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1. Introduction 

Definition 1.1 A finite collection of random variables 
1 2, ,..., nX X X  is said to be negatively associated (NA, in 

short) if for every pair of disjoint subsets 1A  and 2A  of 

{ }1,2,..., ,n   

 ( ) ( )( )1 1 2 2Cov : , : 0i jf X i A f X i A∈ ∈ ≤  (1.1) 

whenever 1f  and 2f  are any real coordinatewise 
nondecreasing functions such that this covariance exists. 
An infinite sequence { }; 1nX n ≥  of random variables is 
said to be NA if for every finite sub-collection is NA. 

The concept of NA was introduced by Joag-Dev and 
Proschan [4], and its probability limit properties have 
aroused wide interest because of their numerous 
applications in reliability theory, percolation theory and 
multivariate statistical analysis. By inspecting the proof of 
maximal inequality for NA random variables in Matula [7], 
one can also allow negative correlations provided they are 
small. Primarily motivated by this, Chandra and Ghosal 
[1,2] introduced the following dependence. 
Definition 1.2 A sequence { }; 1nX n ≥  of random 
variables is called AANA if there exists a nonnegative 
sequence ( ) 0q n →  as n →∞  such that 

( ) ( )( )
( ) ( )( ) ( )( )( )

1 2 1
1/2

1 2 1

Cov , ,...,

Var Var ,..., ,

n n n k

n n n k

f X f X X

q n f X f X X

+ +

+ +≤
(1.2) 

for all 1,n ≥  1,k ≥  and for all coordinatewise 
nondecreasing continuous functions 1f  and 2f  whenever 
the variances exist. 

The family of AANA sequence contains NA (in 
particular, independent) sequence (with ( ) 0,q n =  1n ≥ ) 
and some more sequences of random variables which are 
not much deviated from being NA. Chandra and Ghosal [1] 
once pointed out that NA implies AANA, but AANA does 
not imply NA. Namely, AANA is much weaker than NA. 
Since, NA has been applied to the reliability theory, 
multivariate statistical analysis and percolation theory, and 
attracted extensive attentions. Hence, extending the limit 
properties of NA random variables to the wider case of 
AANA random variables is highly desirable in the theory 
and applications. 

For recent various results and applications of AANA 
random variables, we can refer to that Chandra and Ghosal 
[1] obtained the Kolmogorov type inequality and the 
strong law of large numbers of Marcinkiewicz-Zygmund; 
Chandra and Ghosal [2] established the almost sure 
convergence of weighted averages; Wang et al. [10] 
obtained the law of the iterated logarithm for product 
sums; Ko et al. [5] studied the Hájek-Rényi type 
inequality; Yuan and An [14] established some Rosenthal 
type inequalities; Yuan and Wu [15] studied the limiting 
behavior of the maximum of the partial sum under 
residual Cesàro alpha-integrability assumption; Wang et al. 
[11,12], Huang et al. [3] studied the complete convergence 
of weighted sums for arrays of rowwise AANA random 
variables and arrays of rowwise AANA random variables, 
respectively; Yang et al. [16] investigated the complete 
convergence of moving average process for AANA 
sequence; and Tang [9] studied the strong law  
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of large numbers for general weighted sums, Shen  
and Wu [8] obtained some new complete convergence 
results and Feller-type weak law of large numbers, and so 
forth. 

Recently, Liang and Su [6] obtained the following 
complete convergence result for weighted sums of NA 
random variables. 
Theorem A Let { }; 1nX n ≥  be a sequence of NA random 

variables with 0,nEX =  { };1 , 1nia i n n≤ ≤ ≥  be an array 

of real numbers such that ( )2

1

n
u

ni
i

a O n
=

=∑  and ( )1nia O=  

for 20 , 2.u p
p

< < ≥  If 
1

sup ,p
i

i
E X

≥
< ∞  then for 0ε∀ > , 

 1 1/
11 1
max .

j
p

ni i
j nn i

n P a X nε
∞

−

≤ ≤= =

 
 > < ∞
 
 

∑ ∑  (1.3) 

Wang et al. [13] extended the result of Liang and Su [6] 
to AANA random variables as follows. 

