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Abstract  In this paper, we have studied MHD natural convection within trapezoidal cavity having circular block 
with uniformly heated bottom wall with inclination angles (ф). To investigate the effects of uniform heating with the 
circular block a Galerkin finite element method is studied and also used for solving the Navier-Stokes equations for 
different angles Φs. Here left and right walls are considered as cold and upper wall is considered as thermal insulated 
in a trapezoidal cavities. Rayleigh number (Ra) from 103 to 105, Hartmann number (Ha = 20) and Prandtl number (Pr) 
from 0.026 to 0.7 with various tilt angles Ф = 450, 300 and 00 (square) are concerned with the fluid. By different sets 
of governing equations along with the corresponding boundary conditions are used to set the physical problems. 
Results are shown in terms of streamlines, isotherms, heat flux and heat transfer rates for different Ra and Pr. It is 
seen that for different angles Φs conduction dominant region changes for different Pr when Ra increases. Local and 
average nusselt numbers are also used for heat transfer analysis for different irrespective Φs. 
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1. Introduction 
When the heated fluid is caused to move away from the 

source of heat, carrying energy with it then heat transfer 
occurs by mass motion of a fluid. This is called 
convection. During the last few years, many researchers 
have been attracted by the well-known buoyancy driven 
Phenomena of convection motion of fluid. It is seen that 
analysis of convection such as natural convection in 
enclosed cavities usually is used in the engineering fields. 
Besides, in chemically processed industries such as solar 
cooling, food processing and polymer production etc. the 
phenomenon of natural convection and the heat and mass 
transfer are recurrently present. The trend of natural 
convection flow occurs frequently in nature by involving 
coupled heat and mass transfer. In these studies, the 
magnetohydrodynamic phenomenon having circular block 
is applied. Due to its diversified applications, 
magnetohydrodynamics (MHD) has attracted the attention 
of a large number of scholars. The study on natural 
convection flow is important in liquid-metals, electrolytes 
and ionized gases due to effects of magnetic field. Besides, 
Magnetohydrodynamics flows have applications in 
meteorology, solar physics, cosmic fluid dynamics, 
astrophysics, geophysics and in the motion of earthes core.  

Many engineering applications based on natural 
convection in enclosed cavities [1-5] have been received 
crucial attention. Various initiatives have been taken to 

acquire a basic understanding of natural convection flows 
and heat transfer characteristics in a cavities reported by 
Patterson and Imberger [6], Hall et al. [7], Hyun and Lee 
[8], and Al-Amiri et al. [9]. The middle-of-the-road 
studies dealing with convection in cavities are focused on 
the cases of simple geometry e.g., rectangular, square, 
cylindrical and spherical cavities. But the configurations 
of actual containers used in real life are not always simple. 
A few studies have been carried out on natural convection 
on triangular cavities filled with a viscous fluid or a 
porous medium by earlier researchers [10,11,12]. A good 
number of the cavities commonly used in industries are 
cylindrical, rectangular, trapezoidal, triangular etc. 
Considerable attentions have also been received by 
trapezoidal cavities for their applications in various fields.  

A broad understanding of energy flow and entropy 
generation is required for an optimal process design via 
reducing irreversibility in terms of ‘entropy generation’. In 
this study, analyses on entropy generation during natural 
convection in a trapezoidal cavity with various inclination 
angles (φ = 45°, 60° and 90°) have been carried out for an 
efficient thermal processing of various fluids of industrial 
importance (Pr = 0.015, 0.7 and 1000) in the range of 
Rayleigh number (103 − 105) by Basak et al. [13]. Basak et 
al. [14] studied a comprehensive heatline based approach 
for natural convection flows in trapezoidal enclosures 
accompanying the effect of various walls heating. The 
present numerical study focuses on natural convection 
flow in closed trapezoidal cavities. The energy distribution 
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and thermal mixing in steady laminar natural convective 
flow through the rhombic cavities with various inclination 
angles, φ for various industrial applicationshas been 
studied by Anandalakshmi and Basak [15]. Here 
simulations are carried out for various regimes of Prandtl 
(Pr) and Rayleigh (Ra) numbers. Dimensionless 
streamfunctions and heatfunctions have been used to 
visualize the flow and energy distribution, respectively. 
Hasanuzzaman et al. [16] studied a computational 
numerical work to see the effects of magnetic field on 
natural convection for a trapezoidal cavity. To investigate 
the effects, finite element method is used to solve the 
governing equations for different parameters such as 
Rayleigh number, Hartmann number and inclination angle 
of inclined wall of the cavity using both inclined walls and 
bottom wall have constant temperature where the bottom 
wall temperature is higher than the inclined walls and top 
wall of the cavity is adiabatic. It is found that heat transfer 
decreased as φ increases from 0 to 60 and also Ha 
increases from 0 to 50 at Ra = 105 and 106 respectively. 

