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1. Introduction 

Huang and Zhang [9] introduced the concept of a cone 
metric space, they replaced set of real numbers by an 
ordered Banach space and proved some fixed point 
theorems for contractive type conditions in cone metric 
spaces. Later on many authors have (for e.g., 
[1,2,3,5,6,8,12]) proved common fixed point theorems for 
different contractive type conditions in cone metric spaces. 
Some of the authors have studied fixed point theorems on 
partially ordered cone metric spaces (see, e.g., [3,4,11]). 
In 2011, Y. J. Cho, et. al. [7] introduced a concept of the 
c-distance in a cone metric spaces and proved some fixed 
point theorems in ordered cone metric spaces. In this 
paper, we obtained some fixed point theorems on  
c-distance in ordered cone metric spaces. Our results are 
improved and extended the results of Y. J. Cho, et. al. [7]. 

2. Preliminaries 

2.1 [9] Definition  
Let E be a real Banach space and θ denotes the zero 

element in E. P be a subset of E. The set P is called a cone 
if and only if: 

(a). P is closed, non–empty and P ≠ {θ}; 
(b). a, b∈ℝ, a,b 0≥ , x,y∈P implies ax+by∈P; 
(c). P ∩ (-P) = {θ}. 

2.2 [9] Definition 
Let P be a cone in a Banach space E, define partial 

ordering ‘ ≼’ with respect to P by x  ≼ y if and only if  
y-x∈P. We shall write x y to indicate x  ≼ y but x ≠ y 
while x<<y will stand for y-x∈int P, where int P denotes 
the interior of the set P. This cone P is called an order 
cone. 
2.3 [9] Definition  

Let E be a Banach space and P ⊂ E be an order cone. 
The order cone P is called normal if there exists L>0 such 
that for all x, y∈E, 

 .x y x yθ ⇒ ≤   

The least positive number L satisfying the above 
inequality is called the normal constant of P. 
2.4 [9] Definition 

Let X be a nonempty set of E. Suppose that the map d: 
X × X→ E satisfies: 

(d1). θ  d(x,y) for all x, y∈X with x ≠ y and d(x, y) = 
0 if and only if x = y; 

(d2). d(x, y) = d(y, x)  for all x, y∈X;  
(d3). d(x, y) ≼ d(x, z) + d(z, y) for all x, y, z∈X. 
Then d is called a cone metric on X and (X, d) is called 

a cone metric space.  
It is clear that the concept of a cone metric space is 

more general than that of a metric space. 
2.5 [9] Example 

Let E = ℝ2, P = {(x, y)∈E such that : x, y ≥ 0}⊆ ℝ2,  
X = ℝ and d: X × X → E such that d(x , y) = (│x - y│, 
α│x - y│), where α ≥ 0 is a constant. Then (X, d) is a cone 
metric space. 
2.6 [9] Definition 

Let (X, d) be a cone metric space. Then {xn} is said to 
be 

(i) a convergent sequence if for any c>>θ, there is a 
natural number N such that for all n>N, d(xn, x) <<c, 
for some fixed x in X. We denote this xn → x (as 
n ).→∞  

(ii) a Cauchy sequence if for every c in E with c>>θ, 
there is a natural number N such that for all n, m>N, 
d(xn, xm)<<c.  

(iii)a cone metric space (X, d) is said to be complete if 
every Cauchy sequence in X is convergent.  

2.7 [9] Lemma 
Let (X, d) be a cone metric space and P be a normal 

cone with normal constant L. Let {xn} and {yn} be two 
sequences in X with xn → x and yn → y. Then d(xn , yn) → 
d(x, y) as n→∞. 
2.8 [7] Remark 

(1) If E is real Banach space with a cone P and a  ≼ λa, 
where a∈P and 0 < λ < 1, then a = θ. 

(2) If c ∈ int P, θ  ≼ an and an →θ, then there exists a 
positive integer N such that an << c for all n ≥ N. 

The concept of c-distance introduced by Y. J. Cho, et. al. 
[7], which is a cone version of ω-distance of Kada et. al. [10]. 
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2.9 [7] Definition  
Let (X, d) be a cone metric space. Then a function  

q: X × X → E is called a c-distance on X if the following 
are satisfied 

(q1) θ ≼ q(x,y) for all x, y∈X;  
(q2) q(x, z) ≼ q(x, y) + q(y, z) for all x, y, z∈X; 
(q3) for each x ∈ X and n ≥ 1, if q(x, yn)  ≼u for some 

u = ux ∈ P, then q(x, y)  ≼u whenever {yn} is a 
sequence in X convergent to a point y ∈ X. 

(q4) for all c∈ E with θ << c, there exists e ∈ E with 
0<<e such that q(z, x) << e and q(z, y) << e imply 
q(x, y) << c. 