Theorem B Let 1 2,r≤ ≤  { }; 1nX n ≥  be a sequence of 

AANA random variables with nEX < ∞  and r
nE X < ∞  

for 1.n ≥  Let { };1 , 1nia i n n≤ ≤ ≥  be an array of real 

numbers satisfying ( )
1

n r r u
ni i

i
a E X O n

=
=∑  and 

( )/

1

q p

n
q n

∞

=
< ∞∑  for some 20 u

p
< ≤  and 

( )1 13 2 ,4 2 ,k kp − −∈ × ×  where integer number 1.k ≥  

Then for 1rα ≥  and 0,ε∀ >  

 2
11 1
max .

j
r

ni i
j nn i

n P X nα αα ε
∞

−

≤ ≤= =

 
 ≥ < ∞
 
 

∑ ∑  (1.4) 

This paper is motivated by Liang and Su [6], Wang et al. 
[13]. We further study the convergence properties for 
AANA random variables and establish the complete 
moment convergence theorem and ( )1 2pL p< <  
convergence theorem. As an application, the complete 
convergence and strong law of large numbers for weighted 
sums of AANA random variables are obtained. The 
obtained results extend and improve the above Theorem A 
and Theorem B. 

The structure of this paper is as follows. In Section 2, 
some important lemmas are firstly provided and the 
complete moment convergence theorem for AANA 
random variables is presented. In Section 3, the pL  
convergence theorem is provided. 

Throughout this paper, let { }; 1nX n ≥  be a sequence of 
AANA random variables with the mixing coefficients 

( ){ }; 1 .q n n ≥  Let ( )I A  be the indicator function of the 
set .A  The symbol C  will denote a positive constant 
which is not necessarily the same one in each appearance, 

( )n na O b=  will stand for .n na Cb≤  

2. Complete Moment Convergence 

In order to prove our main results, the following 
lemmas are needed. 
Lemma 2.1 (Yuan and An [14]) Let { }; 1nX n ≥  be a 
sequence of AANA random variables with the mixing 
coefficients ( ){ }; 1 ,q n n ≥  1 2, ,..., nf f f  fn be all 
nondecreasing (or all nonincreasing) continuous functions, 
then ( ){ }; 1n nf X n ≥  is still a sequence of AANA random 

variables with the mixing coefficients ( ){ }; 1 .q n n ≥  

 
1 1 1
max ,

pk n p
i i

k n i i
E X C E X

≤ ≤ = =

 
  ≤
  
 

∑ ∑  (2.1) 

Theorem 2.1 Let { }; 1nX n ≥  be a sequence of AANA 

random variables with ( )2

1n
q n

∞

=
< ∞∑  and 0nEX =  for 

all 1.n ≥  Let { }; 1na n ≥  be a sequence of positive real 
numbers. For some constant 0λ >  and 1 2,q≤ <  if 

 ( )
1 1

,
n q

n i i
n i

a E X I X λ
∞

= =
> < ∞∑ ∑  (2.2) 

 ( )2

1 1
,

n

n i i
n i

a E X I X λ
∞

= =
> < ∞∑ ∑  (2.3) 

 ( )
1

0 as .i i
n

E X I X nλ
∞

=
> → < ∞∑  (2.4) 

Then for 0,ε∀ >  

 
11 1
max .

qj

n i
j nn i

a E X ε
∞

≤ ≤= = +

 
 − < ∞
 
 

∑ ∑  (2.5) 

Theorem 2.2 Let { }; 1nX n ≥  be a sequence of AANA 

random variables with ( )2

1n
q n

∞

=
< ∞∑  and 0,nEX =  

p
nE X < ∞  for 1 2,q p≤ < <  all 1.n ≥  Let 

{ };1 , 1nia i n n≤ ≤ ≥  be an array of real numbers such that 

( )
1

n p p u
ni i

n
a E X O n

=
=∑  for 0 1u< <  as .n →∞  Then 

for 1pα ≥  and 0,ε∀ >  

 2
11 1
max .

