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Abstract  The low unemployment rate is one of the main targets of macroeconomic policy for each government. 
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1. Introduction 
Every economy has a particular population size. 

Population is distinguished between economically active 
and non active for economic reasons. Economically active 
population is the labor force of economy. Thus, labor 
force considers those that can and want to work. Labor 
force is divided in two categories: those who already work 
and called employed and those who don’t work and are 
called unemployed. Unemployed are those who can and 
want to work but cannot find a job.  

Unemployment has three basic economic consequences: 
• It is regarded as a loss of productive powers 
• It means wage loss 
• Puts a strain on government’s budget due to 

unemployment benefits.  
The consequences of unemployment are certainly wider 

because not only it reduces wages but also decreases 
social position, creates self-respect problems and family 
matters. In other words, unemployment leads to serious 
social problems apart from economic ones. 

The opposition of unemployment is extremely difficult. 
The measures taken from various governments are divided 
in two general categories: 

1) The measures taken for the increase of total 
demand and 

2) The measures for professional training and re-
education on labor force.  

The measures for total demand are fiscal and monetary. 
Fiscal measures consist of the increase of government 
expenditure for public works and the promotion for 
investments. The aim of these works is the direct growth 
of employment and wages. Monetary measures aim at 

interest rate reduction in order to strengthen private 
investments, production and therefore employment. Fiscal 
and monetary measures aim at the increase of total 
demand, thus unemployment decrease which is due to 
insufficient demand. The insufficient demand is the 
Keynesian unemployment which comes from the fall of 
economic activity during the recession stage of economic 
cycle. 

Measures of professional formation and re-education 
facilitate unemployed in the acquisition of professional 
knowledge and specialization which are necessary in order 
to be occupied in existing vacancies. It is obvious that 
these measures aim at the reduction of structural 
unemployment, created by the disproportion between 
supply and demand of various specialization. This 
reduction demands re-education of unemployed in order to 
acquire the necessary skills where there is scarcity.  

The measure of unemployment depends on the size of 
labor force. So, unemployment is measured as percentage 
(%) of labor force. The unemployment rate is:  

 *100Number of UnemployedUnemployment rate
Labor Force

=  

The progress of unemployment rate has been the central 
issue of political discussion for many developed countries. 
However, the behavior of unemployment rate during 
recession and recovery that followed puzzled researchers 
and policy makers if there is a change on long run trend of 
unemployment rate. Given this new situation, policy 
focuses on the dynamics of unemployment rate after the 
recession so that they can forecast unemployment rate. 
Forecasting unemployment rate came to the front from 
policy makers using autoregressive models as well as 
structural econometric forecasting models. 
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Greek economy, reached high rates of growth until 
2008 but on 2009 there was a downturn, as a result of the 
international financial crisis whereas from 2010 and 
afterwards the downturn grew worse due to fiscal 
imbalances. The need of reform led the country to a 
mechanism of economic support which consisted of 
European Union, International Monetary Fund and 
European Central Bank. Strict income policy and drastic 
constraints on public expenses, during the last five years, 
affected negatively GDP’s progress. As a consequence, 
GDP reduced by 5,4% on 2010, by 8,9% on 2011, by 6,6% 
on 2012 and by 3,9% on 2013 (constant prices 2010). 

Until 2008, unemployment in Greece was relatively low 
and moved at about 7,8% on average in Eurozone. On 
2009, unemployment in Greece increased as a result of 
international crisis and reached 9,6% while for 2010 it 
increased further on 12,7% as a result of restrictive fiscal 
policy that implemented because of debt crisis. During 
2011, unemployment rate reached 17,9%, as a consequence 
of the crisis on Greek economy and the measures taken for 
fiscal smoothing, while during 2012 exceeded 24% and 
during 2013 was 27,5%. During 2014 it was noted, for the 
first time, a slight decrease, even if unemployment remained 
on high levels about 26,5%. Finally, in September 2015, 
unemployment reduced and reached 24,6% according to 
the Hellenic Statistical Authority.  

