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Abstract  This paper seeks to develop a generalized method of generating the moments of random variables and 
their probability distributions. The Generalized Moment Generating Function is developed from the existing theory 
of moment generating function as the expected value of powers of the exponential constant. The methods were 
illustrated with the Beta and Gamma Family of Distributions and the Normal Distribution. The methods were found 
to be able to generate moments of powers of random variables enabling the generation of moments of not only 
integer powers but also real positive and negative powers. Unlike the traditional moment generating function, the 
generalized moment generating function has the ability to generate central moments and always exists for all 
continuous distribution but has not been developed for any discrete distribution. 
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1. Introduction 

The 𝑛𝑛𝑡𝑡ℎ  moment of a random variable, 𝑋𝑋 , about an 
arbitrarily chosen constant, 𝜆𝜆, is defined as the expected 
value of the 𝑛𝑛𝑡𝑡ℎ  power of the difference between the 
random variable, 𝑋𝑋, and the arbitrarily chosen constant, 𝜆𝜆. 
If 𝜆𝜆 is equal to zero the moment of interest is called the 
non-central moment or moment about zero; however, if 
the constant, 𝜆𝜆, is equal to 𝜇𝜇, the mean of the distribution, 
interest is on the central moments [1,2,3]. 

The basic method of determining the 𝑛𝑛𝑡𝑡ℎ  non-central 
moment of a random variable, 𝑋𝑋,  is the moment 
generating function (here referred to as the traditional 
moment generating function), defined as 𝑀𝑀𝑋𝑋(𝑡𝑡) = 𝐸𝐸(𝑒𝑒𝑡𝑡𝑡𝑡 ). 
[4,5]. 𝑀𝑀𝑋𝑋(𝑡𝑡) is usually difficult to evaluate and may not 
exist for some distributions. 

We propose in this paper to develop a more versatile, 
easier and quicker to apply function which for lack of better 
nomenclature shall be called the generalized moment 
generating function. The method, which is similar to the 
traditional moment generating function in formation is able to 
generate moments of powers of random variables that are not 
necessarily positive integers but may be any real number. 

2. The Generalized Moment Generating 
Function 
Let 𝑋𝑋 ba a random variable whose 𝑝𝑝𝑝𝑝𝑝𝑝 is denoted by 

𝑝𝑝(𝑡𝑡);  𝑐𝑐  is any real number that does not need to be 

positive or integral and 𝜆𝜆 is any arbitrarily chosen constant. 
Let 𝐺𝐺𝑋𝑋(𝑡𝑡)  define the generalized moment generating 
function of 𝑋𝑋. Then, 
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𝐺𝐺𝑋𝑋(𝑡𝑡), Equation 1, may be evaluated as follows: 
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The coefficient of 𝑡𝑡
𝑛𝑛

𝑛𝑛 !
 In Equation 2 gives the 𝑛𝑛𝑡𝑡ℎ  

generalized moment of 𝑋𝑋. That is, 
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Equation 3 yields the 𝑛𝑛𝑡𝑡ℎ  generalized moment of the 
random variable, 𝑋𝑋. 𝐸𝐸(𝑋𝑋𝑐𝑐𝑐𝑐 ) is the non-central moment or 
the generalized moment about zero of the random variable, 𝑋𝑋. 

3. General Application 

Suppose 𝑝𝑝(𝑡𝑡) = 2𝑡𝑡  for the random variable, 𝑋𝑋; 0 <
𝑡𝑡 < 1. Using Equation 3, 
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Hence, for 𝑐𝑐 = 1, 𝑛𝑛 = 1, the first moment of 𝑋𝑋 about 𝜆𝜆 
for the distribution is 
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The first moment of the random variable, 𝑋𝑋, about 𝜆𝜆. 
Now, if 𝜆𝜆 = 0, the first non-central moment becomes 
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The second generalized moment may be obtained using 
Equation 4 as 
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Equation 8 gives the variance of the random variable, 𝑋𝑋 
for the distribution 2𝑡𝑡; 0 < 𝑡𝑡 < 1. The same result would 
be obtained using classical methods. 

Now, suppose 1
2

c =  then from Equation 4, 
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Hence the first generalized moment of the distribution 

of 
1
2X  becomes 
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Now if 𝜆𝜆 = 0 , the first non-central moment of the 

distribution of 
1
2X  becomes, 
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The second generalized moment of the distribution of 
1
2X  becomes 
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Now if 8
5

λ  = − 
 

, the second central moment of the 

distribution of 
1
2X  becomes 
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Hence the variance of the distribution of 
1
2X  is 2. 

Suppose 3 ,
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c = −  then from Equation 4, the 

generalized 𝑛𝑛𝑡𝑡ℎ  moment of the distribution of 
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Hence, the first generalized moment is given as 
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Thus if 𝜆𝜆 = 0, the first non-central moment becomes 
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1 11 1 4.µ µ= =  (16) 

Also, the second generalized moment of the distribution 
is 
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Hence the second central moment is 
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4. Application to Some Common 
Continuous Distributions 

4.1. The Beta Family of Distributions 
A random variable 𝑋𝑋 is said to have a beta distribution 

if its density function is of the form: 
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Now, using Equation 3 in Equation 2, the coefficient of 
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Hence, 
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If 𝑐𝑐 = 1, interest is on the first moment of 𝑋𝑋 about 𝜆𝜆 
then it yields 
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So that if 𝜆𝜆 = 0 
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This is the first moment about zero, mean, of the Beta 
distribution. 

