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1. Introduction 

As the human society moved from an industrial to a 
knowledge society [16], it can be argued that the nature of 
many problems has been changed and new problems have 
arisen which may require a different approach to 
overcome them. Educational institutions and governments 
have recognized long ago the importance of Problem–
Solving (PS) and volumes of research have been written 
about it. Universities and other higher learning institutions 
are entrusted with the task of producing graduates that 
have higher order PS skills among other skills.  

Mathematics by its nature is a subject whereby PS 
forms its essence. In Voskoglou [12] we have examined 
the role of the problem in learning mathematics and we 
have attempted a review of the evolution of research on 
PS in mathematics education from the time that Polya [6] 
presented his first ideas on the subject until today.  

In contrast to the earlier work on PS, which was 
focused mainly on analyzing the PS process and on 
describing the proper heuristic strategies to be used in 
each of its steps, the research has turned today mainly on 
solvers’ behavior and required attributes during the PS 
process; e. g. Multidimensional PS Framework (MPSF) of 
Carlson and Bloom [2] presented in 2005, Schoenfeld’s 
theory of Goal-Directed Behavior [8] in 2010, etc.  

Note that the main steps of the MPSF are actually the 
same to the steps of Schoenfeld’s Expert Performance 
Model (EPM) for PS [7] presented in 1980; only their 
names are stated differently. However, there exists a basic 
difference between these two models. In fact, while in the 
MPSF the emphasis is turned to the solver’s behavior and 
required attributes, the EPM is oriented towards the PS 
process by describing the proper heuristic strategies that 
may be used at each step of the process. 

In an earlier paper [10] Voskoglou and Perdikaris 
introduced a Markov Chain (MC) model for PS based on 
EPM. In the present paper a similar model is introduced 
on the main steps of the MPSF and through this a measure 
is obtained for PS skills.  

The rest of the paper is formulated as follows:  In 
Section 2 a brief account of the MPSF is presented 
followed by a flow-diagram of the PS process. In Section 
3 basic conclusions from the theory of the finite MCs are 
stated, which are necessary for the construction of the MC 
model for PS. The model is developed in Section 4, while 
in Section 5 examples are presented illustrating its use in 
practice. Finally, Section 6 is devoted to the final 
conclusions and some hints for future research. 

2. The MPSF of Carlson and Bloom 

Carlson and Bloom [2] drawing from the large amount 
of literature related to PS developed a broad taxonomy to 
characterize major PS attributes that have been identified 
as relevant to PS success. This taxonomy gave genesis to 
their MPSF model, which includes the following steps: 
Orientation, Planning, Executing and Checking.  

It has been observed that once the solvers oriented 
themselves to the problem space, the plan-execute-check 
cycle was usually repeated through out the remainder of 
the solution’s process; only in a few cases a solver 
obtained the solution of a problem by making this cycle 
only once. Thus embedded in the framework are two 
cycles, one cycling forward and one cycling back, each of 
which includes the three out of the four steps, i.e. planning, 
executing and checking ([2], Figure 1). 

It has been also observed that, when contemplating 
various solution approaches during the planning step of 
the PS process, the solvers were at times engaged in a 
Conjecture – Imagine - Evaluate (accept/reject) sub-cycle.  
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Therefore, apart of the two main cycles embedded in the 
MPSF, it is also the above sub-cycle, which is connected 
to the step of planning ([2], Figure 1). 

Let us denote by Si, i = 1, 2, 3, 4, 5, the steps of 
orientation, planning, conjecture – imagine – evaluate, 
executing and checking respectively. Then, the flow-diagram 
of the PS process is shown in Figure 1.  

 
Figure 1. The flow-diagram of the PS process 

In fact, a solver, who faces difficulties at step S2, 
proceeds to S3. From there, if the difficulties are surpassed, 
he/she returns to S2 to continue the process. Otherwise 
he/she returns to the staring step S1 searching for 
additional information from problem’s data that possibly 
has been elapsed at first glance. The same circle may be 
repeated several times.  

3. Finite Markov Chains 

The theory of MCs offers ideal conditions for the study 
and mathematical modelling of a certain kind of situations 
depending on random variables. Roughly speaking, a MC 
is a stochastic process that moves in a sequence of steps 
(phases) through a set of states and has a “one-step 
memory”, i.e. the probability of entering a certain state in 
a certain step, although in practice may not be completely 
independent of previous steps, depends at most on the 
state occupied in the previous step. This is known as the 
Markov property.  

The basic concepts of MC were introduced by A. 
Markov in 1907 on coding literary texts. Since then the 
MC theory was developed by a number of leading 
mathematicians, such as A. Kolmogorov, W. Feller etc. 
However, only from the 1960’s the importance of this 
theory to the Natural, Social and most of the other Applied 
Sciences has been recognized [1,3,9,13], etc.  

