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Abstract  The aim of the present analysis is to study the effect of slip velocity on blood flow through an arterial 
tube in presence of multiple stenosis. The effects of length of stenosis, shape parameter, parameter γ on resistance to 
flow and shear stress have been incorporated here. The results have been shown in graphical form and discussed. 
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1. Introduction 

As blood is a suspension of fluid particles, such as 
erythrocytes, leukocytes and platelets in an aqueous 
solution, blood behaves neither Newtonian nor non-
Newtonian fluid. The behaviour of blood is almost 
Newtonian at high shear rate, while at low shear rate the 
blood exhibits yield stress and then blood behaves as a 
non-newtonian fluid [1,2]). Many biomedical researchers 
(Eckstein et. al. [3], Choung et. al. [4], Fung [5], Sparks 
[6], Tilles et. al. [7], Goldsmith [8], Carr [9]) have 
analysed various types of mathematical models to study 
the blood flow characteristics for better understanding the 
physiological systems of human body. A large number of 
researchers (Feng et. al. [10], Jilma [11], Haldar [12], 
Liepsch [13]) have presented various types of 
mathematical models by considering blood as Newtonian 
or non-Newtonian fluid to study the flow characteristics of 
blood. Presently in many cases it has been noticed that 
cardiovascular diseases are responsible for the death of the 
people. From various types of medical literature it is clear 
to us that around 80% of total death of people are due to 
the malfunction of blood flow characteristics. Blood flow 
characteristics mainly depends on the arterial diseases, 
such as stenosis and aneurysm. Stenosis is a serious 
arterial disease causes serious cardiovascular disorders, by 
reducing the supply of blood. Though actual formation of 
stenosis is somewhat unclear to us, it is well-known that 
deposition of fatty substances like lipids, cholesterol in the 
inner wall of the artery and unnatural growth of the 
connective tissue may be responsible for the formation of 
stenosis. Many biomedical researchers (Jung et. al. [14], 
Mousa [15], Sugihara Seki [16], Cokelet [17], Das et. al. 
[18]) have studied the non-Newtonian behaviour of blood 
to discuss the various aspects of blood flow. Various 
mathematical models have been developed by many 
Mathematicians (Young [19], Shukla [20], RamchandraRao 

and Devanathan [21], Hall [22], Manton [23], Smith [24], 
Duck [25]) to study the steady and unsteady flow of blood 
through channels with variable cross section. The steady 
flow of blood through stenotic arterial tube has been 
studied by many Mathematicians (Misra and Chakraborty 
[26], Padmanavan [27], Mehrotha et. al. [28]) by 
considering blood as non-Newtonian fluid, in presence of 
mild stenosis. In a recent paper Siddiqui [29], Biswas and 
Laskar [30] have been developed mathematical models to 
study the blood flow characteristics through a stenosed 
arterial segment under slip condition. But they have 
considered the effect of single stenosis. But since stenosis 
may be developed in series or in overlapping form, in the 
present analysis I have considered the effect of multiple 
stenosis on blood flow by considering blood as Herschel-
Bulkley type non- Newtonian fluid in presence of slip 
velocity on the arterial wall. 

2. Mathematical Formulation 

Let us consider the steady one dimensional laminar 
axially symmetric and radially non-symmetric constricted 
artery. The mathematical expression for stenosis is given by 
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Where 𝑅𝑅 is the radius of the tube in the stenotic region; 
𝑅𝑅0, the radius of the artery outside the stenotic region; 
𝑠𝑠(≥ 2) is a shape parameter determining stenosis shape; 
𝐿𝐿0, the length of the stenosis, 𝑑𝑑 indicates its location, 𝑛𝑛 is 
the number of stenosis in the artery, 𝛾𝛾(≥ 1)  is a 
parametric constant. 
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Figure 1. Geometry of arterial stenosis 

 
/( 1)

0 0
.

( 1)

s s

s
s

R L s
δ −

=
−

  (2) 

Where 𝛿𝛿 is the maximum height of the stenosis at 

 
( ) 0

0 1/( 1)1
.

s
Lnd n L

sz
γ

−
+ − +

=  (3) 

The equation governing the flow of blood is given by 
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The boundary conditions are, 
(i) 𝜏𝜏 is finite at 𝑟𝑟 = 0 (regular condition) 
(ii) 𝑤𝑤 = 𝑤𝑤𝑠𝑠  𝑎𝑎t 𝑟𝑟 = 𝑅𝑅(𝑧𝑧) (slip condition). 
The relationship between shear stress and shear rate for 

Herschel-Bulkley fluid is given by, 
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For simplicity the Herschel-Bulkley index is taken as 
n = 1/2. Therefore, 
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Integrating (4) and using the boundary condition (i) we 
get, 
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2
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The skin friction wτ  is given by 
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The volumetric flow rate is given by 
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when the boundary condition (ii) is used, which can be 
written as 
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From which we get, 
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Since ,
2w
R dp

dz
τ = −  we get 
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Integrating with respect to z with the condition that 
𝑝𝑝 = 𝑝𝑝0 at 𝑧𝑧 = 0 and 𝑝𝑝 = 𝑝𝑝1 at 𝑧𝑧 = 𝐿𝐿 
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Resistance to flow is given by 
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Let us take 
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Thus we can write 
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Where 
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If there is no stenosis, i.e., in the normal condition 
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Therefore dimensionless resistance to flow is given by 
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Now  

 
1
20

3
5 55 .
4

s
w

wQ
RR

τ
τ µ

π
 

= + − 
 

 (23) 

Wall shear stress in normal situation can be written as 
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Thus the wall shear stress ratio can be obtained as 

 

1
20

3

1
2

3
00

5 55
4

.