The aim of this paper is to construct the most suitable 
model in order to investigate and forecast unemployment 
rates. For this reason the SARIMA models and Box-
Jenkins methodology were used, while the forecasting of 
the models is examined both on dynamic and static 
process, employing all the criteria forecasting measures. 
The rest of the paper is organized as follows: the second 
chapter presents literature review. Following, the Box-
Jenkins methodology is provided. On chapter four data 
and empirical results are presented and on the last chapter 
the conclusions of the paper are given.  

2. Review of Literature 
[2] created a family of models known as 

AutoRegressive Integrated Moving Average (ARIMA) 
models. These models are applicable to a wide variety of 
situations. Box and Jenkins have also developed a 
practical process for the selection of the most suitable 
ARIMA model out of this family of ARIMA models. 
Many researchers claim that the creation of an ARIMA 
model needs judgement and experience. 

ARIMA models are suitable for short run forecasts. 
This is due to the fact that ARIMA models give more 
emphasis on the recent past rather than distant past. 
According to [26], long run forecasts on ARIMA models 
are less reliable than short run. Seasonal AutoRegressive 
Integrated Moving Average (SARIMA) model is an 
expansion of simple ARIMA models and contains 
seasonal and non-seasonal data. SARIMA models have 
been applied for inflation forecasting ([13,16,21]), for 
exchange rate forecasting ([10,11]), for tourist arrivals and 
revenues forecasting ([4,31]) as well as unemployment 
forecasting. 

Few papers related with unemployment forecasting and 
Box-Jenkins methodology or ARIMA and SARIMA 
models have been published. Some of them are the following:  

[15] examines the unemployment in Germany using 
monthly data from January 1965 until November 1989. He 
uses both ARIMA and VAR models. The comparison of 
the results for the forecasting of the two examined models 
shows the advantages and disadvantages of the two 
methods. 

[8] use monthly data for Romania for the period 1998-
2007. On their paper, employing Box-Jenkins methodology, 
they present that the most suitable model is ARIMA 
(2,1,2). Following with this model they forecast Romania’s 
unemployment for the following months of 2008.  

[12] following Box-Jenkins methodology and using 
monthly data for the unemployment of Nigeria find that 
the best model is ARIMA (1,2,1) for the data used. With 
this model they forecast the unemployment for the 
following months of Nigeria.  

[24] uses quarterly data for the period 1976Q1 – 
2011Q4 to examine the forecast of unemployment in 
Nigeria. Among other models used, he proved that the 
most suitable for unemployment forecasting in Nigeria is 
the ARIMA(1,1,2)-ARCH(1) model instead of that of 
Etuk et al. (2012) that supported on their paper.  

[29] on her paper deals with the modeling of employment 
market on Czech Republic. Box-Jenkins methodology or 
ARIMA model, are the approaches which uses for 
modeling time series. Particularly, for unemployment’s 
model, data from January 2004 until April 2012 are used 
and with SARIMA model (1,1,0) (1,1,0)12 she forecasts 
unemployment rate until December 2012.  

[18] in order to examine unemployment rate in 
Thailand they use two techniques: Box-Jenkins and 
Neural Networks. Their results showed that Box-Jenkins 
technique proved more efficient for the estimation of 
unemployment rate in Thailand. Forecasted values that 
were estimated were consistent with the actual values for 
unemployment rate. 

Finally, [25] using Phillips curve examines 
unemployment rates and inflation for USA from January 
1980 to April 2015. Examining these variables with 
ARIMA and VAR models, she concluded that VAR 
models give better forecast than ARIMA.  

3. Theoretical Background 
[2] and [3] on their papers referred the procedures for 

the construction of ARIMA models. Seasonal ARIMA 
models consist of both seasonal and non-seasonal factors 
in a multiplicative model. ARIMA models, which were 
first introduced by Box-Jenkins, aimed at time-series 
forecasting when they became stationary by differencing. 
A time-series can have seasonal and non-seasonal 
characteristics. A series has seasonal characteristics when 
these are repeated over s time periods. Furthermore, in a 
seasonal series there is often a different mean value 
between seasonal intervals. Thus, in most cases, seasonal 
time series are non-stationary. 

