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Abstract The low unemployment rate is one of the main targets of macroeconomic policy for each government.
Forecasting unemployment rate is of great importance for each country so as the government can draw up strategies
for fiscal policy. The aim of the paper is to find the most suitable model which is adjusted on unemployment rates of
Greece using Box-Jenkins methodology and to examine the precision of forecasting on this model. Models’
estimation was made using the non-linear Maximum likelihood optimization methodology (maximum likelihood—
ML), whereas covariance matrix is estimated with OPG method using the numerical optimization of Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm. Forecasting unemployment rate was made both with dynamic and

static process using all criteria of forecasting measures.
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1. Introduction

Every economy has a particular population size.
Population is distinguished between economically active
and non active for economic reasons. Economically active
population is the labor force of economy. Thus, labor
force considers those that can and want to work. Labor
force is divided in two categories: those who already work
and called employed and those who don’t work and are
called unemployed. Unemployed are those who can and
want to work but cannot find a job.

Unemployment has three basic economic consequences:

. It is regarded as a loss of productive powers

. It means wage loss

. Puts a strain on government’s budget due to

unemployment benefits.

The consequences of unemployment are certainly wider
because not only it reduces wages but also decreases
social position, creates self-respect problems and family
matters. In other words, unemployment leads to serious
social problems apart from economic ones.

The opposition of unemployment is extremely difficult.
The measures taken from various governments are divided
in two general categories:

1)  The measures taken for the increase of total

demand and

2)  The measures for professional training and re-

education on labor force.

The measures for total demand are fiscal and monetary.
Fiscal measures consist of the increase of government
expenditure for public works and the promotion for
investments. The aim of these works is the direct growth
of employment and wages. Monetary measures aim at

interest rate reduction in order to strengthen private
investments, production and therefore employment. Fiscal
and monetary measures aim at the increase of total
demand, thus unemployment decrease which is due to
insufficient demand. The insufficient demand is the
Keynesian unemployment which comes from the fall of
economic activity during the recession stage of economic
cycle.

Measures of professional formation and re-education
facilitate unemployed in the acquisition of professional
knowledge and specialization which are necessary in order
to be occupied in existing vacancies. It is obvious that
these measures aim at the reduction of structural
unemployment, created by the disproportion between
supply and demand of various specialization. This
reduction demands re-education of unemployed in order to
acquire the necessary skills where there is scarcity.

The measure of unemployment depends on the size of
labor force. So, unemployment is measured as percentage
(%) of labor force. The unemployment rate is:

Number of Unemployed
Labor Force

Unemployment rate = *100

The progress of unemployment rate has been the central
issue of political discussion for many developed countries.
However, the behavior of unemployment rate during
recession and recovery that followed puzzled researchers
and policy makers if there is a change on long run trend of
unemployment rate. Given this new situation, policy
focuses on the dynamics of unemployment rate after the
recession so that they can forecast unemployment rate.
Forecasting unemployment rate came to the front from
policy makers using autoregressive models as well as
structural econometric forecasting models.
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Greek economy, reached high rates of growth until
2008 but on 2009 there was a downturn, as a result of the
international financial crisis whereas from 2010 and
afterwards the downturn grew worse due to fiscal
imbalances. The need of reform led the country to a
mechanism of economic support which consisted of
European Union, International Monetary Fund and
European Central Bank. Strict income policy and drastic
constraints on public expenses, during the last five years,
affected negatively GDP’s progress. As a consequence,
GDP reduced by 5,4% on 2010, by 8,9% on 2011, by 6,6%
on 2012 and by 3,9% on 2013 (constant prices 2010).

Until 2008, unemployment in Greece was relatively low
and moved at about 7,8% on average in Eurozone. On
2009, unemployment in Greece increased as a result of
international crisis and reached 9,6% while for 2010 it
increased further on 12,7% as a result of restrictive fiscal
policy that implemented because of debt crisis. During
2011, unemployment rate reached 17,9%, as a consequence
of the crisis on Greek economy and the measures taken for
fiscal smoothing, while during 2012 exceeded 24% and
during 2013 was 27,5%. During 2014 it was noted, for the
first time, a slight decrease, even if unemployment remained
on high levels about 26,5%. Finally, in September 2015,
unemployment reduced and reached 24,6% according to
the Hellenic Statistical Authority.

The aim of this paper is to construct the most suitable
model in order to investigate and forecast unemployment
rates. For this reason the SARIMA models and Box-
Jenkins methodology were used, while the forecasting of
the models is examined both on dynamic and static
process, employing all the criteria forecasting measures.
The rest of the paper is organized as follows: the second
chapter presents literature review. Following, the Box-
Jenkins methodology is provided. On chapter four data
and empirical results are presented and on the last chapter
the conclusions of the paper are given.

