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Abstract  Solving a system of equations by 𝐴𝐴𝐴𝐴 =  𝑏𝑏, where A is a 𝑛𝑛 × 𝑛𝑛 matrix and b and 𝑛𝑛 × 1 vector, can 
sometime be a daunting task because solving for x can be difficult. If you were given an algorithm that was efficient, 
that’s great! What if you could make it solve the problem even faster?  That’s even better. We will first take a look at 
establishing the basics of the successive over-relaxation method (SOR for short), then we’ll look at a real-world 
problem we applied the SOR method to, solving the heat-equation when a constant boundary temperature is applied 
to a flat plate. 
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1. Introduction 
Successive over-relaxation (SOR) is one of the most 

important method for solution of large linear system 
equations. It has applications in Fluid Dynamics, 
mathematical programming, linear elasticity and machine 
learning etc. The examples of applications of SOR in 
Dynamics include study of steady heat conduction, 
turbulent flows, boundary layer flows or chemically 
reacting flows. For this reason, SOR method is important 
for both researchers and business policymakers. 

In the real world, time is always something valuable, 
something no one wants to waste; when it comes to 
solving systems of equations, it can sometimes be better to 
get a close approximation of the solution than to get the 
exact solution for this very reason, among others. This is 
where the successive over-relaxation method (SOR) can 
come into play.  The industry standard for finding exact 
methods, Gaussian elimination, requires approximately 𝑛𝑛
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operations to solve the system, which becomes time 
consuming when n gets big. SOR on the other hand, while 
only giving us an approximation, can give us these 
approximations much faster than Gaussian elimination can. 
SOR was developed in 1950 by David Young and H. 
Frankel in 1950 and was developed to be used on digital 
computers. It was developed by modifying the Gauss-
Seidel iteration model. The Gauss-Seidel model is based 
on the following steps. 

1. Given Ax = b. where A and b are known and an 
initial guess for x, x0 

2. 𝐿𝐿∗𝐴𝐴𝑘𝑘+1 = 𝑏𝑏 − 𝑈𝑈𝐴𝐴𝑘𝑘  
Where L* is the lower triangular components of matrix A, 
U is the upper triangular components of A, b is our b  
 

vector and 𝐴𝐴𝑘𝑘  is the kth approximation of x and xk+1 is the 
next iteration of x.For the numerical solution of the 
accelerated Overrelaxation method was introduced by 
Hadjidimos in [1] and is a two-parameter generalization of 
the successive Overrelaxation (SOR) method.The SOR 
method works this way. 
1. Given Ax = b where A and b are known, x unknown, 
and an initial guess for x, x0 
2. Let 𝐴𝐴 =  𝐷𝐷 +  𝐿𝐿 +  𝑈𝑈 where 𝐷𝐷 is the main diagonal of 
A, L the lower triangle components of A and U the upper 
triangle components of A. 
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Where 𝐴𝐴𝑘𝑘  is the kth approximation of 𝐴𝐴, 𝐴𝐴𝑘𝑘+1is the next 
iteration of 𝐴𝐴, 𝑎𝑎𝑖𝑖 ,𝑗𝑗  is the corresponding element of matrix 
A, b is our vector and 𝜔𝜔 is our relaxation factor. We’ll talk 
more about selecting an appropriate relaxation factor 
when we get to the next section, but for now, note that if  
ω = 1, we get the Gauss-Siedel method. The convergence 
is enhanced because the value at a particular iteration is 
made up of a combination of the old value and the newly 
calculated value, namely 

 (1 ) .new new old
i i ix x xω ω= + −  

The SOR method is very similar to the Gauss-Seidel 
method except that it uses a scaling factor to reduce the 
approximation error. Consider the following set of 
equations 
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For Gauss-Seidel method, the values at the k iteration 
are given by 
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It should be noted that for the calculation of xi, the 
variables with index less than i are at the (k) iteration 
while the variables with index greater than i are at still at 
the previous (k-1) iteration. The equation for the SOR 
method is given as 