3.1. Non-seasonal ARIMA Model 
A non-seasonal ARIMA model is symbolized as 

ARIMA (p,d,q) where p is the number of autoregressive 
lag, d is the differencing lag and q is the moving average 
lag and can be written as: 
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p q

t k t k k t k t
k k

Y Y e eα θ µ− −
= =

= + + +∑ ∑  (1) 

Equation (1) can be also written as: 

 ( ) ( )t tB Y B eα θ µ= +  (2) 

where 

 1 2( ) 1 ... p
pB B B Bα α α α= − − − −  

and 

 1 2( ) 1 ... .q
qB B B Bθ θ θ θ= − − − −  

If Zt is a stationary series obtained after d differencing 
from Yt series then we get: 

 (1 )d d
t t tZ Y B Y= ∀ = −  (3) 

so the final form of ARIMA (p,d,q) model can be shaped 
as: 

 (1 ) ( ) ( ) .d
t tB B Y B eα θ− =  (4) 

The above model is a popular time-series forecasting 
technique used on a large scale from analysts. In other 
words, this technique takes into account the historical data 
and is decomposed in an Autoregressive (AR) process 
where there is a memory from previous values, an 
integrated procedure that represents data stationarity and a 
Moving-Average (MA) procedure which represents the 
terms of previous error in order to make forecasting easier.  

3.2. Seasonal ARIMA Model 
A time-series is called seasonal if there is at least one 

seasonal autoregressive parameter P (SAR) or at least one 
seasonal moving average parameter Q (SMA) or both 
parameters (P,Q). Seasonal ARMA (P,Q) is used when 
seasonal (hence non stationary) behavior is present in the 
time series. ARMA (P,Q) model can be written as follows:  

 ( ) ( )s s
P t Q tB Z B eΦ = Θ  (5) 

where  
s=number of periods per season. 

Seasonal differencing may be in order if the seasonal 
component follows a random walk, as in: 

 (1 ) .s
t t t s tZ Z Z B Z−∀ = − = −  (6) 

The seasonal difference of order D is defined as: 

 (1 ) .D s D
s t tZ B Z∀ = −  (7) 

So the final form of SARIMA (p,d,q) model X (P,D,Q)s 
can be formed as:  

 ( ) ( ) ( ) ( )s D d s
P s t Q tB B Z B B eϕ θΦ ∀ ∀ = Θ  (8) 

where  
D d
s tZ∀ ∀  is an ARMA model with lots of coefficients set 

to zero. 

 2
1 2( ) 1 ...s s s Ps

P pB B BΦ Β = −Φ −Φ − −Φ  

 2
1 2( ) 1 ... P

pB B Bϕ φ φ ϕΒ = − − − −  

 2
1 2( ) 1 ...s s s Qs

Q qB B BΘ Β = −Θ −Θ − −Θ  

 
2

1 2( ) 1 ... .Q
qB B Bθ θ θ θΒ = − − − −  

3.3. Procedure for SARIMA Modeling 
• We test diagrammatically the data for the 

presence of seasonal fluctuations as well as for a 
possible trend.  

• We observe the data correlogram. The 
coefficients kρ  can present slow or quick drop in 
a expontential or corrugated way. 

• If for any lag k=s, the respective coefficient is 
quite strong in relation to its neighbouring, we 
consider that the model has seasonality s. Then 
we isolate correlations coefficients kρ  for k=s, 
2s, 3s and if they diminish in a slow measure 
then we get seasonal differences D

s tY∆  in order 
to determine the number D of ARIMA seasonal 
model (P,D,Q)s which is adjusted on data.  