55

s

w
w

N
s

wQ
RR

wQ
RR

τ
µ

τ πτ
τ

µ
π

 
+ − 

 = =

 
− 

  

 (25) 

The wall shear stress ratio at the midpoint of stenosis is 
given by 
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3. Numerical Discussions 

To illustrate the flow behaviour, the results are shown 
graphically with the help of MATLAB-7.6. The effects of 
various parameters on resistance to flow and wall shear 
stress are calculated here. 

 
Figure 2. Variation of non-dimensional resistance to flow λ� for different 
values of stenosis length 𝐿𝐿0 
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Figure 3. Variation of non-dimensional resistance to flow λ� for different 
values of slip velocity ws 

 
Figure 4. Variation of non-dimensional resistance to flow λ� for different 
values of yield stress 𝜏𝜏0 

 
Figure 5. Variation of non-dimensional resistance to flow λ�  with the 
variation of shape parameter s 

Figure 2- Figure 6 show the variation of resistance to 
flow for different values of stenosis length, slip velocity, 
yield stress and shape parameters s,𝛾𝛾. It is observed from 
the figures that λ�  increases with the increase of stenosis 
size and stenosis length 𝐿𝐿0 for all other constant values of 
the parameters, but the reverse effectoccurs when the slip 
velocity 𝑤𝑤s  and shape parameters 𝑠𝑠  and 𝛾𝛾  increase. It is 
also clear from the figures that λ�  increases with the 

increase of  𝜏𝜏0  up to the value 0.18 of 
0

δ
R

 and then 

decreases. 
Figure 7-Figure 8 illustrate the effect of slip velocity 

and yield stress on wall shear stress. It is found that 𝜏𝜏�𝑤𝑤 
increases with the increase of slip velocity and yield stress 
as z increases. 

Figure 9 reveals that the variation of wall shear stress 
ratio at the midpoint of stenosis. It is found that 𝜏𝜏�𝑤𝑤𝑤𝑤 
increases with the increase of slip velocity. 

 
Figure 6. Variation of non-dimensional resistance to flow λ�w  with the 
variation of parameter 𝛾𝛾 

 
Figure 7. Variation of non-dimensional wall shear stress 𝜏𝜏�̅�𝑤  for different 
values of slip velocity 𝑤𝑤𝑠𝑠 

 
Figure 8. Variation of non-dimensional wall shear stress 𝜏𝜏�̅�𝑤  for different 
values of yield stress 𝜏𝜏0 
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Figure 9. Fluctuation of non-dimensional wall shear stress at the 
midpoint of stenosis 𝜏𝜏�̅�𝑤𝑤𝑤  for different values of slip velocity 𝑤𝑤𝑠𝑠 

4. Conclusions 

The analytic expression for resistance to flow with 
multiple stenosis situated at equal distances has been 
incorporated here, which has definite effect in various 
types of cardiovascular diseases, like stroke, hypertension, 
brain haemorrhage etc. It is observed that growing of 𝛾𝛾 
has small variations for different value of stenosis shape 
parameter. This study may be effective for invention of 
new diagnostic tools in medical sciences. 

References 
[1] Y. C. Fung. Biodynamics. New York: Springer- Verlag, 1984. 
[2] Y. C. Fung. Biomechanics: Circulation. Springer Science and 

Business Media, 1996. 
[3] E. C. Eckstein and F. Belgacem. “Model of platelet transport in 

flowing blood with drift and diffusion terms,” Biophysical journal, 
vol. 60, no. 1, pp. 53-69, 1991. 

[4] C. J. Choung and Y. C. Fung. “Residual stress in arteries,” Journal 
of Biomechanics, vol. 180, no. 2, pp. 189-192, 1986. 

[5] Y. C. Fung. “A hemodynamic analysis of coronary capillary blood 
flow based on anatomic and distensibility data,” American Journal 
of Physiology-Heart and Circulatory Physiology, vol. 277, no. 6, 
pp. H2158-H2166, 1999. 

[6] K. D. Sparks. “Platelet concentrationprofiles in blood flow 
through capillary tubes,” Ph.D. dissertation, MS thesis, University 
of Miami, Coral Gables, FL, 1983. 

[7] A. W. Tilles and E. C. Eckstein. “The near-wall excess of platelet-
sized particles in blood flow: its dependence on hematocrit and 
wall shear rate,” Microvascular research, vol. 33, no. 2, pp. 211-223, 
1987. 

