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Abstract  This paper deals with solving the quantity element using new numerical techniques on discontinues 
boundary element method (DBEM). The common practice in getting solution with BEM is using constant element 
and for that, in a Sub-parametric element, quantity has a constant value along the element and geometry 
discretization is supposed to have a linear variation. But using higher order (polynomial) distribution of quantity 
over elements could have a better description of physical process. For this, the corresponding discretized expressions 
based on new techniques are derived and used for solution of Laplace equation. Many results for the quantity 
elements are presented and discussed for the ellipse at various diameters and mesh numbers. 
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1. Introduction 

Increasing need for high performance numerical 
methods brings up solutions like boundary element 
method (BEM) that has major advantages compared to 
other solutions. One unique feature of BEM is that it uses 
only elements on boundary. This decreases number of 
computational elements which is more interesting when it 
comes to use the method in integrated simulation software 
that requires accuracy and speed at the same time.  

Types of element in BEM include variety of choices 
regarding order of the polynomial that defines them. 
Studying linear element is the first step in implementing 
higher order elements in BEM. It will be said that deriving 
the equations in linear element complies with the concept 
of constant element in many ways. Since explaining and 
implementing constant element is more straightforward 
than higher order elements, they are rarely seen in 
contexts. In 1991, Ingham and Ritchie [1] used continuous 
linear and quadratic boundary element to solve Laplace 
equation with Dirichlet boundary condition and explained 
difficulties of the problem with that boundary condition, 
however discontinuous element has not this problem. After 
that, Tadeu (2000) [2] discussed on using discontinuous 
element both for linear and quadratic element in modeling 
a 3D elastic environment and concluded that using 
discontinuous element decreases error significantly. In 
2004, Ali and Rajakumar [3] presented a specific formulation 
for a 2D linear element. Grecu and Vladimirescu (2005)  
[4] and Grecu et al. (2009) [5] researched on 3D usage of 
continuous linear boundary element in compressible 

medium and showed that linear element results a 
considerable accuracy even if gridding is not very fine. 
Recently Chen et al (2016) [6] has used discontinuous 
element for an acoustic problem. 

As can be seen in Figure 1, the accuracy of methods in 
capturing the exact quantity are getting better from 
constant element to discontinuous linear element. 

2. Governing Equation and Boundary 
Conditions 

Here and in any higher order element, the center of 
element represents the element where the integral 
equations are derived. Therefore, constant element 
formulation and concept is used fundamentally. 

The equation of problem is a 2D Laplace equation and 
boundary condition type is Newman that means gradient 
of quantity (𝑢𝑢𝑛𝑛 ) is known on an ellipse with discretization 
shown in Figure 2. Geometry discretization is done by (1) [7]: 

 ( ) ( )  ( 1, 2, , ).i ix a cos y b sin i Nθ θ= = = …  (1) 

This type of boundary discretization makes the two 
curved ends of ellipse more refined and provides a better 
capturing over desired quantity. 

The boundary element equation of Laplace in form of 
constant element is given according to references [8,9]: 
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Figure 1. Comparison of the quantity (u) with different elements 

 
Figure 2. Problem domain (Left) and boundary discretization (Right) 

 
Figure 3. Distribution of quantity along an element 
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In which G is the Green function of Laplace equation 

( 1 ln
2

G r
π

= ) and 𝜖𝜖 is an expression (
2

i
i α

π
= − ) function 

of angle defining curvature of the element at point 𝑖𝑖 (see 
Figure 3). Since element is linear, this angle (𝛼𝛼 ) is 𝜋𝜋 
radians and value of 𝜖𝜖 is “-0.5” everywhere. In Eq. (2), 𝑢𝑢𝑖𝑖  
is the value of quantity at center of the element and 
subscript “𝑛𝑛” means gradient in normal direction [10]. 