Suppose 𝑛𝑛 = 2 and 𝑐𝑐 = 1 then, from Equation 20 
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becomes, from Equation 24, 
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That is, the variance of the Beta distribution. 
Suppose 𝛼𝛼 = 𝛽𝛽 = 1  in Equation 20 it yields the 

generalized moment generating function of the Uniform 
distribution as 
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4.2. The Gamma Family of Distributions 
Let 𝑋𝑋  be a gamma random variable with the density 

function: 
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Using Equation 3 in Equation 2, 
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Letting ,xv
β

=  integrating, simplifying and taking the 

coefficient of 
!
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n

 yields 
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All conceivable moments of the Gamma family of 
distributions are obtained using Equation 29. 

For the second generalized moment of the 𝑋𝑋 where 𝑋𝑋 
has the gamma distribution is 
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If 𝑐𝑐 = 1 then, 
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Hence, if 𝜆𝜆 = −𝜇𝜇 = −𝛼𝛼𝛽𝛽 where 𝜇𝜇 = 𝛼𝛼𝛽𝛽 is the mean of 
the usual gamma distribution, then 
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That is, the variance of the usual gamma distribution. 
The third generalized moment of the gamma family of 

distributions is obtained from Equation 29 as 
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If 𝑐𝑐 = 1  and 𝜆𝜆 = −𝛼𝛼𝛽𝛽  where 𝛼𝛼𝛽𝛽  is the mean of the 
gamma distribution then 

 ( ) 3
3 1; 2 .G αβ αβ− =  (34) 

Hence, the skewness of the gamma distribution is easily 
obtained as 
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In the same way, the fourth moment of the gamma 
distribution about the mean can be obtained as 

 ( ) 4
4 1; 6 .G αβ αβ− =  (36) 

Hence, the kurtosis of the gamma distribution may be 
obtained as 
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Suppose 𝛼𝛼 = 1 in Equation 29, the generalized moment 
generating function of all forms of the exponential 
distribution is obtained as 
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Also, setting 𝛽𝛽 = 2 and 
2
kα =  where 𝑘𝑘 = 1, 2, … gives 

the generalized moment generating function of the chi-
square distribution with 𝑘𝑘 degrees of freedom as 
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The generalized moment generating function can be 
used to obtain moments of powers of random variables 
with non-integer negative indices. For example, the gamma 
density in Equation 28; 𝑐𝑐𝑐𝑐 + 𝛼𝛼 > 0; that is, if the real number 

𝑐𝑐  is such that c α
β
−

≥ ; 𝑐𝑐 = 1, 2, …  and some specified 

value of 𝛼𝛼 > 0. For instance, let 3
2

c = −  and 𝛼𝛼 = 5. 

Particularly, the possible moments of 
3
2X

−
 are 

obtained using Equation 29. Thus, 
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Setting 𝜆𝜆 = 0  in Equation 40 gives the mean of the 

distribution of 
3
2X

−
 where 𝑋𝑋 has the gamma distribution as 
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Now, if 𝑛𝑛 = 2  𝑐𝑐 = 1  and 5 2
256

πλ = −  then the 

variance of 
3
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−
 is obtained from Equation 30 as 
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4.3. The Normal Distribution 
The generalized moment generating function of the 

random 𝑋𝑋  where 𝑋𝑋  has the normal distribution, with 
parameters 𝜇𝜇 and 𝜎𝜎2, and with 𝑝𝑝𝑝𝑝𝑝𝑝 given by 
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may be obtained from Equation 1 as 
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 solving for 𝑡𝑡 , expanding 

binomially integrating and simplifying gives 
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Equation 46 is evaluated at even values of 𝑡𝑡 . Also, 
Equation 46 may be used to generate all conceivable 
moments of all forms of the normal distribution. 

For instance, the second generalized moment of the 
random variable 𝑋𝑋 for 𝑐𝑐 = 1 where 𝑋𝑋~𝑁𝑁(𝜇𝜇,𝜎𝜎2) is 
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Hence, 
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Equation 48 is the variance of the normal distribution. 
Now, 
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Now, the skewness of the normal distribution may be 
obtained as 

 ( ) ( )

( )( )
3

3
22

1;
1 0

1;

G
sk

G

µ

µ

−
= =

−

 (52) 

implying that the distribution is symmetric (Arua et al 1997). 
The kurtosis of the normal distribution may be obtained as 
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implying a mesokurtic distribution [6]. 

5. Conclusion 

This paper has developed and presented the generalized 
moment generating functions of random variables and 
their probability distributions. The method has been 
shown to be quicker and easier to apply than the 
traditional moment generating functions which may not 
exist for some distributions. Thus, the generalized moment 
generating function is more versatile than the traditional 
moment generating function. The new method was 
illustrated with a general probability distribution function, 
the beta family of distributions, the gamma family of 
distributions and the normal distribution. However, this 
method has not been developed for discrete probability 
distributions. 
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List of Abbreviations 

𝐺𝐺𝑡𝑡(𝑡𝑡) is the generalized moment generating function of 
the random variable, 𝑋𝑋. 
𝐺𝐺𝑛𝑛(𝑐𝑐; 𝜆𝜆)  is the 𝑛𝑛𝑡𝑡ℎ  moment of the 𝑐𝑐𝑡𝑡ℎ  power of the 

random variable, 𝑋𝑋 about an arbitrarily chosen constant, 𝜆𝜆. 
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