qj
p q

ni i
j nn i

n E a X nα α αε
∞

− −

≤ ≤= = +

 
 − < ∞
 
 

∑ ∑  (2.6) 

Corollary 2.1 Under the conditions of Theorem 2.2, then 

 2
11 1
max .

j
p

ni i
j nn i

n P a X nα αε
∞

−

≤ ≤= =

 
 > < ∞
 
 

∑ ∑  (2.7) 
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Proof of Theorem 2.1 For 1,i ≥  define 

 ( ) ( ) ( ) ,i i i i iY I X X I X I Xλ λ λ λ λ= − < − + ≤ + >  

 
( ) ( ) ( ) ( ).
i i i

i i i i

Z X Y
X I X X I Xλ λ λ λ

= −

= − > + + < −
 

From Lemma 2.1, the sequences of { }; 1iY i ≥  and 

{ }; 1iZ i ≥  are still AANA random variables. For 0,ε∀ >  
then 

 

11 1

1/
0 11 1

1/
0 11 1

1/
11 1

1 1

max

max

max

max

max

qj

n i
j nn i

j
q

n i
j nn i

jq
q

n i
j nn i

j
q

qn i
j nn i

j
q

n i
j n i

a E X

a P X s ds

a P X s ds

a P X s ds

C a P X

λ

λ

ε

ε

ε

ε

λ

∞

≤ ≤= = +

∞ ∞

≤ ≤= =

∞

≤ ≤= =

∞ ∞

≤ ≤= =

≤ ≤ =

 
 −
 
 

  
  = − >
    
 
 = > +
 
 
 
 + > +
 
 

≤ >

∑ ∑

∑ ∑∫

∑ ∑∫

∑ ∑∫

∑
1

1/
11 1

1 2

max

.

n

j
q

qn i
j nn i

C a P X s ds

I I

λ

ε
∞

=

∞ ∞

≤ ≤= =

∆

 
 
 
 
 
 + >
 
 

= +

∑

∑ ∑∫

 (2.8) 

To prove (2.5), it needs only to show that 1 ,I < ∞  and 

2 .I < ∞  When ,iX λ≤  ,i iX Y=  for 0,ε∀ >  

 
( )

( )

( )

1 1

1 1 1

1 1 1

11 1

max

max ,

max ,

max .

j

i
j n i

j n

i i
j n i i

j n

i i
j n i i

j j

i i
j ni i

P X

P X X

P X X

C P X CP Y

ε

ε λ

ε λ

λ ε

≤ ≤ =

≤ ≤ = =

≤ ≤ = =

≤ ≤= =

 
 >
 
 
 
 ≤ > >
 
 

 
 + > ≤
 
 

 
 ≤ > + >
 
 

∑

∑

∑

∑ ∑





 (2.9) 

It follows from (2.2) that 

 

( ) ( )

( )

( )

1 1 1 1

1 1

1 1
.

n n
q q

n i n i
n i n i

qn
iq

n iq
n i

n q
n i i

n i

a P X a EI X

X
C a E I X

C a E X I X

λ λ λ λ

λ λ
λ

λ

∞ ∞

= = = =

∞

= =
∞

= =

> = >

≤ >

= > < ∞

∑ ∑ ∑ ∑

∑ ∑

∑ ∑

 

Note that ( ) ,i i iZ X I X λ≤ >  it follows from 

0,iEX =  i i iX Z Y= +  and (2.4) that 

 

( )

1 11 1

1

max max

0 as .

j j

i i
j n j ni i
n

i i
i

EY EZ

E X I X nλ

≤ ≤ ≤ ≤= =

=

=

≤ > → →∞

∑ ∑

∑
 

By Markov inequality, (2.1) and rc  inequality, we can 
obtain that 

 

( )

( )

( )

( )

11 1

2

1 1

2

1 1

1 1

2

1 1

1 1

max

.

j
q

n i
j nn i

n
q

n i i
n n

n

n i i
n n

n

n i
n n

n

n i i
n n

n q
n i i

n n

a P Y

C a E Y EY

C a E X I X

C a P X

C a E X I X

C a E X I X

λ ε

λ

λ

λ

λ

λ

∞

≤ ≤= =

∞

= =
∞

= =
∞

= =
∞

= =
∞

= =

 
 >
 
 

≤ −

≤ ≤

+ >

≤ ≤

+ >

< ∞

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑

 (2.10) 

Hence, the desired result of 1I < ∞  follows from (2.10) 
immediately. 

