
American Journal of Applied Mathematics and Statistics, 2016, Vol. 4, No. 5, 154-160 
Available online at http://pubs.sciepub.com/ajams/4/5/3 
©Science and Education Publishing 
DOI:10.12691/ajams-4-5-3 

A Note on the Unique Solution of the Integral Equations 
in the Framework of Fixed Point Theorem on Partially 

Ordered Metric Space 

Youhua Qian*, Juan Wu, Yafei Zhang 

College of Mathematics, Physics and Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang, China 
*Corresponding author: qyh2004@zjnu.edu.cn 

Abstract  In this paper, we obtained the unique solution of the integral and coupled integral equation in the 
framework of fixed point theorem on partially ordered metric space. Our results unified some methods in studying 
the existence of unique solution for the integral equation. Moreover, all results are much more brief. In addition, the 
examples are given to illustrate the usability of the obtained results. 

Keywords: coupled integral equations, fixed point theorems, partially ordered metric spaces 

Cite This Article: Youhua Qian, Juan Wu, and Yafei Zhang, “A Note on the Unique Solution of the Integral 
Equations in the Framework of Fixed Point Theorem on Partially Ordered Metric Space.” American Journal of 
Applied Mathematics and Statistics, vol. 4, no. 5 (2016): 154-160. doi: 10.12691/ajams-4-5-3. 

1. Introduction 
The fixed point theory centers on the process of solving 

the equation of the form ( )T x x= . One of the most 
widely used theory is Banach fixed point theory and its 
several extensions in generalized metric spaces. Therefore, 
fixed point theory on partially ordered sets has been 
studied recently in [1,3,8,10,11,13]. For example, fixed 
point theorems for nonlinear and semi-linear operators on 
order intervals [1], coupled fixed point theorems [9] and 
extended the theoretical results to fixed points in partially 
sets [10] etc. On the other hand, given non-empty subsets 
A  and B  of the partially ordered set X  and a non-self 

mapping S  from A  to B , one can perceive that the 
equation ( )S x x=  is improbable to have a solution. 
Naturally, best proximity point theorems on partially 
ordered set are also be studied in [4,5,6,7]. 

It is well-known that those abstract results can be 
applied to obtain an abundance of concrete results for some 
special problems, for instance, (a) differential and difference 
equation; (b) integral equation; (c) periodic boundary 
value problems. The purpose of this paper is to obtain the 
existence of solution of the integral equation for mixed 
monotone, contractions in the setting of partially ordered 
sets endowed with metrics. It is remarked that the unique 
solution of integral equations in this paper are established 
in the setting of ordered metric spaces whereas the fixed 
point theorems in [1,3,9,12] are elicited in the framework 
of fixed point theorems on partially ordered metric space. 

2. Fixed Point Theorems in Partially 
Ordered Metric Spaces 

Definition 2.1 [2] Let )( ,X ≤  be a partially ordered set, 

T X X→：  be a mapping. If x y≤ ⇒  ( ) ( )T x T y≤ , 
then T is said to have the monotone increasing property. 

Let )( ,X ≤  be a partially ordered set and suppose 

)( ,X d  is a complete metric space. Let T X X→：  be an 
increasing and continuous mapping. The following 
Theorems establish the fact that the contractive nature of 
T  is not restricted to the entire set X  but only restricted 
to the comparable elements of )( ,X ≤ . 
Definition 2.2 [14] Let X  be a set and let 1s ≥  be a 
given real number. A functional :d X X×  R+→  is said 
to be a b -metric if the following conditions are satisfied: 

1. ( ), =0d x y  if and only if x y= ; 
2. ( ) ( ), = ,d x y d y x ,for all ,x y X∈ ; 
3. ( ) ( ) ( ), z s , ,d x d x y d y z≤ +   . 