[8] H. Goldsmith. “Red cell motions and wall interactions in tube 
flow.” in Federation Proceedings, vol. 30, no. 5, 1971, p. 1578. 

[9] R. Carr. “Estimation of hematocrit profile symmetry recovery 
length downstream from a bifurcation.” Biorheology, vol. 26,  
no. 5, pp. 907-920, 1988. 

[10] J. Feng and S. Weinbaum. “Lubrication theory in highly 
compressible porous media: the mechanics of skiing, from red 
cells to humans,” Journal of Fluid Mechanics, vol. 422, pp. 281-
317, 2000. 

[11] B. Jilma. “Synergistic antiplatelet effects of clopidogrel and 
aspirin detected with the pfa-100 in stroke patients.” Stroke; a 
journal of cerebral circulation, vol. 34, no. 4, pp. 849-854, 2003. 

[12] K. Haldar. “Effects of the shape of stenosis on the resistance to 
blood flow through an artery,” Bulletin of Mathematical Biology, 
vol. 47, no. 4, pp. 545-550, 1985. 

[13] D. Liepsch. “An introduction to biofluid mechanicsbasic models 
and applications,” Journal of biomechanics, vol. 35, no. 4, pp. 
415-435, 2002. 

[14] H. Jung, J. W. Choi, and C. G. Park. “Asymmetric flows of 
nonnewtonian fluids in symmetric stenosed artery,” Korea-Australia 
Rheology Journal, vol. 16, no. 2, pp. 101-108, 2004. 

[15]  S. A. Mousa. “Antiplatelet therapies: from aspirin to gpiib/iiia-
receptor antagonists and beyond,” Drug discovery today, vol. 4, no. 
12, pp. 552-561, 1999. 

[16] M. Sugihara-Seki. “Motion of a sphere in a cylindrical tube filled 
with a brinkman medium,” Fluid dynamics research, vol. 34, no. 1, 
pp. 59-76, 2004. 

[17] G. R. Cokelet. The rheology of human blood. Englewood Cliffs: 
Prentice Hall: In Biomechanics, Ed. By Y. C. Fung et. al., Vol. 63, 
1972. 

[18] B. Das, P. Johnson, and A. Popel. “Effect of nonaxisymmetric 
hematocrit distribution on non-newtonian blood flow in small 
tubes,” Biorheology, vol. 35, no. 1, pp. 69-87, 1998. 

[19] D. Young. “Fluid mechanics of arterial stenoses,” Journal of 
Biomechanical Engineering, vol. 101, no. 3, pp. 157-175, 1979. 

[20] J. Shukla, R. Parihar, and S. Gupta. “Effects of peripheral layer 
viscosity on blood flow through the artery with mild stenosis,” 
Bulletin of Mathematical Biology, vol. 42, no. 6, pp. 797-805, 
1980. 

[21] A. R. Rao and R. Devanathan. “Pulsatile flow in tubes of varying 
crosssections,” Zeitschrift für angewandte Mathematik und Physik 
ZAMP, vol. 24, no. 2, pp. 203-213, 1973. 

[22] P. Hall. “Unsteady viscous flow in a pipe of slowly varying 
crosssection,” Journal of Fluid Mechanics, vol. 64, no. 02, pp. 
209-226, 1974. 

[23] M. Manton. “Low reynolds number flow in slowly varying 
axisymmetric tubes,” Journal of Fluid Mechanics, vol. 49, no. 03, 
pp. 451-459, 1971. 

[24] F. Smith. “Flow through constricted or dilated pipes and channels: 
Part 2,” The Quarterly Journal of Mechanics and Applied 
Mathematics, vol. 29, no. 3, pp. 365-376, 1976. 

[25] P. Duck. “Separation of jets or thermal boundary layers from a 
wall,” The Quarterly Journal of Mechanics and Applied 
Mathematics, vol. 363, no. 2, p. 33, 1976. 

[26] J. Misra and S. Chakravarty. “Flow in arteries in the presence of 
stenosis,” Journal of Biomechanics, vol. 19, no. 11, pp. 1907-1918, 
1986. 

[27] N. Padmanabhan and R. Devanathan. “Mathematical model of an 
arterial stenosis, allowing for tethering,” Medical and Biological 
Engineering and Computing, vol. 19, no. 4, pp. 385-390, 1981. 

[28] R. Mehrotra, G. Jayaraman, and N. Padmanabhan. “Pulsatile 
blood flow in a stenosed artery: Theoretical model,” Medical and 
Biological Engineering and Computing, vol. 23, no. 1, pp. 55-62, 
1985. 

[29] S. Siddiqui, N. Verma, and R. Gupta. “A mathematical model for 
pulsatile flow of herschel-bulkley fluid through stenosed arteries,” 
e-Journal of Science and Technology (e-JST), vol. 4, no. 5,  
pp. 49-66, 2010. 

[30] D. Biswas and R. B. Laskar. “Steady flow of blood through a 
stenosed artery: A non-newtonian fluid model,” Assam University 
Journal of Science and Technology, vol. 2, no. 1, pp. 144-154, 2011. 

 

 


