter vector.The vector of random 
effects assumed at patient level for joining the two 
responses is denoted by 𝒖𝒖𝒊𝒊  where it was assumed 
𝒖𝒖𝒊𝒊~𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵(𝟎𝟎,𝝈𝝈𝒖𝒖𝟐𝟐). 

After incorporating a shared random effect i.e 𝒖𝒖𝒊𝒊  to 
both the survival and count model, the Poisson models can 
be equated as follows. 
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Although the survival distribution can assume any 
suitable parametric distribution or a Cox proportional 
hazards model, the theory is explained here is in terms of 
an Exponential distribution assumed for the survival 
variable mainly due to the simplicity of explanation and 
hence the simulation study was also performed on an 
Exponential distribution for survival data. The density 
function of Exponential survival model which correspond 
to the probability of actual survival times (i.e uncensored) 
is as follows: 
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The probability of the censored survival times can be 
calculated from the corresponding survival function of the 
Exponential distribution: 
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Assuming these marginal models to be independent 
conditioned on the random effects (i.e 𝒖𝒖𝒊𝒊), the joint 
density can be specified as: 
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3.2. Likelihood Function 
The joint likelihood function of the proposed model can 

be written as follows. 
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A key contribution of the proposed methodology 
emerged due to the challenge of maximizing the above 
complex likelihood function which consists of a survival 
likelihood component and a Poisson likelihood component. 
In existing standard statistical software, maximization of 
the survival likelihood and Poisson likelihood cannot be 
performed within the same routine or package i.e a 
software for fitting Poisson regression models cannot fit 
simultaneously a survival regression model and software 
for survival data cannot fit Poisson regression models. 
Therefore, the existing practice is to use separate routines 
for the survival sub model and Poisson sub model and 
finally combine the results of the two sub models to 
estimate the joint model which requires additional 
programming than existing software routines. Avoiding 
this complexity of using separate software routines for 
survival and count responses, an indirect method of 
estimation is used in this research. This indirect approach 
facilitates estimation of the above likelihood jointly  
using single software routine particularly software for 
Generalized Linear Mixed Models (GLMMs). 

3.3. Parameter Estimation 
A greater flexibility in using shared parameter approach 

for joint modeling is the capability of applying any 
methodology suited for the respective univariate marginal 
models which form up the joint model because conditional 
density of each response over the random effects can take 
the respective marginal density of each response variable. 
Therefore, this research deployed an indirect approach for 
estimating the survival likelihood using any software on 
GLMMs which was feasible simply due to the equivalence 
of the log-likelihoods of a survival model and a Poisson 
model under the assumption of proportional hazard in 
survival data [17]. Survival data distributed as an 
Exponential distribution holds the proportional hazard 
assumption and hence estimating the survival model can 
be done using Poisson/GLM software. The equivalence of 
the likelihoods of survival and Poisson data is explained 
briefly below. 

The Log-likelihood of proportional hazard survival data 
can be derived as (Da Silva & de Lima, 2003): 
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Where 𝜇𝜇𝑖𝑖  denotes the mean survival time, ho(ti) denotes 
the baseline hazard function and Ho (ti) is the cumulative 
baseline hazard. 

Now consider the log likelihood of ‘n’ independent 
Poisson random variables w i~ Poisson(μi

∗)  which 
reduces to [8]: 

 ( )* *
i i i

i
l w log μ μ k.= − −∑  (7) 