( 1)
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The term in the bracket  
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is just difference between the variables of the previous and 
present iterations for the Gauss-Seidel method 
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This difference is essentially the error for the iteration 
since at convergence this difference must approach zero. 
The SOR method obtains the new estimated value by 
multiplying this difference by a scaling factor ω and 
adding it to the previous value. The SOR equation can 
also be written in the following form 
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When ω = 1 the above equation is the formula for Gauss-
Seidel method, when ω < 1 it is the under-relaxation 
method, and when ω < 1 it is the over-relaxation method. 
We use the SOR method to solve the set of equations 
presented in heat problem. 

Figure 1 shows the number of iterations required for 
convergence as a function of the scaling factor ω. There is 
a minimum in the number of iterations at ω of about 1.2. 
Normally the value of the scaling factor for a minimum 
iteration is between 1 and 2 and this value cannot be 
determined beforehand except for some special cases. 
Under-relaxation method (ω < 1) always requires more 
iterations than the Gauss-Seidel method. However under-
relaxation is sometimes used to slow the convergence if a 
value of the scaling factor ≥ 1 leads to divergence. 

 
Figure 1. The variation of number of iterations with scaling factor

2. Algorithm 
To solve 𝐴𝐴𝐴𝐴 =  𝑏𝑏 given the parameter 𝜔𝜔 and an initial 

approximation 𝐴𝐴(0): 
INPUT the number of equations and unknowns n; the 
entries 𝑎𝑎𝑖𝑖𝑗𝑗 , 1 ≤  𝑖𝑖, 𝑗𝑗 ≤  𝑛𝑛 , of the matrix A; the entries  
 

𝑏𝑏𝑖𝑖, 1 ≤  𝑖𝑖 ≤  𝑛𝑛, of 𝑏𝑏;  the entries 𝑋𝑋𝑋𝑋𝑖𝑖, 1 ≤  𝑖𝑖 ≤  𝑛𝑛,  of 
𝑋𝑋𝑋𝑋 =  𝐴𝐴(0); the parameter ω; tolerance TOL; maximum 
number of iterations N. 
OUTPUT the approximate solution 𝐴𝐴1, 𝐴𝐴2, .   .    .    .  𝐴𝐴𝑛𝑛  a 
message that the number of iterations was exceeded. 
Step 1 Set k =  1. 
Step 2 While (k ≤  N) do Steps 3–6. 
Step 3 For i =  1, . . . , n 
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Step 4 If || ||x XO TOL− <  then OUTPUT 1 2, ,. . . . ;nx x x  
(The procedure was successful.) STOP. 
Step 5 Set 𝑘𝑘 =  𝑘𝑘 +  1. 
Step 6 For 𝑖𝑖 =  1, . . . ,𝑛𝑛set 𝑋𝑋𝑋𝑋𝑖𝑖 ;  =  𝐴𝐴𝑖𝑖 ; 
Step 7 OUTPUT (‘Maximum number of iterations 
exceeded’); 
(The procedure was successful.) STOP. 

3. Application of SOR 
Now let’s move to our application of SOR. The 

application utilizes the heat equation, which is  

 
2 2 2

2 2 2 0u u u u
t x y z

α
 ∂ ∂ ∂ ∂

− + + =  ∂ ∂ ∂ ∂ 
 

Which simply states that as time increases, t, the 
temperature, 𝑢𝑢,  and changes over the three special 
coordinates, 𝐴𝐴,𝑦𝑦, 𝑧𝑧 where alpha is a positive constant. For 
our example, we’re only going to use two dimensions, 𝐴𝐴 
and 𝑦𝑦. Let us move to that example. Utilizing an article by 
Ronal S. Besser we picked and modified his first simple 
example, the constant boundary temperature example.  We 
are given a 0.9 x 0.9 m plate and its sides are heated to 
273 Kelvin. See the model below for the full, initial set up. 
 