2. Review of Literature

[2] created a family of models known as
AutoRegressive Integrated Moving Average (ARIMA)
models. These models are applicable to a wide variety of
situations. Box and Jenkins have also developed a
practical process for the selection of the most suitable
ARIMA model out of this family of ARIMA models.
Many researchers claim that the creation of an ARIMA
model needs judgement and experience.

ARIMA models are suitable for short run forecasts.
This is due to the fact that ARIMA models give more
emphasis on the recent past rather than distant past.
According to [26], long run forecasts on ARIMA models
are less reliable than short run. Seasonal AutoRegressive
Integrated Moving Average (SARIMA) model is an
expansion of simple ARIMA models and contains
seasonal and non-seasonal data. SARIMA models have
been applied for inflation forecasting ([13,16,21]), for
exchange rate forecasting ([10,11]), for tourist arrivals and
revenues forecasting ([4,31]) as well as unemployment
forecasting.

Few papers related with unemployment forecasting and
Box-Jenkins methodology or ARIMA and SARIMA
models have been published. Some of them are the following:
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[15] examines the unemployment in Germany using
monthly data from January 1965 until November 1989. He
uses both ARIMA and VAR models. The comparison of
the results for the forecasting of the two examined models
shows the advantages and disadvantages of the two
methods.

[8] use monthly data for Romania for the period 1998-
2007. On their paper, employing Box-Jenkins methodology,
they present that the most suitable model is ARIMA
(2,1,2). Following with this model they forecast Romania’s
unemployment for the following months of 2008.

[12] following Box-Jenkins methodology and using
monthly data for the unemployment of Nigeria find that
the best model is ARIMA (1,2,1) for the data used. With
this model they forecast the unemployment for the
following months of Nigeria.

[24] uses quarterly data for the period 1976Q1 -
2011Q4 to examine the forecast of unemployment in
Nigeria. Among other models used, he proved that the
most suitable for unemployment forecasting in Nigeria is
the ARIMA(1,1,2)-ARCH(1) model instead of that of
Etuk et al. (2012) that supported on their paper.

[29] on her paper deals with the modeling of employment
market on Czech Republic. Box-Jenkins methodology or
ARIMA model, are the approaches which uses for
modeling time series. Particularly, for unemployment’s
model, data from January 2004 until April 2012 are used
and with SARIMA model (1,1,0) (1,1,0)1, she forecasts
unemployment rate until December 2012.

[18] in order to examine unemployment rate in
Thailand they use two techniques: Box-Jenkins and
Neural Networks. Their results showed that Box-Jenkins
technique proved more efficient for the estimation of
unemployment rate in Thailand. Forecasted values that
were estimated were consistent with the actual values for
unemployment rate.

Finally, [25] wusing Phillips curve examines
unemployment rates and inflation for USA from January
1980 to April 2015. Examining these variables with
ARIMA and VAR models, she concluded that VAR
models give better forecast than ARIMA.

3. Theoretical Background

[2] and [3] on their papers referred the procedures for
the construction of ARIMA models. Seasonal ARIMA
models consist of both seasonal and non-seasonal factors
in a multiplicative model. ARIMA models, which were
first introduced by Box-Jenkins, aimed at time-series
forecasting when they became stationary by differencing.
A time-series can have seasonal and non-seasonal
characteristics. A series has seasonal characteristics when
these are repeated over s time periods. Furthermore, in a
seasonal series there is often a different mean value
between seasonal intervals. Thus, in most cases, seasonal
time series are non-stationary.

3.1. Non-seasonal ARIMA Model

A non-seasonal ARIMA model is symbolized as
ARIMA (p,d,q) where p is the number of autoregressive
lag, d is the differencing lag and q is the moving average
lag and can be written as:
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p q
Yt = Z akthk + Z ertfk + U6 (1)
k=1 k=1

Equation (1) can be also written as:
a(B)Y; = 0(B)e; + u 2
where
a(B)=1-oB-a;B-..—a,BP
and
6(B)=1-6,B-6,B-...—6,B.

If Z, is a stationary series obtained after d differencing
from Y, series then we get:

z, =V9Y, = 1-B)%Y, (3)

so the final form of ARIMA (p,d,q) model can be shaped
as:

(1-B)d a(B)Y, =6(B)e;. (4)

The above model is a popular time-series forecasting
technique used on a large scale from analysts. In other
words, this technique takes into account the historical data
and is decomposed in an Autoregressive (AR) process
where there is a memory from previous values, an
integrated procedure that represents data stationarity and a
Moving-Average (MA) procedure which represents the
terms of previous error in order to make forecasting easier.