A pair ( ),X d  is called a b -metric space. 
Theorem 2.1 [10] If there exists λ 1<  with 

( ) ( )( ) ( ),   λ ,d yx yT d xT ≤ , whenever y x≤  and there 

exists 0x X∈ , with ( )00x T x≤ , then T  has a fixed point. 
Theorem 2.2 [11] Assume that there exist upper and lower 
bounds of the pair { },x y  for any ,x y X∈ . If there exists 

λ 1<  with ( ) ( )( ) ( ),   λ ,d yx yT d xT ≤ , whenever y x≤  

and there exists 0x X∈ , with ( )00x T x≤  or ( )00x T x≥ , 
then T  has a unique fixed point u . Moreover, for any 
y X∈ , the orbit ( ){ }nT y  converges to the fixed point u . 

Let [ ],I a b= , ( ),X C I R= , we define the following 

order relation in ( ): , , ,X x y C I R∈  ( ) ( )x y x t y t≤ ⇔ ≤ , 
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for t I∀ ∈ , then )( ,X ≤  is a partially ordered set. Define 

the metric on X  as the follow: 

 ( ) ( ) ( ) ( )( ), sup y , , ,
t I

d x y x t t x y C I R
∈

= − ∀ ∈  

then )( ,X d  is a complete metric space. 
Next, we consider the existence of solutions for the 

following integral equation for an unknown function u  
(see [3]): 

 ( ) ( ) ( ) ( )( ) ( )λ , , , ,
b
a

u t v t G t z f z u z dz t I= + ∈∫  ( )1  

where : ,f I R R× →  [ ]: 0, ,G I I× → +∞  :v I R→  are 
given continuous functions. 

Let X  be the set [ ],C a b  of real continuous functions 

on [ ] ( ) ( ) ( ), , , sup
t I

a b d u v u t v t
∈

= −  ( ) ( )max
t I

u t v t
∈

= − . It 

is easy to check that )( ,X d  is a complete metric space. 
Define a mapping :T X X→  by 

 ( )( ) ( ) ( ) ( )( )λ , , , .
b
a

T u t v t G t z f z u z dz t I= + ∈∫  ( )2  

Then ( )u t  is a solution of ( )1  if and only if it is a fixed 
point of T . 
Theorem 2.3 Consider the integral equation ( )1  under the 
following assumptions: 
( )1H  0 λ 1< < ; 

( )2H  for all x I∈ , if ( ) ( )2 1u t u t≤ , then 

( )( ) ( )( ) ( ) ( )1 2 1 20 , ,f x u t f x u t u t u t≤ − ≤ − ; 

( )3H ( ) ( )10 , , ,G t z t z I I
b a

≤ ≤ ∀ ∈ ×
−

 ; 

( )4H ( ) ( )0 0 0, ,x C I R x T x∃ ∈ ≤ or ( )0 0 .x T x≥  

Then ( )1  has a unique solution u . Moreover, for any 

y X∈ , the orbit ( ){ }nT y  converges to the solution u . 

Proof. Let ( ) ( )2 1u t u t≤ , then 

 

( )( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( )( ) ( )( )( )

1 2

1

2

1 2

λ , ,

λ , ,

λ , , , 0.

b
a

b
a

b
a

T u t T u t

v t G t z f z u z dz

v t G t z f z u z dz

G t z f z u z f z u z dz

−

 = + 
 
 − + 
 

= − ≥

∫

∫

∫

 

It implies that ( )( ) ( )( )1 2T u t T u t≤ . So T  is an 
increasing and continuous mapping.  

 

( ) ( )( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )

1 2 1 2

1

2

, max

λ , ,
max

λ , ,

t I
b
a

bt I
a

d Tu Tu T u t T u t

v t G t z f z u z dz

v t G t z f z u z dz

∈

∈

= −

 + 
 =
 − + 
 

∫

∫

 

 

( ) ( )( ) ( )( )( )

( )( ) ( )( )

( ) ( )

( ) ( )

( )

1 2

1 2

1 2

1 2

1 2

= max λ , , ,

1λ , ,

1λ

λ max

, .

b
at I

b
a

b
a

t I

G t z f z u z f z u z dz

f z u z f z u z dz
b a

u z u z dz
b a

u z u z

d u u

∈

∈

−

≤ −
−

≤ −
−

≤ −

=

∫

∫

∫  

Obviously, there exist upper and lower bounds of the 
pair { },x y  for any [ ], ,x y C a b∈ . Hence, all conditions of 

Theorem 2.2 are fulfilled. This means that ( )1  has a 
unique solution u . 