When the set of its states is a finite set, then we speak 
about a finite MC. For general facts on finite MC we refer 
to the classical on the subject book of Kemeny & Snell [4].  
Let us consider a finite MC with n states, say s1, s2,…, sn, 
where n is a non negative integer, n ≥ 2. Denote by pij the 
transition probability from state si to state sj , i, j = 1, 2,…, 
n ; then the matrix A= [pij] is called the transition matrix 
of the MC. Since the transition from a state to some other 
state (including itself) is the certain event, we have that  

pi1 + pi2 +….. + pin = 1, for i=1, 2, …, n. 
The row-matrix Pk = [p1

(k) p2
(k)… pn

(k)], known as the 
probability vector of the MC, gives the probabilities pi

(k) 

for the MC to be in state i at step k , for i = 1, 2,…., n and 
k = 0, 1, 2,…. We have again that p1

(k) + p2
(k) + …. + pn

(k) =1.  
It is well known that Pk+1= Pk A, for all non negative 

integers k (e.g. [15], Proposition 2.1). Therefore a 
straightforward induction shows that Pn = P0An, for all 
integers n ≥ 1. This enables one to make short run 
forecasts for the evolution of various situations that can be 
represented by a finite MC by calculating the probabilities 
of the MC to be in each of its five states at each one of its 
phases. 

A state of a MC is called absorbing if, once entered, it 
cannot be left. Further a MC is said to be an Absorbing 
MC (AMC) if it has at least one absorbing state and if from 
every state it is possible to reach an absorbing state, not 
necessarily in one step. 

In case of an AMC with k absorbing states, 1 ≤ k < n,  
we bring its transition matrix A to its canonical (or 
standard) form A* by listing the absorbing states first and 
then we make a partition of  A* of the form A* = 

|
|
|

I O

R Q

 
 − − 
  

, where I is the unitary k X k matrix, O is a 

zero matrix, R is the (n – k) X k transition matrix from the 
non absorbing to the absorbing states and Q is the (n – k) 
X (n – k) transition matrix between the non absorbing 
states.  

If In – k denotes the unitary (n – k) X (n – k) matrix, it 
can be shown (e.g. [10], Section 2) that the square matrix 
In – k - Q has always a non zero determinant. Then, the 
fundamental matrix N of the AMC is defined to be the 
inverse matrix of In – k – Q. Therefore 
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( )

ij n k
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adj I Q
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−

−
−

 = = − 

= −
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where D (In – k – Q) and adj (In – k – Q) denote the determinant 
and the adjoin of the matrix In – k – Q respectively ([5], 
Section 2.4). We recall that the adj (In – k – Q) is the matrix 
of the algebraic complements of the transpose matrix of 
the matrix In – k – Q. 

It is well known ([4], Chapter 3) that the element nij of 
the fundamental matrix N gives the mean number of times 
in state si before the absorption, when the starting state of 
the AMC is sj , where si and sj are non absorbing states. 

4. The Markov Chain Model for PS 

We introduce a finite MC on the steps Si, i=1, 2,…,5 of  
the PS process. Obviously this MC is an AMC with S5 its 
unique absorbing state. Further, it is easy to check that its 
transition matrix has the form 
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with  p23 + p24 = p31 + p32 = 1. 
Let us denote by φ0, φ1, φ2, ...... , the successive phases 

of the MC and let Pi  be its probability vector at phase φi , i 
= 0, 1, 2,....  . Then, since S1 is always the starting state, 
we have P0 = [1 0 0 0 0], P1 = P0 A =  [0 1 0 0 0], P2 = P1 
A = [0 0 p23  p24 0],  

 2 1  ..P P A= =…  (2) 

It is also easy to observe that the transition matrix 
among the non absorbing states of the MC is equal to 

 23 24

31 32

0 1 0 0
0 0

.
0 0

0 0 0 0

p p
Q

p p

 
 
 =
 
 
 

 

Then the fundamental matrix Ν = [nij], i, j =1, 2, 3 , 4, 
of the chain is the matrix Ν = (I4 - Q)-1 calculated by 
formula (1) of Section 3. Since the element nij of Ν gives 
the mean number of times at state Sj  before the absorption, 
when the MC starts from Sι and since in our case the MC 
starts always from S1, it becomes evident that the sum  

  
4

1
1

j
j

t n
=

= ∑   

gives the mean number of phases of the MC before the 
absorption. Performing the necessary calculations one finally 
finds that 

 23 32

24

3
.

p p
t

p
−

=  (3) 

Obviously, the more are the difficulties during the PS 
process, the greater is the value of t. Therefore, a smaller 
value of t is connected to a better solver performance. In 
other words, the value of t gives an indication of the 
ability either of different solver groups for solving the 
same problem, or of the same group for solving different 

problems. Of course this is not the unique indication about 
the difficulty of the PS process; e.g. another indication is 
the total time spent by the group for the completion of the 
PS process, etc.  

5. Examples 

The PS process of the following two problems by a 
group of 40 undergraduate students of the School of 
Technological Applications (future engineers) of the 
Graduate T. E. I. of Western Greece being at their first 
term of studies illustrates the applicability of the AMC 
model developed in Section 4 to real PS situations. The 
time allowed by the instructor for the solution of each 
problem was 20 minutes.  