Direction of Integration convention is taken 
counterclockwise as is shown in Figure 3. This figure 
shows the place of center of element and two arbitrary 
chosen (control) points along it. Those are places that 
integration is going to be transferred to. Since distribution 
of quantity along the element is linear, it is correct to say: 

 ( ) ( )1 0 1 2 0 2.| |i i i i iu u uξ ξψ ξ ψ ξ= == +  (3) 

In which 𝜓𝜓1
𝑖𝑖  means linear shape function for control 

point 1 in element 𝑖𝑖 and could be written like this: 
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Similar expression (like (3)) could be written for term 
𝑢𝑢𝑛𝑛
𝑗𝑗  in (2): 

 ( ) ( )0 2 01 1 2| .|j j jj i
n n nu u uξ ξψ ξ ψ ξ= == +  (5) 

Substituting (4) into (3) and using the expression of 𝜖𝜖 
gives: 
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Since Laplace Equation is a harmonic function and any 
answer of it, including the Green function, has linear 
property over definition domain, the Green function could 
be written as follow: 
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In these expressions 𝑝𝑝𝑖𝑖  represents center of element and 
the other terms are defined in (4).  

Substituting the Eqs. (5), (6) and (7) into Eq. (2) gives 
two simultaneous equations for each linear element 𝑖𝑖  of 
boundary as (8). 
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After writing these equations for all elements in 
boundary, dummy indices 𝑖𝑖 and 𝑗𝑗 will be replaced with “𝐼𝐼” 
and “𝐽𝐽”; the reason is, by decomposing one node in an 
element into two nodes, number of computational nodes in 
boundary is no longer similar to constant element and 
should be numbered again. In other words, in fully 
constant boundary elements it is 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁 and1 ≤ 𝑗𝑗 ≤ 𝑁𝑁, 
while in fully discontinues linear boundary elements it is 
1 ≤ 𝐼𝐼 ≤ 2𝑁𝑁 and 1 ≤ 𝐽𝐽 ≤ 2𝑁𝑁. 

 It should be noted that for a quadratic element, number 
of equations is “3” (there are 3 simultaneous equations in 
(8)), for cubic element it is “4” and so on for any higher 
order element. Besides, this set of equations are just valid 
for those elements in which distribution of quantity is 
linear within; So if all elements on domain are linear, 
totally there are 2N equations to be solved, that means 
1 ≤ 𝐼𝐼 ≤ 2𝑁𝑁 and 1 ≤ 𝐽𝐽 ≤ 2𝑁𝑁. 

By simplifying the set of equations (8) and writing 
them for all elements, system of equations is expressed as 
(9). 

 [ ] [ ] [ ] [ ]2 2 2 1 2 2 2 1 .nN N N N N NH u G u× × × ×=  (9) 

In which matrices [𝐻𝐻]  and [𝐺𝐺] are consist of these 
elements: 
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Figure 4. Notation and numbering 
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Figure 5. Method of filling for H matrix 

Here 𝐺𝐺 and 𝐺𝐺𝑛𝑛  are defined as follow: 

 2
ˆ ˆln . .

2 2
n

r r nG G
rπ π

= =  (11) 

Now a rectangle domain with four elements is 
considered to show how equations in (8) work; for this, 
first some notations are defined in Figure 4. Then some 
elements of matrix [𝐻𝐻] = 𝐻𝐻𝐼𝐼𝐼𝐼  are presented in Figure 5. 

Matrix [𝐺𝐺] = 𝐺𝐺𝐼𝐼𝐼𝐼  could be completed in a same manner, 
except that “𝐻𝐻” is replaced with “𝐺𝐺”, and “ℎ” is replaced 
with “𝑔𝑔”. 

It should be noted that in derived integral form of 
solution for Laplace equation, there is no volume integral 
term to be accounted for inner volume of domain, unlike 
equations such as Poisson equation [11] or Helmholtz 
with source term [12]. In these equations, an additional 
method is implemented to deal with these terms named 
Dual Reciprocity Boundary Element Method (DRBEM) 
[11] that transforms the volume integral into boundary 
integral. This method is being studied by Zakerdoost and 
Ghassemi [13]. 