Moreover, for any y X∈ , the orbit ( ){ }nT y  

converges to the solution u . 
Next we present an example as follows. 

Example 2.1 In the integral equation ( )1 , let ( )v t t= ,

1
2

λ = , ( ), 1G s t ≡ , 0a = , 1b = , ( ),f s t s t= + . Then ( )1  

become 

 ( ) ( )( )1
0

1 ,
2

u t t z u z dz t I= + + ∈∫  ( )3  

Let 0x t= , then ( )0 0x T x≤ . Now, all conditions of 
Theorem 2.3 are satisfied. On the other hand, we can easy 
to solve the integral equation ( )3  and the unique solution 

is ( ) 1u t t= + . 

3. Coupled Fixed Point Theorems in 
Partially Ordered Metric Spaces 

Now, we endow the product space X X×  with the 
partial order as the following: 

 ( ) ( ) ( ) ( ), , , y , , , ,u v x y u x v for u v x y X X≤ ⇔ ≤ ≤ ∈ × . 

Definition 3.1 [2] Let ( ),X ≤  be a partially ordered set, 

:F X X X× →  be a mapping. If ( ),F x y  is monotone 
increasing in x  and is monotone decreasing in y , that is, 
for any ,x y X∈ , if 1 2,x x X∈  and 

( ) ( )1 2 1 2, ,x x F x y F x y≤ ⇒ ≤  and if 1 2, yy X∈  and 

1 2y y≤  imply  

 ( ) ( )2 1, , .F x y F x y≤  

Thus we say that F  has the mixed monotone property. 
Definition 3.2 [2] We call an element ( ),x y X X∈ ×  a 
coupled fixed point of the mapping F , if 
( ) ( ), , ,F x y x F y x y= = . 

Theorem 3.1 [2] Let :F X X X× →  be a continuous 
mapping satisfy the mixed monotone property on X . 
Assume that there exists )0,1k ∈   with 
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 ( ) ( )( ) ( ) ( )

( ) ( )

, , , , , ,
2

, , .

kd F x y F u v d x u d y v

for u v x y

≤ +  

≤
 

If there exists 0 0,x y X∈  such that ( )0 0 0,x F x y≤  and 

( )0 0 0, xF y y≤ . 

Then, there exist ,x y X∈  such that ( ),F x y x=  and 

( ),F y x y= . 
Theorem 3.2 [2] In addition to the hypothesis of 

Theorem 3.1, suppose that ever pair of elements of X  has 
an upper bound or a lower bound in X , then x y= . 

We assume that T  and F  are related by the relation 
( ) ( ),T x F x x= . 
Next, we will study the existence of a unique solution 

to the integral equation ( )1 , as an application to the fixed 
pointed Theorem 3.2. 

Let ( ) ( )= , ,X X C I R C I R× × , then X X×  is a 
partially ordered set if we define the following order 
relation in X X× : ( ) ( ) ( ) ( ), ,x y u v x t u t≤ ⇔ ≤  and 

( ) ( )v t y t≤ , for ( ),x y , ( ),u v X X∈ ×  and for all t I∈ . 

Consider the integral equation ( )1  under the following 
assumptions: 

( )'1H λ 0> ; 

( )'
2H  there exists 0u > , for all x I∈ , if ( ) ( )2 1u t u t≤ , 

then ( )( ) ( )( ) ( ) ( )1 2 1 20 , , μ .f x u t f x u t u t u t≤ − ≤ −   
Let 

 
( )

( ) ( )

( )
( ) ( )

1

2

, ,
, ,

2
, ,

, ,
2

G t z G t z
K t z

G t z G t z
K t z

+
=

−
=

 

then ( ) ( ) ( )1 2, = , ,G t z K t z K t z+  and ( )1 , 0K t z ≥ ， 

( )2 , 0.K t z ≤  
Define :F X X X× →  by 

 
( )( ) ( ) ( ) ( )( )

( ) ( )( )

1

2

, λ , ,

λ , , , .