Problem 1: Given the matrix M =
1 2 2
0 1 2
0 0 1

 
 
 
  

 and a 

positive integer n, calculate the matrix M n. 
PS process: In the first 15 minutes 30 students solved 

the problem. To the rest of them the instructor gave the 
following hint: “Applying induction on n try to show that 

Mn =

21 2 2
0 1 2
0 0 1

n n
n

 
 
 
 
 

”. Then six more students solved the 

problem in the time allowed for solution. 
The transition probabilities involved in the AMC model 

can be calculated in this case as follows (see Figure 2): Initially 
all solvers proceed from S1 to S2. Then 30 of them proceed 
straightforward through S4 to the absorbing state S5. The 
other 10 solvers proceed from S2 to S3. From there, six of 
them return to S2 and reach S5 through S4. The remaining 
four solvers return to S1 and they remain there being unable 
to make any other movements for the problem’s solution. 

 
Figure 2. Flow- diagram of solver movements in Problem 1 
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Therefore, since we have 46 in total “arrivals” to S2 , 36 
in total “departures” from S2  to S4 and 10 “departures” 

from S2  to S3 , one finds that p24 = 36
46

 and p23 = 10
46

. 

Similarly it turns out that p32 = 6
10

 and p31 = 4
10

. 

 Replacing the above values to equation (3) of Section 4 

one finds that t = 132
36

≈ 3.67 steps. Also, as an example of 

a short run forecast, since by formulas (2) we have that P2 

= [0 0 10
46  

36
46

 0], the probability for the PS process to be 

in its third phase at the step of executing is equal to 36
46

, or 

approximately equal to 78.26%. 
Problem 2: Let a, b, c, d be given numbers between 0 and 
1. Prove that  

(1- a)(1- b)(1- c)(1- d) >1- a – b – c – d ([7], Problem 2). 
PS process: In the first 15 minutes eight students solved 

the problem as follows: “It is enough to show that (1- b – 
a + ab)(1 – d – c + cd) >1- a – b – c – d, or ab + ac + ad 
+ bc + (bd +cd +abcd) > abc + abd + acd + bcd.   But 
ab >abc, ac >acd, ad >abd, bc > bcd and the result 
follows, since bd +cd +abcd >0 “. 

To the rest of the students the instructor gave the hint: 
“Try first to solve the corresponding problem in two and 
then in three variables”. Then 23 more students solved the 
problem in the time allowed for solution. 

In this case, an argument analogous to that developed in 

Problem 1 shows that p24 = 31
63

, p23 = 32
63

, p32 = 23
32

 and 

p31 = 9
32

 and the replacement of the above values to 

equation (2) gives that t = 166
31

≈  5.35 steps. 

Therefore, although Problem 2 involved elementary 
Algebra only, the students faced more difficulties than 
those faced in Problem 1 to solve it. 

6. Discussion and Conclusions 

In the present paper an AMC model was developed for 
the description of the PS process. The analysis of the PS 
process of the two problems of Section 5 shows that the 
calculation of the transition probabilities involved was 
based on the description of the solver assumed behavior, 
i.e. on how they could act and not on how they really act 
in practice for solving the problems. In Problem 1, for 
example, we have tacitly assumed that the 30 students 
who solved it in the first 15 minutes, proceeded linearly 
from S2 to S5 through S4, which could not be true. In  
fact, some of them could have passed from S3 first and 
possibly they could have made the same circle more than 
once. Similarly, we have tacitly assumed that the six 
students who failed to solve the problem proceeded for S3 
to S1 and remained there until the end of the PS process, 
which also could not be true. In fact, some of them in their 
effort to solve the problem could have repeated the same 

circle more than once. The only way for the instructor  
to be helped to know if the assumed student behavior can 
be considered as a reasonable approach to their real 
behavior is to perform interviews asking the students 
about how they tried to solve the problems. This could be 
done during a research project, but it is technically 
difficult - due to the lack of time - to be attempted in the 
everyday practice, if the instructor decides to use the 
AMC model for evaluating the student overall performance. 
However, even the latter case is better providing to the 
instructor more information than the traditional way of 
marking the student papers and calculating the mean value 
of their marks, which is based on student final outcomes 
only. 

They are very many other situations in Education that 
can be modelled by MCs, e.g. see [11,13], etc. requiring 
further research. An interesting perspective for future 
research is also the comparison of the MC models to 
corresponding models developed in terms of principles of 
Fuzzy Logic (FL), e.g. see [13,14], etc. In fact FL, due to 
its nature of characterizing the ambiguous cases with 
multiple values, offers the possibility of studying easier 
the real instead of the assumed behavior of individuals. In 
contrast, the fuzzy models are not so accurate like the MC 
ones, since the membership functions of the corresponding 
fuzzy sets can be defined in multiple ways according to 
the researcher’s personal criteria of goals. An attempt for 
such a comparison requires an extendable analysis, which 
of course could not be performed here, needing more 
space, plans and time. However, it is hoped to be included 
in our future research works. 
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