Secondly, we will show that 2 .I < ∞  For ,qs λ≥  
define that 

 
( ) ( ) ( )

( )

' 1/ 1/ 1/

1/ 1/ ,

q q q
i i ii

q q
i

Y s I X s X I X s

s I X s

= − < − + ≤

+ > −
 

 
( ) ( ) ( ) ( )

( ) ( )

' ' 1/ 1/

1/ 1/ .

q q
i i ii i

q q
i i

Z X Y X s I X s

X s I X s

= − = − <

+ + < −
 

By the similar argument as the proof of (2.9), we can 
obtain that 

 

( ) ( )

1/
1 1

'1/ 1/
11 1

max

max .

j
q

i
j n i

jn
q q

i ij ni i

P X s

C P X s CP Y s

≤ ≤ =

≤ ≤= =

 
 >
 
 

 
 ≤ > + >
 
 

∑

∑ ∑
 

By (2.2), it follows that 

 
( )

( )

1/

1 1

1 1
.

n
q

qn i
n i

n q
n i i

n i

C a P X s ds

C a E X I X

λ

λ

∞ ∞

= =
∞

= =

>

≤ > < ∞

∑ ∑∫

∑ ∑
 (2.11) 
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Note that ( ) ( )' 1/ ,q
i iiZ X I X s≤ >  it follows from 

0,iEX =  ( ) ( )' '
ii iZ X Y= −  and (2.4) that 

 

( ) ( )

( )

( )

' '1/ 1/
1 11 1

1/ 1/

1

1 1/

1

max max max max

max

0 as ,

j j
q q

i iq qj n j ns si i
n

q q
i iqs I

n
q

i i
i

s EY s EZ

s E X I X s

E X I X s n

λ λ

λ

λ

− −

≤ ≤ ≤ ≤≥ ≥= =

−

≥ =

−

=

=

≤ >

≤ > → →∞

∑ ∑

∑

∑

 

which implies 

 

( )

( ) ( )( )
( ) ( )( )

( ) ( )( )
( )

( )

' 1/
1 1

1/' '

1 1

2
' '2/

1 1

2' '2/

1

22/ 1/

1

1/

1

max

max
2

max

.

j
q

ij n i

j q

i ij n i

j
q

i ij n i

n
q

i i
i
n

q q
i i

i
n

q
i

i

P Y s

sP Y EY

Cs E Y EY

Cs E Y EY

Cs X I X s

C P X s

≤ ≤ =

≤ ≤ =

−

≤ ≤ =

−

=

−

=

=

 
 >
 
 
 
 ≤ − >
 
 

 
 ≤ −  
 

≤ −

≤ ≤

+ >

∑

∑

∑

∑

∑

∑

 (2.12) 

For convenience, let 1,K λ= +  denote 

 

( )

( )

( )

22/ 1/

1 1

22/

1 1

22/ 1/

1 1
.

n
q q

qn i i
n i

n
q

qn i i
n i

n
q q

qn i i
n i

a s E X I X s ds

a s E X I X K ds

a s E X I K X s ds

λ

λ

λ

∞∆ ∞ −

= =
∞ ∞ −

= =
∞ ∞ −

= =

∇= ≤

≤ ≤

+ < ≤

∑ ∑∫

∑ ∑∫

∑ ∑∫

 

Hence, 

 

( )

( )

( )

( )