• If the existence of trend is obvious, we get the 
differences tY∆  on tY  observations till we 
achieve stationarity. If autocorrelation on first 
data of the series is strong, then seasonal 
correlations are becoming obvious on 
autocorrelation diagrams after differencing or 
generally on differences order d.  

• When we get the required differences (seasonal 
and non-seasonal), we examine the new 
autocorrelation and partial autocorrelation 
diagrams of data on differences for identification 
on p,q and P,Q order on multiplicative ARIMA 
model (p,d,q)(P,D,Q)s. 

• For facilitation, we can isolate the autocorrelation 
coefficients with seasonal lags s, 2s, 3s in order 
to determine the values of P and Q of seasonal 
ARIMA (P,D,Q)s.  

A seasonally SARIMA model is symbolized as 
SARIMA (P,D,Q) where P is the number of 
autoregressive lag, D is the differencing lag and Q is the 
moving average lag and can be written as follows: 

 
1 1

.
QP

t is t is is t is t
i i

Y Y e eα θ− −
= =

= + +∑ ∑  (9) 

3.4. Estimation of the Model SARIMA 
For the estimation of SARIMA models we use the 

Maximum Likelihood –ML method, where n̂θ  is the 
estimator of a matrix of parameters 0θ  and can be 
approximated by a multivariate normal distribution with 
mean and covariance matrix and is the following: 

 ( )( )( ) 1
0

1 ln ;n XV Var f
n θ θ

−
 = ∀ Χ   (10) 

where ( )( )0ln ;Xf X θ  is the log-likelihood of one 
observation from the sample, evaluated at the parameter 

0θ , and ( )( )0ln ;Xf Xθ θ∀  is the vector of first 
derivatives of the log-likelihood. 

http://www.statlect.com/probability-distributions/multivariate-normal-distribution
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For the estimation of the asymptotic covariance matrix 
(10) the Outer Product of Gradients (OPG) estimate is 
used and is computed as: 

 ( ) ( )( ) 1

1

1 ˆ ˆˆ ln ( ; ln ; .
n

n X i n X i n
i

V f x f x
n θ θθ θ

−

=

 
= ∀ ∀  
 
∑ (11) 

Provided some regularity conditions are satisfied, the 
OPG estimator n̂V  is a consistent estimator of nV . (see 
[15]). 

Also, for the optimization of matrix n̂V  we use the 
algorithm of Broyden–Fletcher–Goldfarb–Shanno (BFGS). 
On numerical optimization, the algorithm BFGS is an 
iterative method for solving unconstrained nonlinear 
optimization problems and was developed by [5,14,17] 
and [28]. 

3.5. Diagnostic Checking of the Model 
SARIMA 

There are several diagnostic tests for the analysis of 
models. A statistical tool which can be used to determine 
whether the series present autocorrelation or 
heteroscedasticity is Q statistic of [19].  

 
2

1
( 2)

2

m
k

m
k

e
Q n n

n=
= +

−∑  (12) 

where ke  is the residual autocorrelation at lag k , n  is the 
number of residuals, m  is the number of time lags 
including in the test. The model is considered adequate 
only if the p value associated with the Ljung-Box Q 
statistic is higher than a given significance. 

The correlogram of the residuals can be used to check 
residuals’ autocorrelation.  

If there is no serial correlation, the autocorrelations and 
partial autocorrelations at all lags should be nearly zero, 
and all Q-Statistics should be insignificant with large 
probability-values. 

The correlograms of the squared residuals can be used 
to check autoregressive conditional heteroskedasticity 
(ARCH) in the residuals. If there is no ARCH in the 
residuals, the autocorrelations and partial autocorrelations 
should be zero at all lags and the Q-statistics should not be 
significant. 

3.6. Forecasting Performance 
The forecasting on seasonal ARIMA models is 

computed for both in sample and out sample values. The 
optimum forecast value is evaluated from mean squared 
error (MSE) which measures the average of squared error 
over the sample period. Other measures (indices) often 
used for the return of forecasting are the Root Mean 
Square Error (RMSE), the Mean Absolute Percentage 
Error (MAPE) and Theil’s inequality index [30]. 