Selimefendigil et al. [17] investigated entropy 
generation due to natural convection in entrapped 
trapezoidal cavities filled with nanofluid under the 
influence of magnetic field where the upper (lower) cavity 
is filled with CuO-water (Al2O3-water) nanofluid and the 
top and bottom horizontal walls of the trapezoidal cavities 
are maintained at constant hot temperature while other 
inclined walls of the enclosures are at constant cold 
temperature and also different combinations of Hartmann 
numbers are imposed on the upper and lower trapezoidal 
cavities. It is found that the average heat transfer reduction 
with magnetic field is more pronounced at the highest 
value of the Rayleigh number when there is no magnetic 
field in the lower cavity. Besides, the average Nusselt 
number enhances as the value of the Hartmann number of 
the upper cavity increases. It is also found that the heat 
transfer enhancement rates with nanofluids which are in 
the range of 10% and 12% are not affected by the 
presence of the magnetic field. 

Gireesha et al. [18] performed the geometry of an 
unsteady viscous incompressible fluid with uniform 
distribution of dust particles through a long rectangular 
channel under the influence of time-dependent periodic 
pressure gradient. Initially the fluid and dust particles are 
at rest. Analytical expressions for velocities of fluid and 
dust particles are obtained by solving the partial 
differential equations using variable separation method.  

At the same time, Hossain and Alim [19,20] have 
studied MHD free convection within trapezoidal cavity 
with uniformly and non-uniformly heated bottom wall. 
They have analyzed free convection within a trapezoidal 
cavity for nonuniformly and uniformly heated bottom wall, 
insulated top wall and isothermal side walls with 
inclination angles (ф). The fluid is concerned for the wide 
range of Rayleigh number (Ra) from 103to 107and Prandtl 
number (Pr) from 0.026-1000 with various tilt angles Ф = 
450, 300and 00(square). The properties of the fluid were 
presumed to be constant. The physical problems are 
presented mathematically by different sets of governing 
equations along with the corresponding boundary 
conditions. The non-dimensional governing equations are 
discretized by using Galerkin weighted residual method of 
finite element formulation. Results are presented in terms 
of streamlines, isotherms, and average and Local Nusselt 

numbers, for different parameters namely Prandtl number 
Pr and Rayleigh number Ra. This range of Ra is selected 
on the basis of calculation covering natural convection 
dominated regimes. The results indicate that the Local and 
average Nusselt number at the uniform heating of bottom 
wall of the cavity depend on the dimensionless parameters. 
Also Hossain et al. [21] have performed finite element 
analysis of MHD Free Convection within trapezoidal 
enclosures with uniformly heated side walls.  

Natarajan et al. [22] have studied the combined natural 
convection and surface radiation heat transfer in a solar 
trapezoidal cavity absorber for Compact Linear Fresnel 
Reflector (CLFR). In this study the numerical simulation 
results are presented in terms of Nusselt number 
correlation to show the effect of these parameters on 
combined natural convection and surface radiation heat 
loss. The natural convection in a porous trapezoidal 
enclosure for uniformly or non-uniformly heated bottom 
wall is also examined by Basak et al. [23]. In this study, 
penalty finite element analysis with bi-quadratic elements 
is used for solving the Navier–Stokes and energy balance 
equations. The numerical solutions are studied in terms of 
streamlines, isotherms, heatlines, local and average 
Nusselt numbers for a wide range of parameters 
Da(10−5–10−3), Pr(0.015–1000) and Ra(Ra = 103–106). 
At low Darcy number (Da = 10−5), heat transfer is 
primarily due to conduction for all φ’s as seen from the 
heatlines which are normal to the isotherms.  