b
a

b
a

F x y t v t k t z f z x z dz

k t z f z y z dz t I

= +

+ ∈

∫

∫
 ( )4  

Now, we will show that F  has the mixed monotone 
property. Indeed, for 1 2x x≤ , that is ( ) ( )1 2x t x t≤ , for all 
t I∈ , we have 
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( ) ( )( )

( ) ( ) ( )( )
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1 1

2
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2

, ,

λ , ,

λ , ,

λ , ,

λ , ,

b
a

b
a

b
a

b
a

F x y t F x y t
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k t z f z y z dz

v t k t z f z x z dz

k t z f z y z dz

−

= +

+

 + 
− 
 + 

∫

∫

∫

∫

 

 ( ) ( )( ) ( )( )( )1 1 2λ , , , 0
b
a

k t z f z x z f z x z dz= − ≤∫ . 

Hence, ( )( ) ( )( )1 2, ,F x y t F x y t≤  for t I∀ ∈ , that is, 

( )( ) ( )( )1 2, ,F x y t F x y t≤  Similarly, if 2 1y y≤ , that is 

( ) ( )2 1y t y t≤ , for all t I∈ , we have 
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1
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, ,

λ , ,

λ , ,

λ , ,
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λ , , , 0.

b
a
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a

b
a

b
a
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a
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k t z f z y z dz

v t k t z f z x z dz

k t z f z y z dz
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+

 + 
− 
 + 

= − ≤

∫

∫

∫

∫

∫

 

Hence, ( )( ) ( )( )1 2, ,F x y t F x y t≤  for t I∈ , that is, 

( )( ) ( )( )1 2, ,F x y t F x y t≤ . 

Thus ( ),F x y  is monotone increasing in x  and is 
monotone decreasing in y . 

Now, for ( ) ( ), ,u v x y′ ′ ≤ , that is, ( ) ( ) ,x t u t′≥  

( ) ( )y t v t′≤  for all t I∈ , we have 
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∫

∫

∫

∫

 

Assume that 

( )'
3H ( ) 1max λμ ,

2
b
at I

G t z dz
∈

<∫  
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( )'
4H  there exists 0 0,x y X∈  such that ( )0 0 0,x F x y≤  

and ( )0 0 0,F y x y≤ . 

Theorem 3.3 Suppose the integral equation ( )1  satisfy 

( ) ( )' '
1 4H H− , then ( )1  has a unique solution u . 

Proof. From the above analysis and Theorem 3.2, we can 
immediately obtain the result. 
Example 3.1 In integral equation ( )1 , let 

 

( )

( )

( ) [ ]

3 2 15 19 3,λ ,
8 4 4 2 4

, , 1, 2,

, , 1, 2 ,
4

t t tv t

G t z t z a b
zuf z u z z

= + − + =

= − = =

= + ∈

 

then ( )1  become 

 
( )

( ) ( )( ) [ ]

3 2

2
1

15 19
8 4 4 2

3 , 1,2 .
4

t t tu t

t z z zu z dz t

= + − +

+ − + ∈∫
 ( )5  

Let 1μ=
2

, then ( ),f z u satisfy ( )'
2H . 

 ( ) ( )1 2
, 0,

, , ,
0, t z,

t z t z t z
k t z k t z

t z t z
− ≥ ≥ 

= = < − < 
 

 

( )( )

( ) ( )( )

( ) ( )( )

( )

( )

3 2

2
11

2
21

3 2

1

2

15 19,
8 4 4 2

3 , ,
4
3 , ,
4

15 19 3
8 4 4 2 4 4
3 .
4 4

t

t

t t tf x y t

k t z f z x z dz

k t z f z y z dz

t t t zxt z z dz

zyt z z dz

= + − +

+

+

 = + − + + − + 
 

 + − + 
 

∫

∫

∫

∫

 

Then 

 ( ) 3 1max λμ , .
16 2

b
at I

G t z dz
∈

≤ <∫  

Let 0 0=4, =8x y , then ( )
2

0 0 0, 4
4
tx F x y≤ = +  and 

( )
3 2

0 0 0
15 25,

4 4 8 4
t t tF x y y= + − + ≤ . 

So, all conditions of Theorem 3.3 are fulfilled. This 
means that ( )5  has a unique solution u . 