3.2. Seasonal ARIMA Model

A time-series is called seasonal if there is at least one
seasonal autoregressive parameter P (SAR) or at least one
seasonal moving average parameter Q (SMA) or both
parameters (P,Q). Seasonal ARMA (P,Q) is used when
seasonal (hence non stationary) behavior is present in the
time series. ARMA (P,Q) model can be written as follows:

Dp(B%)Z; =0q(B%)g (5)

where
s=number of periods per season.

Seasonal differencing may be in order if the seasonal
component follows a random walk, as in:

VZ; =2 -Z_s = (1-B%)Z,. (6)
The seasonal difference of order D is defined as:
vPz, =1-8%Pz,. (7

So the final form of SARIMA (p,d,q) model X (P,D,Q)s
can be formed as:

®p(B%)p(B)VEVIZ =0 (B)0(B)e, (8

where

vstd Z, is an ARMA model with lots of coefficients set
to zero.

2 P
®p(B%) =1-dB° — DB~ —...— D B"®

¢(B)=1-#B-4,B% —..—,B"

Oq(B%) =1-©,B° ~©,B% -...-©,B%

2
0(B)=1-6,B- 6,8 —...— 6,B2.

3.3. Procedure for SARIMA Modeling

o We test diagrammatically the data for the
presence of seasonal fluctuations as well as for a
possible trend.

o We observe the data correlogram. The
coefficients p, can present slow or quick drop in

a expontential or corrugated way.

o If for any lag k=s, the respective coefficient is
quite strong in relation to its neighbouring, we
consider that the model has seasonality s. Then
we isolate correlations coefficients p, for k=s,

2s, 3s and if they diminish in a slow measure

then we get seasonal differences AEYt in order
to determine the number D of ARIMA seasonal
model (P,D,Q)s which is adjusted on data.

) If the existence of trend is obvious, we get the
differences AY; on Y; observations till we
achieve stationarity. If autocorrelation on first
data of the series is strong, then seasonal
correlations are  becoming  obvious on
autocorrelation diagrams after differencing or
generally on differences order d.

o When we get the required differences (seasonal
and non-seasonal), we examine the new
autocorrelation and partial autocorrelation
diagrams of data on differences for identification
on p,g and P,Q order on multiplicative ARIMA
model (p,d,q)(P,D,Q):s.

) For facilitation, we can isolate the autocorrelation
coefficients with seasonal lags s, 2s, 3s in order
to determine the values of P and Q of seasonal
ARIMA (P,D,Q)s.

A seasonally SARIMA model is symbolized as
SARIMA (P,D,Q) where P is the number of
autoregressive lag, D is the differencing lag and Q is the
moving average lag and can be written as follows:

P Q
Y = zaisYt—is +Z'9iset—is 6. 9)
i=1 i=1
3.4. Estimation of the Model SARIMA
For the estimation of SARIMA models we use the
Maximum Likelihood —-ML method, where én is the

estimator of a matrix of parameters €, and can be

approximated by a multivariate normal distribution with
mean and covariance matrix and is the following:

A :%(Var[vg In( fy (X;GO))])_l (10)

where In(fy (X;6)) is the log-likelinood of one

observation from the sample, evaluated at the parameter
6 . and VgiIn(fy (X;6)) is the vector of first
derivatives of the log-likelihood.


http://www.statlect.com/probability-distributions/multivariate-normal-distribution
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For the estimation of the asymptotic covariance matrix
(10) the Outer Product of Gradients (OPG) estimate is
used and is computed as:

v, {%éve'“(fx <xv9“n)}’9'“(fx (1)) a0

Provided some regularity conditions are satisfied, the
OPG estimator \7n is a consistent estimator of V,, . (see
[15]).

Also, for the optimization of matrix \7n we use the

algorithm of Broyden—Fletcher—Goldfarb—Shanno (BFGS).

On numerical optimization, the algorithm BFGS is an
iterative method for solving unconstrained nonlinear
optimization problems and was developed by [5,14,17]
and [28].

3.5. Diagnostic Checking of the Model
SARIMA

There are several diagnostic tests for the analysis of
models. A statistical tool which can be used to determine
whether  the series present autocorrelation or
heteroscedasticity is Q statistic of [19].

m eE
Qn :n(n+2)zﬁ (12)
k=1

where e, is the residual autocorrelation at lag k, n is the

number of residuals, m is the number of time lags
including in the test. The model is considered adequate
only if the p value associated with the Ljung-Box Q
statistic is higher than a given significance.