2.10 [7] Lemma  
Let (X, d) be a cone metric space and q be a cone 

distance on X. Let {xn} and {yn}be sequences in X and x, 
y, z ∈ X. Suppose that {un} is a sequence in P converging 
to θ. Then the following are holds: 

(1) If q(xn , y)  ≼un and q(xn , z)  ≼un , then y = z. 
(2) If q(xn, yn) ≼  un and q(xn, z) ≼  un, then {yn} 

converges to z. 
(3) If q(xn , xm)  ≼un for m > n, then {xn}is a Cauchy 

sequence in X. 
(4) If q(y , xn) ≼ un, then {xn}is a Cauchy sequence in 

X. 

3. Fixed Point Theorems on c-distance 

In this section we have extended the Theorem 3.1., and 
Theorem 3.3. of [7]. 
3.1. Theorem. Let (X, ⊑ ) be a partially ordered set and 
suppose that (X, d) is a complete cone metric space. Let q 
be a c-distance on X and f: X→ X be a continuous and 
non-decreasing mapping with respect to ⊑. Suppose that 
the following assertions are hold: 
(i) there exists a1, a2 , a3 , a4 ; ai >0 with a1 + a2 + a3 + a4 < 1 
such that 

 
( ) ( ) ( )

( ) ( )
1 2

3 4

q fx, fy a q x, y a q x, fx

a q y,  fy a q x, fy ,

+

+ +


 

for all x, y ∈ X with y ⊑ x; 
(ii) there exists x0 ∈X such that x0  ⊑ f x0. Then f has a 
fixed point x* ∈ X. If v = fv, then q(v, v) = θ. 
Proof: If fx0 = x0 , then the proof is finished. Suppose that 
fx0 ≠ x0 then we construct a sequence {xn }in X by  
xn = f n x0 = fxn-1. Since f is non-decreasing with respect to 
⊑, we obtain by the induction 

 2 n n 1
0 0 0 0 0x fx f x f... x x .f ..+      

We have, 

 

( ) ( )
( ) ( )( )
( ) ( )
( ) ( )

n 1 n
n n 1 0 0

n 2 n 1
0 0

n 2 n 1 n 2 n 1
1 0 0 2 0 0

n 1 n n 2 n 1
3 0 0 4 0 0

q x ,  x q f x , f x

q f f x , f f x

a q f x , f x a q f x , f x  

a q f x , f x a q f x , f x

−
+

− −

− − − −

− − −

=

=

+

+ +


 

 

( ) ( )
( ) ( )
( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

1 n 1 n 2 n 1 n

3 n n 1 4 n 1 n 1

1 n 1 n 2 n 1 n

3 n n 1 4 n 1 n 4 n n 1

1 2 4 n 1 n 3 4 n n 1

 a q x , x a q x ,  x  

a q x , x a q x , x ,

 a q x , x a q x , x

+a q x , x a q x , x a q x , x ,

 a a a q x , x a  a q x ,  x .

− −

+ − +

− −

+ − +

− +

= +

+ +

= +

+ +

= + + + +

 

And hence, 

( ) ( ) ( ) ( )3 4 n n 1 1 2 4 n 1 n1 a  a q x ,  x . a  a  a q x , x .+ −− + + +  

 ( ) ( )1 2 4
n n 1 n 1 n

3 41
q x , x . q x , x .

a a a
a a+ −
+ +
− −

  

Put 1 2 4

3 4
1.

1
a a a

a a
λ

+ +
= <

− −
 

⇒ q(xn , xn+1) ≼ λ q(xn-1, xn), for all n ≥ 1. 
Repeating this process, we get that 

 ( ) ( )n
n n 1 0 1q x , x q x , x .λ+   (1) 

Let m > n, then it follows from (1) that 

 

( ) ( ) ( )
( )

n m n n 1 m 1 m
n m 1

0 1
n

0 1

q x , x q x , x q x , x

(  ) q x , x ,

q(x , x ) q as n sinc 1
1

e .

λ λ

λ λ
λ

+ −
−

+…+

+ …+

→
−

→∞ <







 

Thus by Lemma (2.10 ) shows that {xn} is a Cauchy 
sequence in X. Since X is complete, there exists x*∈X 
such that xn → x as n → ∞. Finally, the continuity of f and 
f(f n x0) = f n+1( x0)→ x* implies that f x* = x*. Thus we 
prove that x* is a fixed point of f. 

Suppose that v = fv. Then we have  

 

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

1 2 3 4

1 2 3 4

1 2 3 4

q v, v q fv, fv

a q v, v a q v, fv a q v, fv a q v, fv ,

a q v, v a q v, v a q v, v a q v, v ,

a a +a +a q v, v .

=

+ + +

+ + +

+





 

Since, (a1 + a2 + a3 + a4 )<1. 
We have q(v ,v) = θ. 
This completes the proof. 