Next, we will study the existence of a unique solution 
to the following system of integral equation as another 
application of the fixed pointed Theorem 3.2. 

 
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )
0

0

, , ,

, , , ,

T

T

x t g t G s t f s x s y s ds

y t g t G s t f s y s x s ds

 = +

 = +

∫

∫
 ( )6  

where [ ]0,t T∈ . 
A solution of the above system is a pair 

( ) [ ] [ ], 0, 0,x y T T∈ ×  satisfying the above relations for all 

[ ]0,t T∈ . 

We consider [ ]0,X T∈  endowed with the partial order 
relation: 

 ( ) ( ) [ ]0, .x y x t y t for all t T≤ ⇔ ≤ ∈  

We will also consider the following metric on X : 

 ( )
[ ]

( ) ( )
0,

, : max .
t T

d x y x t y t
∈

= −  

Notice that d is a metric and d can be represented by 
using the supermum type norm 

 ( ) ( ) ( ), : cd x y x t y t= − . 

Then we have the following existence and uniqueness 
result. 
Theorem 3.4 Consider the integral system ( )6 under the 
following assumptions: 

(1) [ ]: 0,g T R→  and [ ] 2: 0,f T R R× → are 

continuous and [ ] [ ]: 0, 0,G T T R+× → is integrable with 
respect to the first variable. 

(2) ( ), ,f s ⋅ ⋅ has the generalized mixed monotone 
property with respect to the last two variables for all 

[ ]0,s T∈ . 

(3) There exist [ ]α,β : 0,T R+→  in [ ]1 0,L T  such that 
for each 1 2 1 2, , ,x x y y R∈  with 1 1x y≤  and 2 2y x≤  (or 
reversely), we have  

( ) ( ) ( ) ( )1 2 1 2 1 1 2 2, , , y , α βf s x x f s y s x y s x y− ≤ − + −  

for each [ ]0,s T∈ . 

(4) 
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2

T
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∈

  < 
 ∫ , 
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2

T

t T
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∈

  < 
 ∫  

(5) There exist [ ]0 0, y 0,x T∈  such that 

 
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )
0

0

, , ,

, , ,

T

T
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∫
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0

, , ,

, , ,

T

T

x t g t G s t f s x s y s ds

y t g t G s t f s y s x s ds

 ≥ +

 ≤ +

∫

∫
 

for all [ ]t 0,T∈ . 

Then there exists a unique solution ( )* *,x y  of the 

system ( )6 .  
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Proof. We can prove that all the assumptions of Theorem 
3.2 are satisfied. We define :F X X× X→  by 

 ( )( ) ( ) ( ) ( ) ( )( )0
, , , ,

T
F x y t g t G s t f s x s y s ds= + ∫  

for each [ ]t 0,T∈ . 

Then system ( )6  can be written as a couple fixed point 
problem for F : 

 ( )
( )

,
,

x F x y
y F y x

 =
 =

 

First, we will show that F  has the mixed monotone 
property. Indeed, for 1 2x x≤  , that is ( ) ( )1 2x t x t≤ , for 

all [ ]t 0,T∈ , we have 
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 − 

∫
 

Hence, ( )( ) ( )( )1 2, ,F x y t F x y t≤  for all [ ]0,t T∈ , 

that is , ( )( ) ( )( )1 2, ,F x y t F x y t≤ . 

Similarly, if 2 1y y≥ , that is ( ) ( )2 1y t y t≥ , for all 

[ ]0,t T∈ , we have ( )( )1,F x y t ( )( )2,F x y t≥  for all 

[ ]0,t T∈ , that is, ( )( ) ( )( )1 2, ,F x y t F x y t≥ . 
Then, for all x u≥  and y v≤  or ( x u≤  and y v≥ ), we 

have 
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∫
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We see that all the assumptions of Theorem 3.2 are 
satisfied and the conclusion follows. 