These indices are taken from the following functions: 

 ( )2
1

1 ˆ
T

t t
t

MSE Y Y
T =

= −∑  (13) 
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Theil’s inequality index is taken from the following 
function:  
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where 
tY : Actual value of endogenous variable Y at time t. 

t̂Y : Redacted value of endogenous variable Y  at time t. 
T: Number of observations in the simulations (of the 
sample). 

If Theil’s unequal index is U=0, then actual values of 
the series will be equal with the estimated tY = t̂Y  for all t, 
so in this case we can consider that there is a “perfect fit” 
between actual and predicted data. On the contrary, if 
coefficient U=1, there is wrong forecasting for the 
examined model. Afterwards, we present individual 
Theil’s indices called “unequal ratios” and are the following: 
• Bias proportion: indicates the systematic 

differences in actual and forecasted values. 

 
( )
( )

2

2

1

ˆ

1 ˆ
T

t t
t

Y Y
UM

Y Y
T =

−
=

−∑
 (18) 

where Ŷ and Y are the means of the series of t̂Y  and tY  
respectively. Bias proportion measures the distance 
between the mean of simulated series from the mean of 
actual series.  

Variance proportion: indicates unequal variances of 
actual and forecasted values. 
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where ˆŶs and Ys  are the standard deviations of the series 

of t̂Y  and tY  respectively. Variance proportion measures 
the distance between the variance of simulated series from 
the variance of actual series. 
• Covariance proportion: indicates the correlation 

between the actual and forecasted values 
(zero=perfect correlation between actual and 
forecasted values). 
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https://en.wikipedia.org/wiki/Iterative_method
https://en.wikipedia.org/wiki/Nonlinear_optimization
https://en.wikipedia.org/wiki/Nonlinear_optimization
https://en.wikipedia.org/wiki/Nonlinear_optimization
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where ρ is the correlation coefficient between t̂Y  and tY . 
Covariance proportion measures the rest of non-systematic 
error of simulating.  

The forecasting ability of a model is satisfying when 
bias proportions and variance proportions are small. The 
relationship among the above proportions are 
UM+US+UC=1 (see [9]). 

4. Data and Empirical Results 
The variable used in the analysis of the paper is 

unemployment rate and covers the period from April 1998 
until September 2015, total 210 monthly observations. 
Data derived from OECD database.  

4.1. Testing for Non-stationarity 
Figure 1 and Figure 2 show Greece’s monthly 

unemployment rates and the trend analysis respectively. 
Diagrammatic test is made in order to examine the 
existence of seasonal fluctuations as well as a possible 
trend. Following diagram 3 describes the function of 
autocorrelation and partial autocorrelation respectively.  

From Figure 1 we can see that the original data show 
changeable variance. Also, trend analysis from Figure 2 
shows an upward trend. However, on Figure 3, the 
coefficients on autocorrelation function have a slow fall 
confirming that the series is non-stationary. Afterwards, 
we get the first differences of the series and examine 
stationarity. Figure 4 and Figure 5 present monthly 
unemployment rates and trend analysis on first differences 
respectively. 

 
Figure 1. Time series plot of Greece monthly unemployment rate 
(Linear Trend Model UNEt=5.860+0.078*t) 

 
Figure 2. Trend plot analysis of Greece monthly unemployment rate 
(Linear Trend Model UNEt=5.860+0.078*t) 

 

Figure 3. Autocorrelation and Partial Correlation Plot of Greece’s monthly unemployment rate 
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Figure 4. Time series plot of first difference of the original data (Linear 
Trend Model ΔUNEt=-0.041+0.001*t) 

From Figure 4 and Figure 5 we notice that stationarity 
has not been achieved and seasonality is not obvious. 

Furthermore, trend analysis on Figure 5 show that there is 
an upward trend. On Figure 6 we present autocorrelation 
and partial autocorrelation functions that correspond on 
the first differences of the series. 