Basak et al. [24] have also examined heat flow patterns 
in the presence of natural convection within trapezoidal 
cavities with heatlines concept. In this lesson, natural 
convection within a trapezoidal cavity for uniformly and 
non-uniformly heated bottom wall, insulated top wall and 
isothermal side walls with inclination angle has been 
investigated. Momentum and energy transfer are 
characterized by stream functions and heat functions, 
respectively, whereas, stream functions and heat functions 
satisfy the dimensionless forms of momentum and energy 
balance equations, respectively. Finite element method has 
been used to solve the velocity and thermal fields and the 
method has also been proved robust to obtain the stream 
function and heat function accurately. The unique solution 
of heatfunctions for situations in differential heating is a 
strong function of Dirichlet boundary condition which has 
been obtained from average Nusselt numbers for hot or 
cold regimes.  

Trapezidal cavities having circular block have not been 
used in the literature yet. In this study, heat flow analysis 
for MHD natural convection using circular block with 
uniformly heated bottom wall has been studied for 
trapezoidal cavities. Results are shown to display the 
circulations and for different physical parameters Ra, Pr 
and Ha in terms of streamlines, stream functions, total 
heat flux, isotherms and heat transfer rates for the walls in 
terms of average and local nusselt numbers. 

2. Physical Model 
The Physical model is well thought-out of height L with 

the left wall inclined at an angle ф = 450, 300, 00 with Y 
axis in a two-dimensional trapezoidal cavity having 
circular block which is schametically shown in Figure 1. 
Here left wall and right (side) walls are subjected to cold 
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Tc temperature; bottom wall is subjected to hot Th 
temperature while the top wall is kept insulated. The 

boundary conditions for velocity are considered as no-slip 
on solid boundaries. 

 
Figure 1. Schematic diagram of the physical system for (a) ф = 450 (b) ф = 300 and (c) ф = 00 

2.1. Mathematical Formulation 
The flow inside the cavity is assumed to be two-

dimensional, steady, laminar and incompressible and the 
fluid properties are said to be constant. The momentum 
equation, Boussinesq approximation is used for the 
treatment of buoyancy term.The dimensionless governing 
equations describing the flow are as follows: 
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To write equations (1-4), the following definitions and 
dimensionless parameters are used, 
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2.2. Boundary Conditions 
The boundary conditions [24] (also shown in Figure 1), 

for the present problem are specified as follows: 
At the bottom wall: 

 0, 0, 1, 0, 0 1U V Y Xθ= = = ∀ = ≤ ≤  (6) 

At the left wall: 

 0, 0, 0, cos sin 0,0 1U V X Y Yθ φ φ= = = ∀ + = ≤ ≤  (7) 

At the right wall: 

 0, 0, 0, cos sin cos ,0 1U V X Y Yθ φ φ φ= = = ∀ − = ≤ ≤ (8)
 

At the top wall: 

 ( )0, 0, 0, 1, tan 1 tanU V Y X
Y
θ φ φ∂

= = = ∀ = − ≤ ≤ +
∂

(9) 

where X and Y are dimensionless coordinates varying 
along horizontal and vertical directions, respectively; U 
and V are dimensionless velocity components in X and Y 
directions, respectively; θ  is the dimensionless temperature.  

Circular block is also used inside the trapezoidal cavity. 
The local Nusselt number at the heated surface of the 

cavity which is defined by the following expression: 

 ,l r b sNu Nu Nu Nu
n
θ∂

= = = = −
∂

 

where n denotes the normal direction on a plane. The non-
dimensional stream function is defined as, 

, .U V
Y X

∂Ψ ∂Ψ
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The average Nusselt number at the cold left and right 
(side) walls, uniformly heated bottom wall and insulated 
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top walls of the cavities based on the non-dimensional 
variables may be expressed as,  

 
1 1 1 1

0 0 0 0
.l r s bNu Nu dX Nu dX Nu dX Nu dX= = = =∫ ∫ ∫ ∫  

2.3. Numerical Methodology 
To solve differential equations numerically finite 

element analysis is a method which can be applied to 
many problems in engineering and scientific fields. Finite 
element simulation of natural convection in a two-
dimensional trapezoidal cavities having circularblock has 
been studied here. This research starts from two-
dimensional Navier-Stoke’s equations together with the 
energy equation to obtain the corresponding finite element 
equations.Galerkin’s weighted resudal method is applied 
to discretize the non-dimentional governing equations. 
Triangular mesh is used to obtain the solution. Because 
this type of mesh can be used in any shape of 
domain .Details of method are available in Taylor and 
Hood [25] and Dechaumphai [26]. 