3. Calculations of the Integrals 

Here method of calculating integrals in (10) is 
described. For integrals of “ℎ”, according to Figure 6, in 
the case of linear geometry element, where index 𝑖𝑖  is 
equal to 𝑗𝑗 (𝑖𝑖 = 𝑗𝑗), integral gives zero answer considering 
the term 𝑟̂𝑟. 𝑛𝑛� in (11); But for other conditions the integral 
is calculated straightforward with Gaussian quadrature 
integral. 

It should be noted that for other forms of geometry (for 
example Quadratic geometry element in Figure 6), where 
“𝑖𝑖 = 𝑗𝑗”, a special care should be taken because 𝑟̂𝑟. 𝑛𝑛� ≠ 0 
and the integral should be solved (one of these cares is 
using Gaussian quadrature integral [14]), besides, there is 
one Cauchy-type singularity point due to the presence of 
𝑟𝑟2 multiplier in denominator (see 𝐺𝐺𝑛𝑛  in (11)).  

For the integrals of “𝑔𝑔”, where “𝑖𝑖 = 𝑗𝑗”, a logarithmic 
singularity is definitely introduced in all geometry 
elements (see (11)), and should be considered. There are 3 
choices here to deal with these integrals. They are 
Analytical integration, Numerical integration and 

Integration by extracting the singularity. In order to take 
account the accuracy, Analytical integration is chosen. 

 
Figure 6. Linear geometry element (right) Quadratic geometry element 
(left) 

Integrand should be analytic on integral domain and 
this suggests that the integral domain should be broken 
down into integrals with analytic integrand inside (see 
(12)). This is the basic idea behind using Analytical 
integration. 
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Since term “ln 𝑟𝑟” is singular in node “𝜉𝜉𝐽𝐽”, the integral is 
broke down into these two integrals (see (12)). These 
integrals are then solved analytically by using integration 
by part and change of variables. On account of briefness, 
details are not brought here, but the final expressions to 
get the answer of these singular integrals (𝑔𝑔1

𝑖𝑖𝑖𝑖  , 𝑔𝑔2
𝑖𝑖𝑖𝑖  ) are 

presented by reference [7]: 
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And for 𝑔𝑔2
𝑖𝑖𝑖𝑖  there is [7]: 
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(14) 

Depend on place of the source point, 𝜉𝜉𝐽𝐽  would be −𝑘𝑘1
𝑖𝑖  

or 𝑘𝑘2
𝑖𝑖  in these equations. “𝑙𝑙𝑗𝑗 ” is length of linear element. 

4. Numerical Results 

The case study to verify this method is an ellipse that is 
described in Figure 2. The solution is then compared to 
exact solution in different ratios of “𝑎𝑎/𝑏𝑏” and different 
number of gridding. It is considered that 𝑘𝑘1

𝑖𝑖 = 𝑘𝑘2
𝑖𝑖 = 0.5in 

all elements on boundary for convenience. The exact 
solution for this problem is: 
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To have a unique solution, boundary condition for one 
point (that is the end point of gridding) is set to Dirichlet 
(value of 𝑢𝑢 is calculated from (15)) instead of Newman 
and the arbitrary constant 𝐶𝐶 is set to “2.0”. 

Numerical results are presented in Figure 7 ~ Figure 18. 
In those Figures, different conditions for 𝑎𝑎/𝑏𝑏 and number 
of boundary gridding (N) is presented. The continuous 
form of solution is actually 𝑘𝑘1

𝑖𝑖 = 𝑘𝑘2
𝑖𝑖 = 1.0 that is a 

particular condition for discontinuous element. 

 
Figure 7. Comparison of the quantity value (u) for a/b=1and element 
number 100 

 
Figure 8. Comparison of the quantity value (u) for a/b=1 and element 
number 200 

 
Figure 9. Comparison of the quantity value (u) for a/b=1 and element 
number 500 

 
Figure 10. Comparison of the quantity value (u) for a/b=2 and element 
number 100 
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Figure 11. Comparison of the quantity value (u) for a/b=2 and element 
number 200 

 
Figure 12. Comparison of the quantity value (u) for a/b=2 and element 
number 500 

 
Figure 13. Comparison of the quantity value (u) for a/b=3 and element 
number 100 