It is noteworthy that these two likelihoods are identical 
with respect to maximization except for the last term when 
δi (Censoring indicator) is specified as 𝜹𝜹𝒊𝒊~𝑷𝑷𝑵𝑵𝒊𝒊𝑷𝑷𝑷𝑷𝑵𝑵𝒏𝒏(𝝁𝝁𝒊𝒊∗) 
But, in semi-parametric survival models (Cox-model) and 
with Exponentially distributed survival data, the last term 
on the right hand side of (5) does not involve any 
unknown parameters and hence does not influence the 
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maximum likelihood estimation [1]. This approach is 
being extensively used in the literature for estimating 
fixed effect survival models. But, [8] showed theoretically 
and with an application that this approach of estimating a 
survival model using a Poisson model can be used for 
estimating random effect survival models as well which is 
the case in this research. In line with this, to estimate the 
likelihood contribution to the joint likelihood from the 
conditional survival density 𝒇𝒇(𝑻𝑻𝒊𝒊|𝑼𝑼𝒊𝒊) a pseudo conditional 
Poisson density will be used. Therefore, the joint 
likelihood of the proposed model can now be estimated as 
follows: 
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Maximizing the above likelihood function is tedious 
mainly due to the integration over the random effect 𝒖𝒖𝒊𝒊. 
Therefore, Adaptive Gaussian Quadrature method was 
used for integral approximation (Pinheiro and Bates, 
1995). The SAS procedure Proc NLMIXED was used 
with careful specifications to tally with the proposed joint 
model and with proposed estimation method. It was 
observed that the using ‘trust region method’ of estimation 
improved the functionality of the Joint model in Proc 
NLMIXED. 

4. Simulation Study 

An in-depth simulation study was conducted to  
evaluate the finite sample properties of the proposed 
method and also to compare the performance of the 
proposed joint model with separate univariate models. The 
sensitivity/adaptability of the model to the level of 
dependency between the two responses was the main 
consideration here for which the variance of the random 
effects (𝝈𝝈𝒖𝒖𝟐𝟐) and the parameter ’g’ were used to represent 
the dependency between responses were varied. Treatment 
parameters (𝜷𝜷𝟐𝟐,𝜸𝜸𝟏𝟏)in count and survival model respectively 
were also varied in order to evaluate the effect of the fixed 
effect parameters on the joint model functionality. 

Count data with patient specific random effects can be 
simulated using a Poisson GLMM. For simplicity only 
one covariate named ‘treatment’ (𝒁𝒁𝒊𝒊) was simulated from 

a Bernoulli distribution with a success probability of .5. 
Patient specific random effect was simulated from a 
Normal distribution with  𝑼𝑼~𝑵𝑵(𝟎𝟎,𝝈𝝈𝟐𝟐) . Therefore, the 
model used to simulate count variable is of the form: 
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In simulating survival data, in addition to the random 
effect 𝑼𝑼𝒊𝒊 and treatment covariate 𝒁𝒁𝒊𝒊, a parameter to denote 
the strength of the association between survival and count 
variable was also incorporated which is denoted by ‘g’. To 
simulate Exponential survival data, Cox frailty model of 
the following form was used: 

 ( ) ( ) ( )0 1| exp * .i i it U t Z g uλ λ γ= +  (10) 

The baseline hazard function (𝝀𝝀𝟎𝟎(𝒕𝒕)) was set to 0.15 
and treatment covariate (𝒁𝒁𝒊𝒊) and random effect (𝒖𝒖𝒊𝒊) was 
obtained from those simulated for the count model. Due to 
the relationship between cumulative density function and 
cumulative hazard function in proportional hazard survival 
data, following formula can be used to simulate Exponentially 
distributed survival times (Bender et al, 2005). 

 1log( ) / .15exp( * )i i i iT Uni Z g uγ=− +  (11) 

Where 𝑼𝑼𝒏𝒏𝒊𝒊𝒊𝒊~𝒖𝒖𝒏𝒏𝒊𝒊𝒇𝒇𝑵𝑵𝑵𝑵𝑵𝑵(𝟎𝟎,𝟏𝟏). 
Different specifications for g and Var(ui) were used to 

examine the performance of the joint model while 
regression coefficients 𝜷𝜷𝟐𝟐 𝑵𝑵𝒏𝒏𝒂𝒂 𝜸𝜸𝟏𝟏  were also varied as 
𝜷𝜷𝟐𝟐 = 𝟎𝟎,𝟎𝟎.𝟓𝟓 𝜸𝜸𝟏𝟏 = 𝟎𝟎,𝟎𝟎.𝟓𝟓 . The parameter ‘g’ which 
represents the dependency between the two responses 
were varied as g=-0.8,0, +.8 while variance of the random 
effect was varied as 𝝈𝝈𝒖𝒖𝟐𝟐 =,𝟎𝟎.𝟓𝟓𝟐𝟐,𝟏𝟏𝟐𝟐,𝟏𝟏.𝟓𝟓𝟐𝟐  imposing 
various levels of dependency between the two response. 
Each parameter combination replicated with 1000 
simulations. 