 
Figure 5. Trend analysis of first difference of the original data (Linear 
Trend Model ΔUNEt=-0.041+0.001*t) 

 
Figure 6. Autocorrelation and partial function of first differences of the original data 

From the above figure, the coefficients on 
autocorrelation function present a slow downturn 
confirming that the series is not stationary on first 
differences. Thus, we get second differences. 

 
Figure 7. Time series plot of second differences of the original data 
(Linear Trend Model Δ2UNEt=0.0009-1.8E-0.5*t) 

Figure 7 and Figure 8 show monthly unemployment 
rates and trend analysis on second differences respectively. 

 
Figure 8. Trend analysis for second differences of the original data 
(Linear Trend Model Δ2UNEt=0.0009-1.8E-0.5*t) 
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From Figure 7 and Figure 8 we can see that stationarity 
has been achieved as there is no trend, and seasonality is 
obvious. On Figure 9, autocorrelation and partial 

autocorrelation functions are shown on second differences 
of series respectively.  

 

Figure 9. Autocorrelation and partial function of second difference of the original data 

Coefficients of autocorrelation function show a quick 
fall on Figure 9, thus series is stationary on second 
differences. Afterwards, we test for series stationarity 
using [6,7] test and [27] unit roots tests.  

The results of Augmented Dickey–Fuller (ADF) test 
and Phillips-Perron (PP) test on unemployment rate series 
are represented on Table 1. 

Table 1. ADF and Phillip-Perron Test on Unemployment Series 

 
Level First Differences Second Differences 

C C,T C C,T C C,T 

ADF -0.748(4) -1.798(4) -1.985(3) -3.075(3) -12.07(3)* -12.05(3)* 

PP 0.125[10] -1.192[10] -1.489[9] -1.795[9] -19.94[8]* -24.49[8]* 
Notes: 1. *, **, *** imply significance at the 1%, 5%, 10% level, respectively. 2. The numbers within parentheses for the ADF, represents the lag 
length of the dependent variable used to obtain white noise residuals. 3. The lag length for the ADF equation was selected using [1]. 4. The numbers 
within brackets for the P-P statistics represent the bandwidth selected based on [23] method using Bartlett Kernel. 5. [20] critical value for rejection of 
null hypothesis of a unit root a significant at the 1% level. 

The results on Table 1 indicate that unemployment rate 
is stationary in second differences. Therefore for our 
model ARIMA (p,d,q) we will have the value d=2. 

4.2. Identification of the Model 
After the detection of stationarity of the series, we 

define the form of ARIMA (p,q) models from the 
correlogram on Figure 9. Parameters p and q can be 
assessed from partial autocorrelation and autocorrelation 

coefficients respectively, comparing them with 2
n

±  

critical value. The limits for both functions (ACF, PACF) 

are 2 0.138
210

± = ± . From the column of 

autocorrelation in figure 9 we can notice that only the 
value of the coefficient 1ρ (autocorrelation coefficient) is 
greater from the value 0.138± , while from the column of 
the coefficients of partial autocorrelation the values 4̂φ  
(partial autocorrelation coefficients) is greater than the 
value 0.138± . Therefore, the value of p  will be 
0 4p≤ ≤ , and respectively, the value of q  will be 
0 1q≤ ≤ . Thereafter we create Table 2 with the values of 
p  and q as follows: 

Table 2. Comparison of models within the range of exploration using 
AIC, SIC and HQ 
ARIMA model AIC SC HQ 

(1,2,0) 0.119 0.152 0.132 

(2,2,0) 0.041 0.090 0.061 

(3,2,0) -0.022 0.041 0.032 

(4,2,0) -0.046 0.033 -0.014 

(0,2,1) -0.086 -0.046 -0.073 

(1,2,1) -0.094 -0.054 -0.075 

(2,2,1) -0.085 -0.021 -0.059 

(3,2,1) -0.081 -0.015 -0.049 

(4,2,1) -0.072 0.023 -0.033 

The results from Table 2 indicate that according to 
Akaike (AIC), Schwartz (SIC) and Hannan-Quinn (HQ) 
criteria, ARΙMA(1,2,1) and ARIMA(0,2,1) models are the 
most suitable. 