Next, we conclude our work by an example. 
Example 3.2 In integral equations system ( )6 , let 

( ) ( )1 11, ,
6 3 9

tG s t s g t t= + = + , ( ) ( )1,α ,β ,T s s s s= = =

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )f , , α x β .s x s y s s s s y s sx s sy s= − = −  
Then (6) become 
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∫

∫
 ( )7  

 ( )( ) ( ) ( )( )1
0

11 1, .
9 6 3

tF x y t t s sx s sy s ds = + + + − 
 ∫  

Then 

[ ]
( )

[ ]
( )

0 00, 0,

2 1max , α(s) max , β(s) .
9 2

T T

t T t T
G s t G s t

∈ ∈

   = = <   
   ∫ ∫  

Let 0 01, 3,x y= =  then ( )0 0 0
2 10,
3 9

x F x y t≤ = +  and 

( )0 0 0
4 4, .
3 3

y F y x t≤ = +  

Hence, all conditions of Theorem 3.4 are fulfilled. This 
means that ( )7  has a unique solution. 

 
( )
( ) ( ) [ ] [ ]

* * *
* *

* * *

, ,
, 0,1 0,1 .

, ,

x F x y
x y C C

y F y x

 = ∈ ×
 =


 

4. Coupled Fixed Point Theorems in  
b-metric Spaces 

Theorem 4.1 [14] Let ( ),X d  be a complete b -metric 
spaces with 1s ≥  and :T X X X× → be a continuous 
mapping with the mixed monotone property on X X× . 
Suppose that the following conditions are satisfied: 

( )1  there exists k 10,
s

 ∈  
 such that 

 ( ) ( )( ) ( ) ( ), , , , , ,
2

, ;

kd T x y T u v d x u d y v

x u y v

≤ +  

∀ ≥ ≤
 

( )2  there exists 0 0,x y X∈  such that ( )0 0 0,x T x y≤  

and ( )0 0 0, .y T y x≥  

Then there exists ,x y X∈ such that ( ),x T x y=  and 

( ),y T y x= . 
In this section, we present an existence Theorem for 

such a nonlinear coupled system 

 
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

, , ,

, , ,

b
a
b
a

x t t K t r x r y r dr

y t t K t r y r x r dr

ϕ

ϕ

 = +

 = +

∫

∫ ，

 ( )8  

where ,a b R∈  with a b< , [ ], ,x y C a b∈ , [ ]: ,a b Rϕ →

and [ ] [ ]: , ,K a b a b R R R× × × → are given mapping. 
Next, we consider the following b -metric on X  

 ( )
[ ]

( ) ( )
,

, max .p

t a b
d x y x t y t

∈
= −  

It is note that ( ),X d  is a complete b -metric space with 
1p ≥ . 

Theorem 4.2 Consider the nonlinear coupled system ( )1 . 
Suppose that the following conditions hold: 

( )1  [ ] [ ]: , ,K a b a b R R R× × × →  is continuous; 
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( )2  ( ), , ,K t r ⋅ ⋅  has the generalized mixed monotone 
property with respect to the last two variables for all 

[ ],t a b∈ ; 

( )3  There exist continuous mappings  

 [ ] [ ], : , , ,a b a b Rα β +× →  

for each 1x , 2x , 1y , 2y  R∈  with 1 1x y≤  and 2 2y x≤
( or reversely), we have 

 
( ) ( )( ) ( ) ( )( )
( ) ( )

1 2 1 2

1
1 1 2 2

, , , , , ,

2 , , ;

p

p pp pp

K t r x r x r K t r y r y r

t r x y t r x yα β−

−

 ≤ − + −  

 

( )4  
[ ],

max
t a b∈

( ) ( )1 12 ,
2

p pbp q a
b a t r dr

s
α− − <∫ ; 

[ ],
max

t a b∈

( ) ( )1 12 ,
2

p b pp q a
b a t r dr

s
β− − <∫ , where 12 ps −= . 

( )5  There exists ox , 0y [ ],C a b∈  such that 

 
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

0

0

, , ,

, , ,

b
a
b
a

x t t K t r x r y r dr

y t t K t r y r x r dr

ϕ

ϕ

 ≤ +

 ≥ +

∫

∫
 

for all [ ],t a b∈ . 