4.1. Simulation Results 
The estimation of the proposed joint model was 

performed via Proc NLMIXED by specifying separate 
conditional likelihood functions for the two response of 
survival and count. The indirect approach outlined in the 
methodology which was previously shown to be 
theoretically and practically viable by [8]was used to 
estimate the survival likelihood within Proc NLMIXED. 
To perform the joint model, it is required to convert  
the data sets into univariate form as outlined in the 
Appendix. Then, the joint model can be specified via Proc 
NLMIXED by specifying separate density/likelihood for 
the two response variables. The separate univariate models 
i.e a Poisson regression model for the count variable and 
an Exponential survival regression model for the survival 
response were also fitted in SAS software. 

Several statistics were extracted over the joint model 
and univariate models fitted for the data simulated namely: 
Type I Error, Power, Bias, Empirical Standard errors of 
the parameter estimates (ESE), coverage probability of  
95% confidence interval that cover the true parameter 
value (CP). Type I error of the F-test for significant 
treatment effect is considered more important here 
because giving a false conclusion of significant treatment 
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effect on survival and/or number of recurrences of the 
disease when there is actually no treatment effect is more 
serious than power of the test which concludes that there 
is a significant treatment effect when actually a treatment 
effect exists. 

Table 1 gives the results of the cases where the true 
values of the treatment parameters are set to ‘0’ i.e 
𝜷𝜷𝟐𝟐 = 𝟎𝟎 ,𝜸𝜸𝟏𝟏 = 𝟎𝟎. Here, the rejection of the null hypothesis 
of the type III F-test gives rise to the Type I Error. In 
addition to Type I error, properties like Bias, Coverage 
Probability, Empirical standard errors of the parameter 
estimates were also used for evaluating and comparing the 
performance of the joint model.  