4.3. Seasonal Autoregressive Models 
Continued on Figure 10 and Figure 11, we present the 

seasonal difference and the trend analysis on second 
differences of the series. 
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Figure 10. Time series plot of the seasonal difference of the second 
difference data (lag=12) 

From the above figures we notice that there is stability 
both in seasonal and non seasonal level and also the trend 
is stable (no rise or fall) showing us that there is 
stationarity on the mean. 

 
Figure 11. Trend analysis of the seasonal difference of the second 
difference data (Linear trend model D2SUNEt =0.088-0.0015*t) 

On Figure 12 the autocorrelation and partial 
autocorrelation functions of seasonal difference appear 
and correspond to the second differences of the series. 

 

Figure 12. Autocorrelation and partial function of seasonal difference of the second difference data 

From this figure we see that seasonal lags on 
autocorrelation function is important on lag 11, whereas 
on partial autocorrelation function is on 11 and 23 lag. 
This fact denotes that 0<P<2, 0<Q<1.  

Thereafter we create Table 3 with the values of P and 
Q  as follows: 

 

Table 3. Comparison of models within the range of exploration using 
AIC, SIC and HQ 
SARIMA model AIC SC HQ 

(1,2,1) (0,2,1) -0.094 -0.030 -0.068 
(1,2,1) (1,2,0) -0.094 -0.029 -0.068 
(1,2,1) (1,2,1) -0.116 -0.036 -0.083 
(1,2,1) (2,2,0) -0.084 -0.004 -0.052 
(1,2,1) (2,2,1) -0.093 -0.010 -0.067 
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The results from Table 3 indicate that according to the 
criteria of Akaike (AIC), Schwartz (SIC) and Hannan-
Quinn (HQ) the model SARIMA is formulated to 
SARΙMA (1,2,1) (1,2,1)12 and SARIMA (1,2,1) (0,2,1)12 
are the most suitable. 

Table 4. Comparison of models within the range of exploration using 
AIC, SIC and HQ 
SARIMA model AIC SC HQ 

(0,2,1) (0,2,1) -0.107 -0.043 -0.074 
(0,2,1) (1,2,0) -0.090 -0.042 -0.070 
(0,2,1) (1,2,1) -0.116 -0.052 -0.090 
(0,2,1) (2,2,0) -0.081 -0.017 -0.055 
(0,2,1) (2,2,1) -0.091 -0.027 -0.071 

From Table 4 we notice that according to the criteria of 
Akaike (AIC), Schwartz (SIC) and Hannan-Quinn (HQ) 
the model SARIMA (0,2,1) (0,2,1)12 and SARIMA (0,2,1) 
(1,2,1)12 are the most suitable. 

We then proceed to the next stage of the Box-Jenkins 
approach which is the estimation of the models.  

4.4. Estimation of the Model 
Thereafter we can proceed to estimating the above 

model. The following Table 5, Table 6, Table 7 and Table 8 
present the results of these models. 

Table 5. Estimation Model SARIMA(1,2,1)(1,2,1)12 

 
 
Results on Table 5 show that the coefficient on AR(1) parameter is not statistically significant. 

Table 6. Estimation Model SARIMA(1,2,1)(0,2,1)12 
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Results on Table 6 show that the coefficient on AR(1) and SMA(12) parameters are not statistically significant on 5% 
level of significance. 

Table 7. Estimation Model SARIMA(0,2,1)(0,2,1)12 

 
 
Results on Table 7 show that coefficient on SMA(12) parameter is not statistically significant on 5% level of 

significance. 

Table 8. Estimation Model SARIMA(0,2,1)(1,2,1)12 

 
 

The results of the above table show that all coefficients 
are statistically significant thus that model can be used for 
forecasting. 