The correlogram of the residuals can be used to check
residuals’ autocorrelation.

If there is no serial correlation, the autocorrelations and
partial autocorrelations at all lags should be nearly zero,
and all Q-Statistics should be insignificant with large
probability-values.

The correlograms of the squared residuals can be used
to check autoregressive conditional heteroskedasticity
(ARCH) in the residuals. If there is no ARCH in the
residuals, the autocorrelations and partial autocorrelations
should be zero at all lags and the Q-statistics should not be
significant.

3.6. Forecasting Performance

The forecasting on seasonal ARIMA models is
computed for both in sample and out sample values. The
optimum forecast value is evaluated from mean squared
error (MSE) which measures the average of squared error
over the sample period. Other measures (indices) often
used for the return of forecasting are the Root Mean
Square Error (RMSE), the Mean Absolute Percentage
Error (MAPE) and Theil’s inequality index [30].

These indices are taken from the following functions:

1oe o \2
MSE == 3"(% -Y;) (13)
T t=1

MAE =1i‘ﬂ Y| (14)
T t=1

1o o \2
RMSE = |2 (% -Y;) (15)
T t=1
1Y, -y,
MAPE = =" |-t 1| (16)
t=1| Yt

Theil’s inequality index is taken from the following
function:

where
Y; : Actual value of endogenous variable Y at time t.

\ft : Redacted value of endogenous variable Y at time t.

T: Number of observations in the simulations (of the
sample).

If Theil’s unequal index is U=0, then actual values of
the series will be equal with the estimated Y; = \ft for all t,

so in this case we can consider that there is a “perfect fit”
between actual and predicted data. On the contrary, if
coefficient U=1, there is wrong forecasting for the
examined model. Afterwards, we present individual
Theil’s indices called “unequal ratios” and are the following:
o Bias proportion: indicates the systematic
differences in actual and forecasted values.

= _\2
7-7)
M=—1 1 18
IS (%)
T ~ t t

where Y and ¥ are the means of the series of \ft and Y;

respectively. Bias proportion measures the distance
between the mean of simulated series from the mean of
actual series.

Variance proportion: indicates unequal variances of
actual and forecasted values.

N 2
us =% (19)
?E(Yt _Yt)

where §;and s, are the standard deviations of the series

of \ft and Y; respectively. Variance proportion measures

the distance between the variance of simulated series from
the variance of actual series.

o Covariance proportion: indicates the correlation
between the actual and forecasted values
(zero=perfect correlation between actual and
forecasted values).

_ 2(1- p)S;sy

T ” (20)
?Z(Yt_Yt)
t=1

uc


https://en.wikipedia.org/wiki/Iterative_method
https://en.wikipedia.org/wiki/Nonlinear_optimization
https://en.wikipedia.org/wiki/Nonlinear_optimization
https://en.wikipedia.org/wiki/Nonlinear_optimization
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where p is the correlation coefficient betweenYAt and Y, .

Covariance proportion measures the rest of non-systematic
error of simulating.

The forecasting ability of a model is satisfying when
bias proportions and variance proportions are small. The
relationship among the above proportions are
UM+US+UC=1 (see [9]).

4. Data and Empirical Results

The variable used in the analysis of the paper is
unemployment rate and covers the period from April 1998
until September 2015, total 210 monthly observations.
Data derived from OECD database.

4.1. Testing for Non-stationarity

Figure 1 and Figure 2 show Greece’s monthly
unemployment rates and the trend analysis respectively.
Diagrammatic test is made in order to examine the
existence of seasonal fluctuations as well as a possible
trend. Following diagram 3 describes the function of
autocorrelation and partial autocorrelation respectively.

From Figure 1 we can see that the original data show
changeable variance. Also, trend analysis from Figure 2
shows an upward trend. However, on Figure 3, the
coefficients on autocorrelation function have a slow fall
confirming that the series is non-stationary. Afterwards,
we get the first differences of the series and examine
stationarity. Figure 4 and Figure 5 present monthly
unemployment rates and trend analysis on first differences
respectively.
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Figure 1. Time series plot of Greece monthly unemployment rate
(Linear Trend Model UNE=5.860+0.078*t)
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Figure 2. Trend plot analysis of Greece monthly unemployment rate
(Linear Trend Model UNE=5.860+0.078*t)
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Figure 3. Autocorrelation and Partial Correlation Plot of Greece’s monthly unemployment rate
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Furthermore, trend analysis on Figure 5 show that there is
an upward trend. On Figure 6 we present autocorrelation
16 and partial autocorrelation functions that correspond on
the first differences of the series.
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Figure 4. Time series plot of first difference of the original data (Linear
Trend Model AUNE=-0.041+0.001*t)