Table 1. Simulation Results under ‘0’ treatment effect 

  Type I 
Error Bias ESE CP 

𝜎𝜎𝑢𝑢2 = .5, g= 0.8 

𝛾𝛾1 
Univariate .063, -.007 .154 0.937 

Joint .048 0.003 0.169 0.951 

𝛽𝛽2 
univariate 0.044 .0017 .169 0.955 

Joint .024 -.005 0.184 0.975 
𝜎𝜎𝑢𝑢2 = .5, g=- 0.8 

𝛾𝛾1 
Univariate 0.052 0.008 0.155 0.947 

Joint 0.045 -.001 0.168 0.954 

𝛽𝛽2 
univariate 0.064 -.0004 .169 0.936 

Joint 0.041 .0003 0.183 0.958 
𝜎𝜎𝑢𝑢2 = 1, g= 0.8 

𝛾𝛾1 
Univariate .083 .008 .157 .92 

Joint .042 .008 .198 .95 

𝛽𝛽2 
univariate .187 .004 141 .80 

Joint .034 .002 .204 .95 
𝜎𝜎𝑢𝑢2 = 1, g= -0.8 

𝛾𝛾1 
Univariate .052 .008 .155 0.947 

Joint .034 -.001 .198 0.966 

𝛽𝛽2 
univariate 0.162 -.005 141 .819 

Joint 0.054 .003 .204 .945 
𝜎𝜎𝑢𝑢2 = 1.5, g= 0.8 

𝛾𝛾1 
Univariate 0.089 0.0012 0.159 0.911 

Joint 0.043 -0.004 0.227 0.956 

𝛽𝛽2 
univariate 0.215 -.0177 0.198 0.785 

Joint 0.035 -0.0007 0.213 0.964 
𝜎𝜎𝑢𝑢2 = 1.5, g= -0.8 

𝛾𝛾1 
Univariate 0.094 0.0015 0.159 0.906 

Joint 0.056 -0.009 0.229 0.941 

𝛽𝛽2 
univariate 0.215 -.0177 0.198 0.785 

Joint 0.04 0.006 0.213 0.955 
 
The first two cases of Table 1 represented a lower level 

of dependency between the two responses (𝝈𝝈𝒖𝒖𝟐𝟐 =.𝟓𝟓) with 
positive (g=.8) and negative (g=-.8) directions. Here, the 
Type I error rate of both the joint model and the Separate 
Models were within [0.036, 0.064] which is the 95% 
confidence Interval for 5% error rate in 1000 simulations 
except for the Type I Error resulted for the treatment 
parameter for the count response in the joint model  
with positive dependency (case I). When the strength of 
the dependency between the responses was higher 
(𝝈𝝈𝒖𝒖𝟐𝟐 = 𝟏𝟏,𝟏𝟏.𝟓𝟓),  both for the positive and negative 
dependency, the type I Errors of the separate models were 
Inflated whereas the Type I Errors of the Joint models 
were all well within the 95% confidence interval. Thus, 

the joint model showcased superior performance than 
separate univariate models with respect to type I error. 
With respect to Bias of the parameter estimates, both 
modelling approaches resulted in small Bias out of which 
the lower was incurred in the Joint model. Marginally 
high values were observed for the empirical standard 
errors of joint models’ parameter estimates in all the cases 
which were perceived to be due to the non-convergence of 
the model in Proc NLMIXED for which improving/changing 
the parameter estimation procedure would be desirable 
such as the use of EM algorithm for model estimation or 
use of Pseudo-Adaptive Gaussian Quadrature Estimation 
for estimating the Joint model [12,13]. It is noteworthy 
that the coverage probability of the joint model was higher 
in all the cases than that with the case of separate 
univariate models i.e the joint model was capable of 
resulting in a confidence interval which contained the true 
parameter most of the time than that with separate 
univariate models. 

Table 2 gives the results of the simulations done for the 
case with true values of the treatment parameter was not 
equal to ‘0’ and hence the rejection of the null hypothesis 
of the Type II F-test gives rise to the Power of the test.  

Table 2. Simulation Results under non-zero treatment effect 

  Power Bias ESE CP 
𝜎𝜎𝑢𝑢2 = .5, g= 0.8 

𝛾𝛾1 
Univariate .972 .014 .169 .94 

Joint .972 -.004 .184 .95 

𝛽𝛽2 
univariate .925 -.001 .208 .95 

Joint ..902 .001 .22 .963 
𝜎𝜎𝑢𝑢2 = .5, g=- 0.8 

𝛾𝛾1 
Univariate .974 .016 .169 .94 

Joint ..972 -.002 .181 .96 

𝛽𝛽2 
univariate .914 .003 .209 .94 

Joint .9 -.004 .22 .96 
𝜎𝜎𝑢𝑢2 = 1, g= 0.8 

𝛾𝛾1 
Univariate .926 .055 .169 .89 

Joint .915 -.0001 .21 .95 

𝛽𝛽2 
univariate .933 .001 .172 .86 

Joint .855 .002 .228 .96 
𝜎𝜎𝑢𝑢2 = 1, g= -0.8 

𝛾𝛾1 
Univariate .942 .047 .169 .91 

Joint .933 -.008 .209 .96 

𝛽𝛽2 
univariate .93 .006 .173 .84 

Joint .85 .004 .230 .95 
𝜎𝜎𝑢𝑢2 = 1.5, g= 0.8 

𝛾𝛾1 
Univariate .84 .029 .17 .92 

Joint .84 -.004 .238 .95 

𝛽𝛽2 
univariate .823 .005 .206 .786 

Joint .863 .002 .221 .94 
𝜎𝜎𝑢𝑢2 = 1.5, g= -0.8 

𝛾𝛾1 
Univariate .85 .09 .17 .81 

Joint .69 -.004 .241 .95 

𝛽𝛽2 
univariate .812 -.001 .206 .80 

Joint .68 -.001 .220 .95 
 
As per the results given in Table 2, Power was not 

always higher in the joint model in all the cases. It should 
be noted that the assumed value for the parameter i.e .5 in 
the cases simulated above also impact on the rejection of 
the null hypothesis of the type III F-test. Hence, changing 
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the value of the γ1 and/or β2 may improve the Power of the 
test. But, the coverage probability is not sensitive to the 
assumed value of the true parameter because it  
gives the percentage of confidence interval which 
contained the true parameter. So, when considered the 
coverage probability, it can be seen that the Joint model 
outperformed the separate univariate models in all the 
cases in large amounts. Moreover, the bias of the 
parameter estimate were also reduced in the joint model 
especially when the dependency between the two 
responses were higher (𝝈𝝈𝒖𝒖=