4.5. Diagnostic Checking of the Model 
SARIMA(0,2,1)(1,2,1)12 

On the Figure 13 and Figure 14, the residuals test for 
the autocorrelation with conditional heteroscedasticity 
(ARCH model) is provided. 

From the results of Figure 13 and Figure 14, we can see 
that autocorrelation and partial autocorrelation coefficients 
are non statistical significant in all lags as all Q-statistics 
have large probability-values. So, we can regard that 
residuals are not autocorrelated and don’t form ARCH 
models. Thus, SARIMA (0,2,1)(1,2,1)12 model can be 
used for forecasting. 

4.6. Forecasting. 
For forecasting SARIMA(0,2,1)(1,2,1)12 model we use 

both dynamic and static forecasting procedure. The 
dynamic procedure calculates forecasts for periods after 
the first period in the sample by using the previously 
forecasted values from lagged dependent variable and 
ARMA terms. This procedure is called n-step ahead 
forecast. Static procedure uses actual and non forecasted 
values of dependent variable. This procedure is called one 
step- ahead forecast. 

In Figure 15 and Figure 16 we represent the criteria for 
the evaluation of the forecasts in and out sample forecast 
at level form of the dependent variable, using dynamic and 
static forecast respectively. 
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Figure 13. Diagnostic residuals’ autocorrelation test of SARIMA(0,2,1)(1,2,1)12 model 

 

Figure 14. Diagnostic test for residuals’ conditional autocorrelation of SARIMA(0,2,1)(1,2,1)12 model 

 
Figure 15. Dynamic Forecast of Unemployment 
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Figure 16. Static Forecast of Unemployment 

From Figure 15 and Figure 16 we notice that the indices 
of root mean squared error and mean absolute error get 
smaller values on Figure 16 than that of Figure 15. We 
conclude that static procedure gives better forecasting 
ability on the examined model. Furthermore, Theil’s 
Inequality index on the static procedure is smaller 
compared to the dynamic procedure and is close to zero. 
This indication on Theil’s index shows the “goodness of 
fit” for the model. Moreover, the proportion of bias (it 
measures how far is the mean of simulated series from the 
mean of the actual series), and the proportion of variance 

(it measures how far is the variance of simulated series 
from the variance of actual series), has very small value 
on the static procedure. These indices prove that the 
forecasting ability of static procedure show more accurate 
forecasting. On the contrary, the proportion of covariance 
which measures the rest of non-systematic forecast error, 
is larger on the static procedure as it was expected.  

Table 9 displays the comparison between the actual, 
forecasted and the residual starting from 2013:10 to 
2015:09. 

Table 9. Comparison between the actual, forecast values from 2013:10 to 2015:09 

 
 

From Table 9 we can see that SARIMA(0,2,1)(1,2,1)12 
model has the best predictive power. The forecasted value 
of unemployment, deriving from the suggested model, 
refers to September 2015 and is 24.62%. This value is 
very close to the actual which is 24.6%. Therefore, 
SARIMA(0,2,1)(1,2,1)12 model that we suggest has a 
good and precise forecasting for unemployment in Greece. 

5. Conclusion 
Unemployment plagues many countries so it is 

important to capture the trend of this series. The use of 
ARIMA models is a highly flexible tool in order to 

forecast unemployment rate if there is no government’s 
intervention which will change this trend. The main goal 
of this paper is to find the most suitable model with a 
forecasting ability in order to forecast unemployment in 
Greece. Using Box-Jenkins methodology, we determined 
the form of SARIMA model and estimated this model 
with the non-linear optimization method of Maximum 
Likelihood, using numerical optimization Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm. For the 
forecasting power of the model, both the dynamic and 
static procedure together with the criteria forecasting 
measures, were used. The results of the forecast showed 
that the forecasted value of unemployment is close to the 
actual value. This result showed that model’s suitability 
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can be used to forecast unemployment in Greece for the 
following years. 
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