From Figure 4 and Figure 5 we notice that stationarity ~ Figure 5. Trend analysis of first difference of the original data (Linear
has not been achieved and seasonality is not obvious. Trend Model AUNE=-0.041+0.001*t)
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Figure 6. Autocorrelation and partial function of first differences of the original data
From the above figure, the coefficients on Figure 7 and Figure 8 show monthly unemployment

autocorrelation function present a slow downturn rates and trend analysis on second differences respectively.
confirming that the series is not stationary on first
differences. Thus, we get second differences.
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Figure 7. Time series plot of second differences of the original data Figure 8. Trend analysis for second differences of the original data
(Linear Trend Model A2UNE=0.0009-1.8E-0.5*t) (Linear Trend Model A’UNE=0.0009-1.8E-0.5*t)
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From Figure 7 and Figure 8 we can see that stationarity
has been achieved as there is no trend, and seasonality is

autocorrelation functions are shown on second differences
of series respectively.

obvious. On Figure 9, autocorrelation and partial
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Figure 9. Autocorrelation and partial function of second difference of the original data

Coefficients of autocorrelation function show a quick
fall on Figure 9, thus series is stationary on second
differences. Afterwards, we test for series stationarity
using [6,7] test and [27] unit roots tests.

The results of Augmented Dickey—Fuller (ADF) test
and Phillips-Perron (PP) test on unemployment rate series
are represented on Table 1.

Table 1. ADF and Phillip-Perron Test on Unemployment Series

Level First Differences Second Differences
C CT C CT C CT
ADF -0.748(4) -1.798(4) -1.985(3) -3.075(3) -12.07(3)* -12.05(3)*
PP 0.125[10] -1.192[10] -1.489[9] -1.795[9] -19.94[8]* -24.49[8]*

Notes: 1. *, ** *** imply significance at the 1%, 5%, 10% level, respectively. 2. The numbers within parentheses for the ADF, represents the lag
length of the dependent variable used to obtain white noise residuals. 3. The lag length for the ADF equation was selected using [1]. 4. The numbers
within brackets for the P-P statistics represent the bandwidth selected based on [23] method using Bartlett Kernel. 5. [20] critical value for rejection of

null hypothesis of a unit root a significant at the 1% level.

The results on Table 1 indicate that unemployment rate
is stationary in second differences. Therefore for our
model ARIMA (p,d,q) we will have the value d=2.

4.2. ldentification of the Model

After the detection of stationarity of the series, we
define the form of ARIMA (p,q) models from the
correlogram on Figure 9. Parameters p and g can be
assessed from partial autocorrelation and autocorrelation

coefficients respectively, comparing them with i%
n
critical value. The limits for both functions (ACF, PACF)
2
are + =+0.138 From the column of
\210

autocorrelation in figure 9 we can notice that only the
value of the coefficient p; (autocorrelation coefficient) is

greater from the value +0.138, while from the column of
the coefficients of partial autocorrelation the values ¢34

(partial autocorrelation coefficients) is greater than the
value +0.138 . Therefore, the value of p will be

0<p<4, and respectively, the value of g will be
0<q<1. Thereafter we create Table 2 with the values of
p and gas follows:

Table 2. Comparison of models within the range of exploration using
AIC, SIC and HQ

ARIMA model AIC SC HQ
(1,2,0) 0.119 0.152 0.132
(2,2,0) 0.041 0.090 0.061
(3,2,0) -0.022 0.041 0.032
(4,2,0) -0.046 0.033 -0.014
0,2,1) -0.086 -0.046 -0.073
(1,2,1) -0.094 -0.054 -0.075
(2,21) -0.085 -0.021 -0.059
(3,2,1) -0.081 -0.015 -0.049
(4,2,1) -0.072 0.023 -0.033

The results from Table 2 indicate that according to
Akaike (AIC), Schwartz (SIC) and Hannan-Quinn (HQ)
criteria, ARIMA(1,2,1) and ARIMA(0,2,1) models are the
most suitable.

4.3. Seasonal Autoregressive Models

Continued on Figure 10 and Figure 11, we present the
seasonal difference and the trend analysis on second
differences of the series.
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Figure 10. Time series plot of the seasonal difference of the second
difference data (lag=12)

From the above figures we notice that there is stability
both in seasonal and non seasonal level and also the trend
is stable (no rise or fall) showing us that there is
stationarity on the mean.
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Figure 11. Trend analysis of the seasonal difference of the second
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Figure 12. Autocorrelation and partial function of seasonal difference of the second difference data

From this figure we see that seasonal lags on
autocorrelation function is important on lag 11, whereas
on partial autocorrelation function is on 11 and 23 lag.
This fact denotes that 0<P<2, 0<Q<1.