273 273 273 273 273 273 273 273 273 273 
273 0 0 0 0 0 0 0 0 273 
273 0 0 0 0 0 0 0 0 273 
273 0 0 0 0 0 0 0 0 273 
273 0 0 0 0 0 0 0 0 273 
273 0 0 0 0 0 0 0 0 273 
273 0 0 0 0 0 0 0 0 273 
273 0 0 0 0 0 0 0 0 273 
273 0 0 0 0 0 0 0 0 273 
273 273 273 273 273 273 273 273 273 273 
 

The value at each entry in the matrix represents the 
temperature at that position, aka a node, on the plate. To 
solve this system, we used the finite difference method. 
The FDM utilizes some large but finite about of 
rectangular elements such that  𝑢𝑢𝐴𝐴𝐴𝐴 +  𝑢𝑢𝑦𝑦𝑦𝑦 = 0 Where 𝑢𝑢𝐴𝐴𝐴𝐴  
and 𝑢𝑢𝑦𝑦𝑦𝑦  are the temperatures at the points x and y 
respectfully. We can rewrite the FDM equation like so 
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and rewriting it and multiplying everything by -1, we get 
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To set the matrix system up, first we need to establish 
out ∆𝐴𝐴  and ∆𝑦𝑦  values. For this, we set ∆𝐴𝐴=  ∆𝑦𝑦= 1.  

Our coefficient matrix A2, comes from the inner 8 × 8 
matrix of zeros from the bigger matrix A, and b will be 
our vector of known values surrounding the nodal points 
of A2. To find our values, we start at the A22,j and add up 
the values around the node. If the value is known, it is put 
into the b vector, if it is unknown; it is set as a variable, 𝐴𝐴1 
through 𝐴𝐴8. As an example, to find the first row of A2, we 
add the 273 at position 𝐴𝐴221  and the 273 at 𝐴𝐴212from the 
larger matrix A. Those values are stored as 𝑏𝑏1 . A21,1 is 
treated as 4 ∗ 𝐴𝐴1 based on our choices in delta x and delta 
y, A22,3 is −1 ∗ 𝐴𝐴2 and A22,1 is −1 ∗ 𝐴𝐴1 in the row below. 
Our full system looks like this. 

 

1

2

3

4

5

6

7

8

4 1 0 0 0 0 0 0 546
1 4 1 0 0 0 0 0 273

0 1 4 1 0 0 0 0 273
0 0 1 4 1 0 0 0 273
0 0 0 1 4 1 0 0 273
0 0 0 0 1 4 1 0 273
0 0 0 0 0 1 4 1 273
0 0 0 0 0 0 1 4 546

x
x
x
x
x
x
x
x

−     
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    − −
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− −     × =    − −
    

− −     
    − −     

−         

 

Before we move on to the coding of the problem into 
MATLAB, let’s first discuss how the relaxation factor was 
chosen. If A is a positive definite matrix and 0 <  𝜔𝜔 <  2, 
then the SOR is guaranteed to converge for any initial 
choice of 𝐴𝐴0 .If in addition A is tridiagonal and 
𝜌𝜌�𝑇𝑇𝑔𝑔�where 𝑇𝑇𝑔𝑔 = 𝐷𝐷−1(𝐿𝐿 + 𝑈𝑈) < 1  then the optimal 

choice of the relaxation factor is 

( ) 2

2

1 1 gT
ω

ρ
=

+ −

 

which is how we obtained our optimum relaxation factor, 
1.1805. All of our pieces are now set, let’s put it all 
together in MATLAB. Running the code through, the x 
vector’s last iteration is 

 

192.4278
168.6481
161.6298
159.5585

.
158.9471
158.7667
158.7135
158.6978

 
 
 
 
 
 
 
 
 
 
 
  

 

If we compare that with the exact results of inv(𝐴𝐴)  ∗  𝑏𝑏, 
we get 

 

173.0784
146.3137
139.1765
137.3922
137.9222
139.1765
146.3137
173.0784

 
 