22/
1

1 1

2

1 1

2

1 1

2

1 1

n
q

qn i i
n i

n

n i i
n i

n

n i i
n i

n

n i i
n i

a s E X I X K ds

C a E X I X K

C a E X I X

C a E X I X K

λ

λ

λ

∞∆ ∞ −

= =
∞

= =
∞

= =
∞

= =

∇ = ≤

≤ ≤

= ≤

+ < ≤

∑ ∑∫

∑ ∑

∑ ∑

∑ ∑

 

 

( )

( )

2

1 1

2

1 1
.

n

n i i
n i

n qq
n i i

n i

C a E X I X

CK a E X I X

λ

λ

∞

= =
∞

−

= =

≤ ≤

+ >

< ∞

∑ ∑

∑ ∑  (2.13) 

Let ,qs u=  it follows from 1 2,q≤ <  K λ>  and (2.2) 
that 

 

( )

( )

( )

( )

( )

( )

22/ 1/
2

1

22/ 1/

1
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1
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1
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1
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1
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1

n
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q i i
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n qK q q
q i i

i
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q q
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i
n

q
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i
n m q
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n

q
i i
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q
i

s E X I K X s ds

s E X I K X s ds

s E X I K X s ds

C u E X I K X u du

C u E X I K X u du

C m E X I K X m

C m E X I k

λ

λ

∆ ∞ −

=

−

=

∞ −

=

∞ −

=
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∞

−
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−
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= < ≤
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∑∫

∑∫

∑∫
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( )
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1
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1

1

1

1
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i
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n

q
i i
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n q
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∞
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∞

−

= =

=
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≤ < ≤ +

≤ >
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∑ ∑

∑ (2.14) 

Hence, the desired result of 2I < ∞  follows from (2.2) 
and the above statements immediately. The proof of 
Theorem 2.1 is completed. 

Proof of Theorem 2.2 Let 2p
na nα −=  and 

ni i
i

a X
X

nα
=  in Theorem 2.1, then 
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(2.15) 
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It follows from 0nEX =  and ( )
1

p p u
ni i

n
a E X O n

∞

=
=∑  

that 
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∑

 (2.17) 

The proof of Theorem 2.2 is completed. 

3. Lp Convergence 

In this section, we will state the Lp convergence under 
some conditions. 
Theorem 3.1 Let { }; 1nX n ≥  be a sequence of AANA 

random variables with ( )2

1n
q n

∞

=
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Proof of Theorem 3.1 For 0,ε∀ >  we use the same 
notations of Theorem 2.1, 
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Note that ( ) ,i i iZ X I X λ≤ >  it follows from 
Lemma 2.2 and (3.1) that 
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 (3.4) 

By rc  inequality, Lemma 2.2, (3.1) and (3.2), we can 
obtain that 
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(3.5) 

From (3.4) and (3.5), we can obtain 1 0J →  and 

2 0J →  as .n →∞  The proof of Theorem 3.1 is 
completed. 

Take /i i nX X a=  in Theorem 3.1, we can 
immediately obtain the following result. 
Corollary 3.1 Let { }; 1nX n ≥  be a sequence of AANA 

random variables with ( )2
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Corollary 3.2 Let { }; 1nX n ≥  be a sequence of AANA 
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Proof of Corollary 3.2 For 0,ε∀ >  we use the same 
notation of Theorem 2.1, It follows from rc  inequality 
and 0nEX =  that 
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By Markov inequality, Lemma 2.2, (3.9) and (3.2), we 
can obtain that 

 

( )

( )

( )

2

2
1 1

2 2

1 1

2

1

2

1

max

0.

j

i i
j n i

n n

i i i
i i
n

i i
i

n

i
i

K CE Y EY

C E Y EY C E Y

C E X I X

C P X

λ

λ λ

≤ ≤ =

= =

=

=

 
 ≤ −
 
 

≤ − ≤

≤ ≤

+ > →

∑

∑ ∑

∑

∑

 (3.12) 

Take into account the definition of iZ  and (3.9), we can 
obtain that 
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The proof of Corollary 3.2 is completed. 
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