3. Grid Independence Test 
Table 1. Grid Sensitivity Check at Pr = 0.7, Phi =450, Ha = 50 and  
Ra = 105 

Nodes 
(Elements) 

3597 
(520) 

4840 
(708) 

5718 
(842) 

10614 
(1592) 

13954 
(2080) 

Nu 3.680365 3.680392 3.68068 3.68030 4.28639 

Time (s) 2.906 3.64 4.14 7.64 9.406 

To determine the proper grid size for this study, a grid 
independence test is conducted in the above Table 1 with 
Pr = 0.7, Phi =450, Ha=50 and Ra = 105. The following 
five types of mesh are considered for the grid 
independence test.These grid densites are 3597, 4840, 
5718, 10618, 13954 nodes and 520, 708, 842, 1592, 2080 
elements. Average Nusselt numbers at the heated surface 
study of trapezoidal enclosures are used as a measure of 
accuracy of solution. From the Table 1, a grid size of 
10614 nodes and 1592 elements is chosen for better 
accuracy. 

4. Code Validation 
Table 2. Code validation for uniform heating of side wall with  
Pr = 0.7 

Ra 

Average Nusselt Number, ( Nuav ) 

Present work Basak et al. ([24]) 

ф = 450 ф = 450 

103 1.669865 1.27778 

104 1.84332 1.83453 

105 2.826184 2.71105 

To compare the current code results, the present 
numerical solution is validated against the numerical 
result of Basak et al. [24] for natural convection in a 
trapezoidal cavity for streamlines, isotherms and heatflux. 
For three different Rayleigh numbers (Ra = 103, 104 and 
105), while the prandtl number and angle are fixed i.e.  
Pr = 0.7, ф = 450 for uniform heating of side wall, average 
Nusselt number is calculated for 1566 nodes and 222 

elements. The numerical solutions (present work and 
Basak et al. [24]) are in good agreement, which is shown 
in Table 2. 

5. Results and Discussion 
Numerical results for different Rayleigh number Ra = 

103- 105 and Prandtl number, Pr = 0.026, 0.7 and 
Hartmann number Ha=50 for streamlines, isotherms and 
heat function or heatflux for the fluid with various angles, 
ф = 450, 300, 00 is presented here for MHD natural 
convection with trapezoidal cavity having circular block. 
These are shown in Figure 2 - Figure 4. Also, heat transfer 
rate for local and average nusselt numbers are shown for 
various values of Rayleigh and Prandtl numbers and 
angles ф. 

5.1. Uniform Heating 
Figure 2 shows the effects of streamlines, isotherms and 

heat function or total heat flux for Rayleigh numbers. It is 
noted that stream function’s magnitude varying from 
smaller to bigger which occur due to heated and for the 
low Rayleigh number, heat flow is occurred due to 
conduction. Various vortices are shown in streamlines due 
to heat conduction. Isotherms are seen likely smooth 
curves and symmetric with respect to vertical symmetrical 
line and take place symmetrically along side (left or right) 
walls for Ra = 103, Pr = 0.026 and ф = 00(square cavity) 
(Figure 2a). Again, temperature contours come about 
symmetrically near the side walls of the enclosure and 
curves are smooth and symmetric with respect to central 
symmetrical line for Ra = 103, Pr = 0.026 and ф = 300 
(Figure 2b). Also for Ra = 103, Pr = 0.026 and ф = 450 
isotherms (temperature) arise symmetrically near the side 
walls of the cavity and also curves are smooth and 
symmetric with respect to vertical symmetrical line 
(Figure 2c). Temperature distribution for various ф in 
trapezoidal cavity for circular block has been exhibited by 
the pressure of significant convection. Heat flux or heat 
function governed the distribution of heat energy that 
observed for uniform heating cases. Besides, various types 
of vortices are seen in panels of Figure 2a-c. The heatlines 
or total heat flux or heat functions are also shown in 
panels of Figure 2a-c. The heatlines illustrate similar 
attribute that were also observed for uniform heating cases.  

The fascinating impact is that ф = 00(square cavity) is 
finer to ф = 450 and 300 at the bottom corner point. 
Besides, near the bottom portion of side walls heatlines 
are more dense for ф = 450 and less dense for ф = 
00(square cavity). The rate of heat transfer from the 
bottom to the side walls are being enhanced by dense 
heatlines. It is noted that from bottom edges to central 
symmetrical line the magnitudes of heat function or heat 
flux decreases at the top portion of the cavity for ф = 450 

and 300 heat transfer is higher condensed to ф = 00(square 
cavity) based on value of heatfunction (Π). The heat 
transfer is quite large at the corners of bottom wall, the 
thermal boundary layer is found to develop near the 
bottom edges and at the top portion of the cold wall 
boundary layer’s thickness is bigger signifying less heat 
transfer to the top portion. 