3.2. Theorem. Let (X, ⊑) be a partially ordered set and 
suppose that (X, d) is a complete cone metric space and P 
is a normal cone with normal constant L. Let q be a  
c-distance on X and f: X→ X is a non-decreasing mapping 
with respect to ⊑. Suppose that the following assertions 
are hold: 

(i) there exists a1, a2 , a3 , a4, a5>0 with a1 + a2 + 2a3 + 
a4 + a5 < 1 such that  

 
( ) ( ) ( ) ( )

( ) ( )
1 2 3

4 5

q fx, fy a q x, y a q x, fx a q y, fy

 a q x, fy a q y, fx ,

+ +

+ +


 

for all x, y ∈ X with y ⊑ x; 
(ii) there exists x0 ∈X such that x0 ⊑ f x0.  
(iii) inf{║q(x, y)║ + ║q(x, fx)║: x∈X} >0, for all 

y∈X with y ≠ fy, then f has a fixed point x*∈ X. If 
v = fv, then q(v, v) = θ. 
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Proof: If we take xn = f n x0 in the proof of Theorem 3.1, 
then we have 

 0 1 2 n n 1..x x x x. ...x +      

Moreover, {xn} converges to a point x*∈ X and 

( ) ( )
n

n m 0 11
q x , x q x , x ,λ

λ−
  for all m > n ≥ 1, where 

1 2 4

3 4
1.

1
a a a

a a
λ

+ +
= <

− −
 

By (q3), we have ( ) ( )
n

*
n 0 11

q x , x q x , x ,λ
λ−

  for all  

n ≥ 1. 
Since P is normal cone with normal constant L, we have 

 ( ) ( )
n

n m 0 1q x , x q x , x for all m n 1.,
1

L λ
λ

>
−

>  (2) 

And 

 ( ) ( )
n

*
n 0 1q x , x q x , x for al, l n 1.

1
L λ

λ
≥

−
  (3) 

If x* ≠ fx*, then by the hypothesis, (2) and (3) with  
m = n + 1, we have 

 

( ) ( ){ }
( ) ( ){ }

( ) ( )

*

*
n n n+1

n n

0 1 0 1

0 inf q x,  x q x, fx : x X

inf q x ,  x q x , x : n 1

inf q x , x q x , x n 1

0

:
1 1

.

L Lλ λ
λ λ

< + ∈

≤ + ≥

  ≤ +
− −

≥ 
  

=

 

This is a contradiction. 
Therefore, we have x* = f x*. Suppose that v = fv holds, 

then from the above Theorem 3.1 we can easily prove  
q(v, v) = θ. 

This completes the proof. 
3.3. Remark. If we choose a4 = 0 in the above Theorem 
3.1, then we get the Theorem 3.1 of [7]. 

3.4. Remark. If we choose a4 = a5 = 0 in the above 
Theorem 3.2 , then we get the Theorem 3.2 of [7]. 
3.5. Conclusion. In this paper, we have extended the 
results of Y. J. Cho, et. al. [7] 

Acknowledgements 

The author is grateful to the reviewer to suggest 
improve this paper. 

References 
[1] M. Abbas and G. Jungck, Common fixed point results for non 

commuting mappings without continuity in cone metric spaces, J. 
Math. Anal. Appl. 341 (2008). 416-420. 

[2] M. Abbas, B. E. Rhoades, Fixed and periodic point results in cone 
metric spaces, Appl. Math. Lett. 21 (2008). 511-515. 

[3] I. Altun, B. Damnjanovic, D. Djoric, Fixed point and common 
fixed point theorems on ordered cone metric spaces, Appl. Math. 
Lett. (2009). 

[4] I. Altun, B. Durmaz, Some fixed point theorems on ordered cone 
metric spaces, Rend. Circ. Mat. Palermo 58(2009). 319-325. 

[5] M. Amari, D. El Moutawakil, Some new common fixed point 
theorems under strict contractive conditions, J. Math. Anal. Appl. 
270(2002). 181-188. 

[6] M. Arshad, A. Azam, P. Vetro, Some common fixed point results 
on cone metric spaces, Fixed Point Theory Appl. (2009). 11, 
Article ID 493965. 

[7] Y. J. Cho, R. Saadati, and Sh. Wang, Common fixed point 
theorems on generalized distance in ordered cone metric spaces,. 
Compt. Math. Appl. 61(2011). 1254-1260. 

[8] Guangxing Song, Xiaoyan Sun, Yian Zhao, Guotao Wang, New 
common fixed point theorems for maps on cone metric spaces, 
Appl. Math. Lett. 32(2010). 1033-1037. 

[9] L. G. Huang, X. Zhang, Cone metric spaces and fixed point 
theorems of contractive mappings, J. Math. Anal. Appl. 332(2) 
(2007). 1468-1476. 

[10] O. Kada, T. Suzuki, W. Takahashi, Nonconvex minimization 
theorems and fixed point theorems in complete metric spaces, 
Math. Japon. 44 (1996). 381-391. 

[11] Z. Kadelburg, M. Pavlović, S. Radenović, Common fixed point 
theorems for ordered contractions and quasicontractions in ordered 
cone metric spaces, Comput. Math. Appl. 59 (2010). 3148-3159. 

[12] S. Radenović, B.E. Rhoades, Fixed point theorem for two non-self 
mappings in cone metric spaces, Comput. Math. Appl. 57 (2009). 
1701-1707. 

 

 