Thereafter we create Table 3 with the values of P and
Q as follows:

Table 3. Comparison of models within the range of exploration using
AIC, SIC and HQ

SARIMA model AIC sC HQ
1,2,1) (0,2,1) -0.004 -0.030 -0.068
1,2,1) (1,2,0) -0.094 -0.029 -0.068
1,2,1) (1,2,1) -0.116 -0.036 -0.083
1,2,1) (2,2,0) -0.084 -0.004 -0.052
1,2,1) 2,2,1) -0.003 -0.010 -0.067
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The results from Table 3 indicate that according to the
criteria of Akaike (AIC), Schwartz (SIC) and Hannan-
Quinn (HQ) the model SARIMA is formulated to
SARIMA (1,2,1) (1,2,1);; and SARIMA (1,2,1) (0,2,1);,
are the most suitable.

Table 4. Comparison of models within the range of exploration using
AIC, SIC and HQ

From Table 4 we notice that according to the criteria of
Akaike (AIC), Schwartz (SIC) and Hannan-Quinn (HQ)
the model SARIMA (0,2,1) (0,2,1);, and SARIMA (0,2,1)
(1,2,1)1, are the most suitable.

We then proceed to the next stage of the Box-Jenkins
approach which is the estimation of the models.

4.4. Estimation of the Model

SARIMA model AIC SC HQ
(0,2,1) (0,2,1) -0.107 -0.043 -0.074 Thereafter we can proceed to estimating the above
(0.2.1) (1,2.0) -0.090 -0.042 -0.070 model. The following Table 5, Table 6, Table 7 and Table 8
0,2,1) (1,2,1) -0.116 -0.052 -0.090 tth Its of th del
0,2,1) (2,2,0) 20.081 20.017 20.055 presen e results o ese models.
(0,2,1) (2,2,1) -0.091 -0.027 -0.071
Table 5. Estimation Model SARIMA(1,2,1)(1,2,1),
Dependaent Wariable: DDUME
Method: ARMA Maximum Likelihood (BFGS)
Drate: 0204116 Time: 12:43
Sample: 1998M0OG6 Z2015M0O9
Included cbsernvations: 203
Convergence achieved after 44 iterations
Coefficient covariance computed using ocuter product of gradients
Wariable Coefficient Std. Error t-Statistic Profb.
ARCT) 0121443 0075818 -1.580920 01155
SAR(12) 0. 7899456 01832517 4 304481 0. 0000
MALCT) -0.7FE0741 0056077 -132. 568598 0. 0000
SMALC1Z2) -0.9435473 02153223 -4 21933 O 0000
SIGMASC 0048286 0. 004553 10 60625 0. 0000
R-squared 0498322 Mean dependent var -0 000962
Adjusted R-squared 0. 458437 S. D dependent var 0.210989
S E. ofregression 0. 222420 Akaike info criterion -0. 118210
Sum squared resid 10043249 Schwarz criterian -0.025081
Log likelihood A7 . 09623 Hannan-Qiuinn criter. 00332869
Durbin-VWatson stat 1.994956
Inverted AR Roots as B85+ 49ij BE- 49i 49- 85i
49+ 85i 00-.98i - 00+ 98i =12
- 49- 85i - 49+ 85i - 85-.49i -85+ 49i
-.93
Inverted MA Roots <100 BE+ 501 B6-.50i TB
B0+ 86i B0-.86i O0+1.00i - 00-1.00i
-850+ 86i -.50-.86i -.86+.50i -.86-.50i
=-1.00
Results on Table 5 show that the coefficient on AR(1) parameter is not statistically significant.
Table 6. Estimation Model SARIMA(1,2,1)(0,2,1),
Dependent Variable: DDIUME
Method: ARMA Maximum Likelihood (BFGS)
Date: O3/07ME6 Time: 1226
Sample: 1993M0OG6 Z2015M09
Included observations: 208
Convergence achieved after 8 iterations
Coefficient covariance computed using outer product of gradients
Variable Coefficient Std. Error t-Statistic Prob.
AR -0.138728 0072611 -1.884608 0.0609
MALCT ) -0. 751699 0.055116 -132.63839 0.0000
SMALTZ) -0. 106877 0072784 -1. 458420 01435
SIGMASCO 0.050962 0002754 18.50354 0.0000
R-squared 0470518 Mean dependent var -0.000962
Adjusted R-squared 0462732 S D. dependent var 0.310989
S.E. of regression 0.227950 Akaike info criterion -0.0945838
Sum squared resid 10.80012 Schwarz criterion -0.020404
Log likelinood 13.83713 Hannmnan-CGuinn criter. -0 068635
Durkin-Watson stat 2001667
Inverted AR Roots -.14
Inverted MA Roots 83 75 T2+ 41i T2-41i
41+ F2i A1-TF2i 00+ 83 - 00-.83i
- d1-T2i — A1+ F2i - F2- 41 -T2+ 41i
-83
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Results on Table 6 show that the coefficient on AR(1) and SMA(12) parameters are not statistically significant on 5%