Figure 3 shows that streamfunction’s the magnitude are 
smaller for Ra = 105 and Pr = 0.026 and isotherms occur 
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symmetrically near the side walls of the cavity and curves 
are also smooth and symmetric with respect to central 
symmetrical line for Ra = 105, Pr = 0.026 and ф = 450, 300, 
00(square cavity) (Figure 2a-c, Figure 3a-c) and the rate of 
heat transfer are being enhanced by heatlines from the 
bottom to side walls for Ra = 104 and Pr = 0.026. At 

critical Ra the middle portion of isotherms starts getting 
deformed and the maximum value of ψ is at the eye of 
vortices. If Ra is increased, the buoyancy driven 
circulation inside the cavity has also increased which are 
seen from greater magnitudes of stream function (Figure 3). 

 
Figure 2. Stream function (Ψ), temperature (θ), heat function or total heat flux (П) for θ(X,0) = 1 with Pr = 0.026, Ha = 50 and Ra = 103 (a) Φ = 0o (b) 
Φ = 30o (c) Φ = 45o 

 
Figure 3. Stream function (Ψ), temperature (θ), heat function or total heat flux(П) for θ(X,0) = 1 with Pr = 0.026, Ha = 50 and Ra = 105(a) Φ = 0o (b)  
Φ = 30o (c) Φ = 45o 
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Figure 4. Stream function (Ψ), temperature (θ), heat function or total heat flux(П) for θ(X,0) = 1 with Pr = 0.7, Ha = 50 and Ra = 105 (a) Φ = 0o (b)  
 Φ = 30o (c) Φ = 45o 

The streamfunction’s magnitude is circular or elliptical 
near the core but the streamlines is almost parallel near to 
the side wall exhibiting large intensity of flow for Pr = 0.7 
and Ra = 105 which is shown in Figure 4. Vortices are also 
showy for every case of cavities. Also for Pr = 0.7 and Ra 
= 105 isotherms are likely symmetrical near the side walls 
of the cavity and curves are flat symmetric with respect to 
central symmetrical line for ф = 450, 300, 00(square cavity). 
The detection is that for irrespective of angles ф the 
intensity of flow has been increased as seen in Figure 3. 
Although for intensity of flow streamlines near the wall is 
almost parallel to wall but streamlines look like circular or 
elliptical near the core (see Figure 3). It is captivating that 

for Pr = 0.7 and Ra = 105 multiple correlations are 
deficient. Isotherms are highly compressed near the side 
walls in order to enhanced flow circulations except near 
the bottom wall especially for ф = 450 and 300. The large 
temperature gradient near the side walls are due to 
significant number of heatlines with a large variation of 
heatfunction as seen in Figure 4a-c . 

5.2. Heat Transfer Rates: Local Nusselt 
Numbers (Nulocal) and Average Nusselt 
Numbers (Nuav) 

 
Figure 5. Variations of local Nusselt numbers (Nulocal) with distance for different Rayleigh numbers, Ra = 103, 104, 105 and angles (a) Φ = 0o, (b) 45o 
when Pr = 0.7 for uniform heating of bottom wall 

Figure 5(a,b) shows the effect of local heat transfer 
rates i.e. Nulocal vs distance for various inclination tilt 
angles i.e. for ф = 00, 450 when Ra = 103, 104, 105 and Pr = 
0.7 having circular block for uniform heating of bottom 

wall. Local heat transfer rate is maximum near the edge of 
side wall and minimum near to the bottom edge of the 
wall due to the heated bottom wall, cold side walls and 
insulated top wall. It is seen that for (a) ф = 00 Nulocal heat 



167 American Journal of Applied Mathematics and Statistics  

 

transfer rates are slightly same near to the side wall but 
slightly different near to the edge of the bottom wall and 
the boundary layer starts to form at the bottom edge of the 
side wall . In order to large intensity of convection,  
(b) ф = 450 at Ra = 103, 104, 105 there is more change of 
heat transfer rates near to the side wall and also near to the 
bottom edge of the wall. As Ra increases, magnitudes of 
local heat transfer rates become smaller and maximum 
heat transfer occurs from one edge of the side wall 
continuing bottom wall to the other edse of the side wall. 
It may be mentioned that the larger degree of compression 
of isotherms for uniform heating case results in larger and 
Nulocal is quite large near to the bottom wall.  