 
 
 
 
 
 
 
 
 
  
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and if we compare the errors as decimals, we get 

 

0.1118
0.1526
0.1613
0.1613

.
0.1569
0.1408
0.0847
0.0831

 
 
 
 
 
 
 
 
 
 
 
−  

 

Compare the times. Running just the SOR through 
MATLAB, it takes 0.084 seconds from the setup of the 
matrix to displaying the results at the very end of it while 
MATLAB’s built in functions can solve the exact answer 
in 0.020 seconds. While that is much faster, bear in mind 
SOR does not need to have the inverse of matrix A, which 
that alone can make a world of difference in deciding on 
which method to solve 𝐴𝐴𝐴𝐴 = 𝑏𝑏. SOR can also be a very 
nice system to use if matrix A is very large and sparse. 
Storing all of those zeros can be a waste of space in the 
computer as it slows down computation times. 

4. Conclusion and Future Work 
In this paper, we have highlighted the importance of 

using SOR interactive solve method for accelerating 
solution of real word problems.It should come as no 
surprise the SOR method is an industry standard for 
solving matrix systems 𝐴𝐴𝐴𝐴 =  𝑏𝑏. Further research will be 
needed to find an SOR algorithm that would produce 
better, closer results to the exact values. That being said, 
where the SOR method shines through lays in its speed 
and its ability to solve any n x n system without the need 
of the coefficient matrix A having an inverse and without 
the need to store the matrix entirely, saving space and time. 
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Appendix 
The code itself 
clear all; 
clc; 
format short; 
 
A = [273 273 273 273 273 273 273 273 273 273; 273 0 0 0 0 0 0 0 0 273; 273 0 0 0 0 0 0 0 0 273;  
    273 0 0 0 0 0 0 0 0 273 ; 273 0 0 0 0 0 0 0 0 273; 273 0 0 0 0 0 0 0 0 273 ; 273 0 0 0 0 0 0 0 0 273; 
    273 0 0 0 0 0 0 0 0 273; 273 0 0 0 0 0 0 0 0 273; 273 273 273 273 273 273 273 273 273 273] 
k = length(A); 
A2 = zeros(k-2);% Inner most set of zeros, in this case, 8 x 8. 
m = length(A2);  
 
b = zeros(8,1); % Seed for the b vector. 
 
dx = 1; 
dy = 1; 
 
 
for a = 1:m; 
        A2(a,a) = (2/(dx^2)) + (2/(dy^2)); % Sets the main diagonal of A2.   
end 
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for c = 1:(m-1) 
        A2(c,c+1) = (-1)/(dx^2); % Sets the off diagonals of A2 = -1. 
        A2(c+1, c) = (-1)/(dy^2); % Had to do it this way because it added rows and collums, giving us a 9x9. 
end 
 
b = [546 273 273 273 273 273 273 546]'; 
 
 
condnum = norm(A2) * norm(inv(A2)) 
D = diag(diag(A2)); % Matrix with only the values of the diagonal of A2. 
F = tril(-A2,-1); % " " values of the lower triangular matrix of A2. 
E = triu(-A2,1);  % Upper triangular part. 
 
Tj = inv(D * (F+E)); 
 
rho_Tj = max(abs(eig(Tj))); 
 
% omega = 1.1; % The relaxation factor, must be > 1. Use 1.1 
 
omega = 2/(1+sqrt(1-rho_Tj^2)); 
 
 
fi = [273; 273; 273; 273 ;273; 273 ;273 ;273]; % Initial guess. 
 
fori = 1:m 
    sigma = zeros(m,1); 
 
for j = 1:m 
ifi ~= j % ~= is "not equal to". 
            sigma = sigma + (A2(i,j)*fi(j)); 
end 
 
end 
    fi(i) = (1-omega)*fi(i) + (omega/A2(i,i)*(b(i)-sigma(i))); 
end 
 
fi 
 
exac = inv(A2) * b; 
 