 
Figure 14. Comparison of the quantity value (u) for a/b=3 and element 
number 200 

 
Figure 15. Comparison of the quantity value (u) for a/b=3 and element 
number 500 

 
Figure 16. Comparison of the quantity value (u) for a/b=5 and element 
number 100 
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Figure 17. Comparison of the quantity value (u) for a/b=5 and element 
number 200 

 
Figure 18. Comparison of the quantity value (u) for a/b=5 and element 
number 500 

In order to have a better understanding of effects from 
these parameters, “a/𝑏𝑏” and N, errors are extracted in 2 
critical angles of gridding ( “90°” and “180°” ) in all 
conditions and normalized by dividing them to the worst 
observed value condition for error (“a /𝑏𝑏 = 5 ” and 
“𝑁𝑁 = 100”) plotted in Figure 19 and Figure 20. In these 
two figures, error with value “1.0” corresponds to the 
mentioned worst condition. 

The other point is, in all conditions, CL and DLE both 
of them give overestimate of exact value, especially with 
increase in ratio of “𝑎𝑎/𝑏𝑏”, that mean tending to a flat plate. 
In the opposite, with tending this shape to a circle 
(“𝑎𝑎/𝑏𝑏 = 1”), both of them give a good approximation.  

The error in angles near “90°” and “270°” is mostly 
due to large length of gridding there. On the other hand, in 
angles of around “180°”, error is due to high curvature of 
geometry there that makes capturing the gradient of 
quantity hard at the zone.  

Here a question may be raised which is why this error 
(error in angles of around “ 180° ”) is not repeated in 
angles near “0°” and “360°”? The answer is that in order 
to make answer unique, the last node (near “360°”) value 
is fixed and this propagates a suitable accuracy near 
around. Table 1 shows possibilities for choosing 𝑘𝑘1

𝑖𝑖 , 𝑘𝑘2
𝑖𝑖  

and their effects. 

Table 1. Possibilities for 𝒌𝒌𝟏𝟏𝒊𝒊 , 𝒌𝒌𝟐𝟐𝒊𝒊  

VALUES FOR 𝑘𝑘1
𝑖𝑖 , 𝑘𝑘2

𝑖𝑖  Remark 

𝑘𝑘1
𝑖𝑖 = 0.0 , 𝑘𝑘2

𝑖𝑖 = 0.0 Represents constant element 

𝑘𝑘1
𝑖𝑖 = 1.0 , 𝑘𝑘2

𝑖𝑖 = 1.0 Represents continues linear element 

𝑘𝑘1
𝑖𝑖 = 0.5 , 𝑘𝑘2

𝑖𝑖 = 0.5 It is used over all elements in this study 

0 ≤  𝑘𝑘1
𝑖𝑖 ≤ 1 

0 ≤  𝑘𝑘2
𝑖𝑖 ≤ 1 

They could be modified on each element 
for better capturing the quantity 

 
Figure 19. Percentage errors of DLE in 90° angle 
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Figure 20. Percentage errors of DLE in 180° angle

5. Conclusions 

Laplace equation has been solved by continuous and 
discontinuous element of the BEM on the domain of 
ellipse with different diameters and different element 
numbers. Based on the numerical results, the following 
conclusions can be drawn: 

1. The accuracy of methods in capturing the exact 
quantity are obtained by discontinuous elements 
relative to the continous elements. 

2. Continuous linear elements and discontinuous 
linear elements (CL and DLE, respectively) are 
presented compared. With increasing the “a/b” error 
is increased due to the sharp of the ellipse at the 
leading and trailing. 

3. The values of 𝑘𝑘1
𝑖𝑖 , 𝑘𝑘2

𝑖𝑖  (as given in Table 1) may 
effect on the results. They improve the accuracy in 
this method [6,15]. The future work that is our 
intent is to employ discontinuous elements on some 
parts of boundary (with critical gradient of quantity) 
in combination with constant element on the others 
(in which quantity is sensed nearly constant) that 
improves the ratio of accuracy over time (of 
solution). 
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