The heat transfer rates are illustrated for uniform 
heating of bottom wall having circular block in  
Figure 6(a,b), where distributions of average Nusselt 
number are plotted vs the logarithmic Rayleigh number 
respectively. It may be noted that average Nusselt number 

is obtained by considering temperature gradient. It may 
also be noted that as Ra increases then the average Nusselt 
number increases. It is seen in Figure 6(a) that as Ra 
increases from 103-105 then average Nusselt number is 
straightly moving for Φ = 0o , 300 but for Φ = 45o Ra 
increases more when Pr = 0.026. As Pr increases (Figure 6(b)) 
then conduction dominant heat transfer is narrowed down. 

It is also seen from Figure 6(b) that, as Pr increases 
more then from uniform heating case it is analyzed that 
average Nusselt number for bottom wall is also slightly 
increasing during the entire Rayleigh number regime.. As 
Pr increases then for conduction dominant heat transfer, 
the average Nusselt number is generally constant 
irrespective of Ra. It is observed that Nuav at the middle 
portion of bottom wall for Φ = 30o is slightly changing for 
uniform heating case whereas for Φ = 30o and 45o heat 
transfer rates are lightly identical. 

 
Figure 6. Variations of Average Nusselt Number vs Rayleigh number for (a) Pr = 0.026, (b) Pr = 0.7 and angles Φ = 0o, 30o, 45o for uniform heating of 
bottom wall 

6. Conclusion 
In this revise, the predicament of MHD natural 

convection having circular block within trapezoidal 
cavities for uniformly heated bottom walll with heatlines 
concept has been prsented numerically in terms of 
streamlines and isotherms and heat function or total heat 
flux with the aid of flow and temperature field for 
different parameters Pr, Ra and Ha. The results of the 
numerical analysis lead to the following conclusions: 
• Due to the circular block, at low Rayleigh 

number (Ra), the circulation outline into the 
trapezoidal cavity is very fragile because the 
buoyancy forces are being dominated over the 
viscous forces. Finally a clear mystification 
occurs in the contour of re-circulating vortices as 
Rayleigh number (Ra) increases since the 
buoyancy forces are dominating over the viscous 
forces.  

• When the Rayleigh number (Ra) increases then 
due to Ha and circular block of the cavity, a little 
bit anomalies of the isothermlines increases. 

• Near the edge of the wall, the local heat transfer 
rate is maximum but minimum near the center of 
the wall irrespective of all angles (ф) for uniform 

heating of the bottom wall for Rayleigh number 
(Ra) 103 to 105 gradually. 

• The heat transfer rate average Nusselt Number, 
Nuav increases with the increase of Rayleigh 
number, Ra, for uniform heating of bottom wall.  

• The maximum rate of heat transfer is obtained for 
the highest value Ra and also Pr and heat transfer 
rate depends on also Pr. 
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Nomenclature 
B0 Magnetic induction 
Cp Specific heat at constant pressure (J/kg K) 
G Gravitational acceleration (m/s2) 
Gr Grashof number 
H Convective heat transfer coefficient (W/m2 K) 
Ha Hartmann number 
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K Thermal conductivity of fluid(W/m K) 
L Height or base of trapezoidal cavity (m) 
k Thermal conductivity ratio fluid 
N Total number of nodes  
Nuav Average Nusselt number 
Nulocal Local Nusselt number 
P Non-dimensional pressure 
p Pressure 
Pr Prandtl number 
Ra Rayleigh number 
T Non-dimensional temperature 
Th Temperature of uniformly heated bottom wall (K) 
Tc Temperature of cold vertical wall (K) 
U x component of dimensionless velocity 
u x component of velocity (m/s) 
V y component of dimensionless velocity 
v y component of velocity (m/s) 
V0 Lid Velocity 
x, y Cartesian Coordinates 
X, Y Dimensionless Cartesian coordinates 

Greek symbols 
α Thermal diffusivity (m2/s) 
β Coefficient of thermal expansion (K-1) 
ρ Density of the fluid (kg/m3) 
∆θ Temperature difference 
Θ Fluid temperature 
μ Dynamic viscosity of the fluid (Pa s) 
Π Heatfunction 
ν Kinematic viscosity of the fluid (m2/s) 
σ Fluid electrical conductivity(Ω-1m-1) 

Subscripts 
b Bottom wall 
l Left wall 
r Right wall 
s Side wall 
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