𝟐𝟐 𝟏𝟏𝟐𝟐,𝟏𝟏.𝟓𝟓𝟐𝟐). 
In summary, the power is comparable for the joint and 

univariate models for smaller 𝝈𝝈𝒖𝒖𝟐𝟐  however, when 𝝈𝝈𝒖𝒖𝟐𝟐  
becomes larger the power of the joint model is lower 
especially for the case when g=-0.8. As under the null 
hypothesis here too the bias is lower and coverage 
probability is higher for the joint model when compared to 
the univarate models. Also, the standard errors of the two 
parameters are slightly higher for the joint model. 
Summing up the results observed by the simulation study, 
the joint model proposed in this research is better than 
fitting separate univariate models when two responses of 
survival and count are correlated with each other 
particularly with respect to Type I error, bias and coverage 
probability and. 

5. Example 

To examine the performance of the proposed model on 
actual data, an individual patient data from a clinical trial 
on Epilepsy was used. Owing to reasons of confidentiality, 
source of the data and actual names of some of the 
variables are not included here. The data on patient’s age, 
sex, type of seizure, treatment/drug were the predictor 
variables of the models fitted. The outcome variables were 
the number of seizures prior to randomization to a 
treatment and time to first seizure since randomization 
which will be the count and survival Reponses 
respectively. Time to first post-randomisation seizure, is 
an internationally agreed outcome (ILAE Commission on 
Antiepileptic Drugs, 1998) in evaluating the treatment 
given to Epileptic patients. The final dataset consisted of 
924 patients after data pre-processing was carried out. 
Table 3 gives basic information regarding the variables 
and it can be seen that the data is balanced fairly over the 
predictor variables. 

Table 3. Details of the Variables in the Example Data 

Variable  

Type of Epilepsy 
Type I 538(58.2%) 
Type II 372 (40.3%) 

Drug 
Drug A 482 (52.2%) 
Drug B 442 (47.8%) 

Sex 
Male 538 (58.2%) 

Female 386 (41.8%) 

5.1. Fitting Univariate Models 
The results of the two univariate models fitted for the 

two response variables are presented here. A Poisson 
regression model was fitted for the seizure count and an 

Exponential survival model was fitted for the survival 
model which considered the time to first seizure. The 
results of the selected models for each response are given 
in Table 4.  

Table 4. Results of the Univariate Models Fitted to Example Data 

Response Model 
Variables 

Parameter 
Estimates 

Std. 
Error P-value 

Time to 
first Seizure     

 

Intercept 7.75 .01 <.0001 

Drug -0.26 .16 .11 

Type -0.02 .139 .87 

Type*Drug 0.53 .21 0.0199 
No. of 

Seizures     

 

Intercept 1.01 .04 <.0001 

Sex .35 .04 <.0001 

Type -.53 .06 <.0001 

 
When considered the survival model, only the 

interaction term of ‘drug’ and ‘type’ were significant. 
Hence, ‘drug’ and ‘type’ were also kept in the model as 
main effects though they were non-significant at the 5% 
level where a marginal significance was found for the 
variable ’drug’ at 10% level of significance. In the Poisson 
regression model fitted for the number of seizures, the sex 
and Type of Epilepsy were significant.  

5.2. Fitting the Joint Model to Example Data 
Then, a joint model as proposed by this research was 

fitted for the joint response of ‘No.of seizures’ and ‘time 
to first seizure’ of which the chosen model is given in 
Table 5. 

Table 5. Results of the Joint Model 

Response Model 
Variables 

Parameter 
Estimates 

Std. 
Error P-value 

Time to first 
Seizure     

 

Intercept 7.94 .11 <.0001 
Drug -.62 .17 .0004 
Type -.15 .15 .3799 

Type*Drug .85 .23 .0002 
No. of 

Seizures     

 
Intercept .61 .06 <.0001 

Sex .23 .07 .0004 
Type -.44 .07 <.0001 

Covariance 
parameters 𝜎𝜎𝑢𝑢2 0.4407 0.03 <.0001 

 
Among the parameter estimates of the joint model, the 

estimates obtained for random effect used to represent the 
dependency between the two responses, is of greater 
importance and it can be seen that the variance of the 
random effect has resulted in a high significance. Thus, it 
can be confirmed that the two responses are correlated and 
hence a joint model is desirable.  