level of significance.

Table 7. Estimation Model SARIMA(0,2,1)(0,2,1),

Ciependent Wariable: DODILMNE

Drate: 02/07ME6 Time: 12:22
Sample: 1998M0E6 2015M09
Included cbservations: 208

Method: ARMA Maximum Likelihood (BFGS)

Convergence achieved after & iterations
Coefficient covariance computed using outer product of gradients

Wariable Coefficient Std. Error t-Statistic Prob.
MALT ) -0. 792147 0028170 -20.753209 00000
SMALCTZ) -0.11243287F 0071066 -1.891025 00600
SIGMASC o.051621 0002788 18.51265 00000
R-s=qguared 04532676 Mean dependent var -0 000962
Adjusted R-squared 0. 458443 S.0D. dependent var 0.210989
S.E. of regression 0228858 Akaike info criterion -0.091231
Sum squared resid 10 F2TF11 Schwarz criterion -0.0432093
Log likelinood 12.488032 Hannan-Zuinn criter. -0.0OF1FETF
Durgin-Watson stat 2.187099
Inverted MA Roots .85 7Fa T3+ 420 T3 420
A2-F3i0 A2+ T30 00+ 85i - 00-.85i
- 42-T3i - 42+ T 3i - T3+ 42i - F3-.42i
-85

Results on Table 7 show that coefficient on SMA(12) parameter is not statistically significant on 5% level of

significance.
Table 8. Estimation Model SARIMA(0,2,1)(1,2,1),
—
CDependaent Wariable: DIDUIMRE
Method: ARMA Maximuum Likelinhood (BFGSS)
Crate: OZ2/07/16 Time: 12:29
Sample: 1998MOGEG 2015MO9
Included cbhservation=s: 203
Convergence achieved after 22 iterations
Coefficient covariance computed using cuter product of gradients
Wariable Coaefficient Std. Error —=tatistic Prob.
ARC1Z2) O. 749172 O A7F2405 4. 245450 o o000
B2 D -0, 78245 0o.0z29135 20 329742 O o000
SMACT1Z2) 0. 922079 DO AFO0EE 5421212 (el e R ln ]
SIGMASCY 0048872 O.002570 1231599 o o000
R-=guared D 492159 Mean dependaent var —D. 000952
Adjusted R-sguared 0. 484701 S . dependant var o z31T0939
=S.E. ofregression 0223241 Akaike info criterion —O. 116559
Sum squared resid A0 1&G667 Schwarz criterion -0 0523275
Log likelinood 16 . 12212 Hanmnmnan-2wuinm criter. -0, 020606
Crurbin-Wat=s=on =tat 2154598
Inverned AR Roots .as 85+ 49ij 85-.49i A9+ 85i
A9-_85i — 00— 92i — D0+ _93i — 49— 85i
— 49+ 85I -85+ 491 - 85— 491 -98
Inverted Mo Roots .99 B5+_50i 85-.50i =l
B0+ 850 B0-.8G5i0 OO+ _99ij — 00— 99ij
- 50+ 86i - 50-.86i - B6+_50i - B6-.50i
—.99

The results of the above table show that all coefficients
are statistically significant thus that model can be used for
forecasting.

4.5. Diagnostic Checking of the Model
SARIMA(0,2,1)(1,2,1)12

On the Figure 13 and Figure 14, the residuals test for
the autocorrelation with conditional heteroscedasticity
(ARCH model) is provided.

From the results of Figure 13 and Figure 14, we can see
that autocorrelation and partial autocorrelation coefficients
are non statistical significant in all lags as all Q-statistics
have large probability-values. So, we can regard that
residuals are not autocorrelated and don’t form ARCH
models. Thus, SARIMA (0,2,1)(1,2,1);, model can be
used for forecasting.