Then, there exists a pair coupled solution ( ),x y  for 

system ( )8 . 
Proof. We can prove that all the assumptions of Theorem 
4.1 are satisfied. Define T : X X X× →  by  

 ( )( ) ( ) ( ) ( )( ), , , ,
b
a

T x y t t K t r x r y r drϕ= + ∫ , 

for each [ ],t a b∈ . Then system ( )8 can be regarded as a 
couple fixed point question of T : 

 
( )
( )

,

, .

x T x y

y T y x

=


=
 

In the first place, we will prove that T has the mixed 
monotone property. For 1 2x x≤ , we have 

 

( ) ( )
( ) ( )( )
( ) ( )( )

1 2

1

2

, ,

, , ,
0.

, , ,
b
a

T x y T x y

K t r x r y r
dr

K t r x r y r

−

 
 = ≤
 − 

∫
 

Thus, ( ) ( )1 2, ,T x y T x y≤  for every element [ ],t a b∈ . 
Similarly, we can know that  

 ( ) ( )1 2 1 2, , .T x y T x y for all y y≥ ≤  

Then, for all x u≥  and y v≤  or ( x u≤ and y v≥ ), we 
have 

 ( ) ( )( )
[ ]

( ) ( )( )

( ) ( )( ),

, , ,
, , , max

, , ,

pb
a

bt a b
a

K t r x r y r dr
d T x y T u v

K t r u r v r dr∈
=

−

∫

∫
 

 

[ ]

( ) ( )( )
( ) ( )( )

[ ]
( )

( ) ( )( )
( ) ( )( )

[ ]
( )

( )
( )

[ ]

1
1

,

,

1
,

,

, , ,
max 1

, , ,

, , ,
max

, , ,

,
max 2

,

max 2

p
p p

b bqq
a at a b

p
p b
q at a b

ppp bp q a ppt a b

p
t a b

K t r x r y r
dr dr

K t r u r v r

K t r x r y r
b a dr

K t r u r v r

t r x u
b a dr

t r y v

α

β

∈

∈

−

∈

∈

 
  
   ≤       −   

  
 
 = −  − 
 

  −  ≤ −
   + −  

≤

∫ ∫

∫

∫

( )
( ) ( )

( ) ( )

( ) ( )

( ) ( )

1

1 2

, ,

, ,

, ,
1 , , ,
2

p
p b
q b pa

a

t r drd x u
b a

t r drd y v

k d x u k d y v

d x u d y v
s

α

β
−

 
 −   + 

= +

< +  

∫
∫

 

where 

 

[ ]
( ) ( )

[ ]
( ) ( )

1
1

,

1
2

,

1max 2 , ,
2

1max 2 , ,
2

1 1 1.

p pbp q at a b

p pbp q at a b

k b a t r dr
s

k b a t r dr
s

p q

α

β

−

∈

−

∈

= − <

= − <

+ =

∫

∫  

From the above proof, we find that all the assumptions 
of Theorem 4.1 are satisfied. 
Example 4.1 For the integral equation ( )8 , let 

0, 1a b= = , ( )t tϕ = − , ( ) ( ), ,
4
trt r t rα β= = , 

 ( ) ( )( ) ( ) ( ), , , , ( )K t r x r y r t r t r x r y rα= + + −   . 

Then ( )8  become 

 

( ) ( ) ( )( )

( ) ( ) ( )( )

[ ]

1
0

1
0

4
,

4
0,1 .

trx t t t r x r y r dr

try t t t r y r x r dr

t

  = − + + + −    


  = − + + + −   
∈

∫

∫
,  

Define ( ) ( ) ( )( )1
0

, .
4
trT x y t t r x r y r dr = − + + + −  ∫  

Obviously, 
[ ]

( )11
00,1

1max 2 ,
2

p
p

t
t r dr

s
α−

∈
<  ∫ , Let 

0 0,x =  0 1y = , we have ( )0 0 0
1,
2 8

tx T x y≤ = − , and 

( )0 0 0
1,
2 8

ty T y x≥ = + . Then, all the conditions of 

Theorem 4.1 are satisfied. It indicates that ( )8 has a pair 
coupled solution 
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( )
( ) ( ) [ ] [ ]

* * *
* *

* * *

, ,
, 0,1 0,1 .

, ,

x T x y
x y C C

y T y x

 = ∈ ×
 =
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