With respect to fixed effects of the survival model, the 
variable ‘drug’ has resulted to be a significant variable to 
the time to first seizure which was not significant in the 
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univariate model. That is when adjusted for the random 
effect with patient, the effect of the drug is significant on 
timing of the first seizure. Further, the combined effect of 
drug and type of epilepsy has a significant effect on time 
to first seizure of the Epilepsy patients. When considering 
the joint model estimates for the count model, the variables 
‘drug’ and interaction of ‘drug’ and ‘type’, which were 
significant in the univariate count model, was no longer 
significant in the joint model. This indicted that the sex 
and the type of epilepsy could significantly explain the 
variation in the number of seizures among the patients 
when the random effect of patient is incorporated into the 
model. 

6. Discussion 

The main objective of this paper was to propose a 
bivariate model for a joint response of ‘survival’ and 
‘count’ variables. The proposed model was developed 
deploying random effects to obtain the joint distribution of 
the two responses, which is a popular approach in deriving 
joint distributions of correlated variables [12]. This 
approach is being widely used to develop joint models for 
longitudinal and survival data. A key feature in such 
models is that a bunch of repeated measurement are 
available for each patients. However, the literature has 
highlighted the need of joint models for a single repeated 
measurement and survival data [9]. A handful of 
researches were found where the focus on joint modeling 
of survival and count data [5,6,14]. A major limitation in 
the existing models was that survival model can only be 
fitted with a Cox proportional hazard model and/or strong 
assumptions were imposed for the model parameters of 
the marginal models used for survival and count such as 
rate parameter of the Poisson models used for the count 
variable is similar to the rate parameter of the Exponential 
model used for the survival model [6]. The speciality of 
the proposed joint model is that it can assume any suitable 
distribution for the count variable and any suitable 
survival distribution or a Cox model for the survival 
variable. Another distinguishing feature of the proposed 
model is that usually when fitting joint models, specialized 
software is needed (e.g- JM package in R). However, we 
proposed an indirect approach as outlined in the 
methodology section to estimate the joint model within 
any general statistical software with a routine for generalized 
linear mixed models whereas the SAS procedure Proc 
NLMIXED was used here.  

The simulation study revealed that the joint model is 
superior to the univariate marginal models in the sense 
that its parameters had lower bias and higher coverage 
probability when compared to the univariate models. The 
type one error is often within probability limits for the 
Joint model while some cases the type one error is inflated 
for the univariate models especially when the variables 
were highly correlated. What is gained by the type one 
error in the joint model is that rejection of the null 
hypothesis was within stipulated limits and lost by the 
univariate models with a high proportion of rejections of 
the null hypothesis is illustrated under the alternative 
hypothesis too and this is the reason for the higher power 
in the univariate models. It can be argued that it is better 

to have a type one error within limits and have a 
somewhat lower power justifying the use of the joint 
model in place of the univariate models. When it comes to 
the standard errors of the parameters these are almost 
comparable between the two types of models.  

The proposed model was applied to an actual dataset 
which had a count and a survival outcome correlated to 
each other. Since the main purpose for the use of actual 
data to evaluate the performance to the proposed joint 
mode, an in-depth analysis over the example data was not 
included and due to the confidentiality of the data some 
limitations were imposed into use of actual names of the 
variables and etc. However, the joint model fitted to the 
example data showed comparable results with respective 
univariate models, significant estimates for the random 
effects confirmed that the model has captured the 
correlation between the two outcomes, showed different 
combinations of significant fixed effects for each response 
separately. Both the simulated data and actual data fitted 
only a Poisson distribution for the count variable and an 
Exponential distribution to the survival variable. 
Therefore, extending the situation study over other 
candidate distributions for count and survival variables is 
desirable. Further, validation of the proposed model is 
appealing which was unable to be done due to the non-
availability and limitations on the use of actual data. 
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