4.6. Forecasting.

For forecasting SARIMA(0,2,1)(1,2,1);, model we use
both dynamic and static forecasting procedure. The
dynamic procedure calculates forecasts for periods after
the first period in the sample by using the previously
forecasted values from lagged dependent variable and
ARMA terms. This procedure is called n-step ahead
forecast. Static procedure uses actual and non forecasted
values of dependent variable. This procedure is called one
step- ahead forecast.

In Figure 15 and Figure 16 we represent the criteria for
the evaluation of the forecasts in and out sample forecast
at level form of the dependent variable, using dynamic and
static forecast respectively.
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Figure 15. Dynamic Forecast of Unemployment
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Figure 16. Static Forecast of Unemployment

From Figure 15 and Figure 16 we notice that the indices
of root mean squared error and mean absolute error get
smaller values on Figure 16 than that of Figure 15. We
conclude that static procedure gives better forecasting
ability on the examined model. Furthermore, Theil’s
Inequality index on the static procedure is smaller
compared to the dynamic procedure and is close to zero.
This indication on Theil’s index shows the “goodness of
fit” for the model. Moreover, the proportion of bias (it
measures how far is the mean of simulated series from the
mean of the actual series), and the proportion of variance

(it measures how far is the variance of simulated series
from the variance of actual series), has very small value
on the static procedure. These indices prove that the
forecasting ability of static procedure show more accurate
forecasting. On the contrary, the proportion of covariance
which measures the rest of non-systematic forecast error,
is larger on the static procedure as it was expected.

Table 9 displays the comparison between the actual,
forecasted and the residual starting from 2013:10 to
2015:009.

Table 9. Comparison between the actual, forecast values from 2013:10 to 2015:09

obs Actual Fitted Residual Residual Flot
Z20132M10 27 . Fo00 26 5513 1.14371 1 1
2013M11 27 . Fo00 27 5143 018570 1 1
2013M12 27 5000 27 0614 0. 438362 1 1
201401 27 2000 27 T TFrHa -0.57583 1 =] 1
Z2014M0O2 27 2000 26 8291 0370386 1 ;@ 1
Z2014M0O3 27 0000 27 1931 -0.19309 1 o 1
201404 27 1000 27 0444 O.05563 1 ] 1
Z2014M0O5 27 0000 27 6TFTH 067749 1 G{i 1
Z2014MOG 26 7000 26 3221 037793 1 = 1
2014M0O7T 26 32000 26 8701 -0.57014 1 1
Z2014M03 26 2000 26 7254 -0 52542 1 1
201409 26 1000 26 6665 -0 56655 1 1
2014M10 26 1000 27 4396 -1.3396564 1 1
2014mM11 25 9000 26 6721 -0 77208 1 1
2014M12 25 9000 2656 6933 -0. 79327 1 1
2015mM01 25 9000 25 65142 028585 ! = !
2015M02 25 3000 2656 3687 0568366 1 c{ 1
2015M03 25 9000 25 7348 O16518 1 = 1
Z2015M0O4 25 2000 26 0272 -0.82719 1 1
2015M0O5 24 9000 25 3526 -0 45259 1 1
Z2015M0OG 25 0000 25,9233 -0. 92327 1 1
Z2015M0O7T 24 9000 24 23068 0.093225 1 ? 1
Z2015M0S 24 F000 24 TH22 -0.05218 1 1
Z2015M0O9 24 . 5000 24 . 65292 -0.0Z2919 ! - !

From Table 9 we can see that SARIMA(0,2,1)(1,2,1);,
model has the best predictive power. The forecasted value
of unemployment, deriving from the suggested model,
refers to September 2015 and is 24.62%. This value is
very close to the actual which is 24.6%. Therefore,
SARIMA(0,2,1)(1,2,1);, model that we suggest has a
good and precise forecasting for unemployment in Greece.

5. Conclusion

Unemployment plagues many countries so it is
important to capture the trend of this series. The use of
ARIMA models is a highly flexible tool in order to

forecast unemployment rate if there is no government’s
intervention which will change this trend. The main goal
of this paper is to find the most suitable model with a
forecasting ability in order to forecast unemployment in
Greece. Using Box-Jenkins methodology, we determined
the form of SARIMA model and estimated this model
with the non-linear optimization method of Maximum
Likelihood, wusing numerical optimization Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm. For the
forecasting power of the model, both the dynamic and
static procedure together with the criteria forecasting
measures, were used. The results of the forecast showed
that the forecasted value of unemployment is close to the
actual value. This result showed that model’s suitability
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can be used to forecast unemployment in Greece for the
following years.
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