
American Journal of Applied Mathematics and Statistics, 2016, Vol. 4, No. 4, 113-117
Available online at http://pubs.sciepub.com/ajams/4/4/3
©Science and Education Publishing
DOI:10.12691/ajams-4-4-3

Applying the Successive Over-relaxation Method to a
Real World Problems

T. Mayooran*, Elliott Light

Department of Mathematics and Statistics, Minnesota state university, Mankato, USA
*Corresponding author: thevaraja.mayooran@mnsu.edu

Abstract Solving a system of equations by 𝐴𝐴𝐴𝐴 = 𝑏𝑏, where A is a 𝑛𝑛 × 𝑛𝑛 matrix and b and 𝑛𝑛 × 1 vector, can
sometime be a daunting task because solving for x can be difficult. If you were given an algorithm that was efficient,
that’s great! What if you could make it solve the problem even faster? That’s even better. We will first take a look at
establishing the basics of the successive over-relaxation method (SOR for short), then we’ll look at a real-world
problem we applied the SOR method to, solving the heat-equation when a constant boundary temperature is applied
to a flat plate.

Keywords: Interactive Method, Successive Over-Relaxation Method (SOR)

Cite This Article: T. Mayooran, and Elliott Light, “Applying the Successive Over-relaxation Method to a
Real World Problems.” American Journal of Applied Mathematics and Statistics, vol. 4, no. 4 (2016): 113-117.
doi: 10.12691/ajams-4-4-3.

1. Introduction
Successive over-relaxation (SOR) is one of the most

important method for solution of large linear system
equations. It has applications in Fluid Dynamics,
mathematical programming, linear elasticity and machine
learning etc. The examples of applications of SOR in
Dynamics include study of steady heat conduction,
turbulent flows, boundary layer flows or chemically
reacting flows. For this reason, SOR method is important
for both researchers and business policymakers.

In the real world, time is always something valuable,
something no one wants to waste; when it comes to
solving systems of equations, it can sometimes be better to
get a close approximation of the solution than to get the
exact solution for this very reason, among others. This is
where the successive over-relaxation method (SOR) can
come into play. The industry standard for finding exact
methods, Gaussian elimination, requires approximately 𝑛𝑛

3

3

operations to solve the system, which becomes time
consuming when n gets big. SOR on the other hand, while
only giving us an approximation, can give us these
approximations much faster than Gaussian elimination can.
SOR was developed in 1950 by David Young and H.
Frankel in 1950 and was developed to be used on digital
computers. It was developed by modifying the Gauss-
Seidel iteration model. The Gauss-Seidel model is based
on the following steps.

1. Given Ax = b. where A and b are known and an
initial guess for x, x0

2. 𝐿𝐿∗𝐴𝐴𝑘𝑘+1 = 𝑏𝑏 − 𝑈𝑈𝐴𝐴𝑘𝑘
Where L* is the lower triangular components of matrix A,
U is the upper triangular components of A, b is our b

vector and 𝐴𝐴𝑘𝑘 is the kth approximation of x and xk+1 is the
next iteration of x.For the numerical solution of the
accelerated Overrelaxation method was introduced by
Hadjidimos in [1] and is a two-parameter generalization of
the successive Overrelaxation (SOR) method.The SOR
method works this way.
1. Given Ax = b where A and b are known, x unknown,
and an initial guess for x, x0
2. Let 𝐴𝐴 = 𝐷𝐷 + 𝐿𝐿 + 𝑈𝑈 where 𝐷𝐷 is the main diagonal of
A, L the lower triangle components of A and U the upper
triangle components of A.

3. ()1 , (1)
,

1 (.k i i i j j k ij j k
i i j i j i

x x b a x a x
a
ωω+ +

< >
= − + − −∑ ∑

Where 𝐴𝐴𝑘𝑘 is the kth approximation of 𝐴𝐴, 𝐴𝐴𝑘𝑘+1is the next
iteration of 𝐴𝐴, 𝑎𝑎𝑖𝑖 ,𝑗𝑗 is the corresponding element of matrix
A, b is our vector and 𝜔𝜔 is our relaxation factor. We’ll talk
more about selecting an appropriate relaxation factor
when we get to the next section, but for now, note that if
ω = 1, we get the Gauss-Siedel method. The convergence
is enhanced because the value at a particular iteration is
made up of a combination of the old value and the newly
calculated value, namely

 (1) .new new old
i i ix x xω ω= + −

The SOR method is very similar to the Gauss-Seidel
method except that it uses a scaling factor to reduce the
approximation error. Consider the following set of
equations

1

, 1, 2,...... .
n

ij j i
j

a x b i n
=

= =∑

For Gauss-Seidel method, the values at the k iteration
are given by

114 American Journal of Applied Mathematics and Statistics

1

() () (1)

1 1

1 .
i n

k k k
i ij iji j j

ii j j i
x b a x a x

a

−
−

= = +

 
 = − −
  

∑ ∑

It should be noted that for the calculation of xi, the
variables with index less than i are at the (k) iteration
while the variables with index greater than i are at still at
the previous (k-1) iteration. The equation for the SOR
method is given as

(1)

1 ()

11() (1) .
(1)

1

kxi

i kb a xi ij j
jk kx xi i na kii a xij j

j i

ω −−

 −  
− ∑ 

  = −= +   
  −− ∑  

= +    

The term in the bracket

1

() (1) (1)

1 1

1 i n
k k k

i ij ijj j i
ii j j i

b a x a x x
a

−
− −

= = +

    − − − 
    

∑ ∑

is just difference between the variables of the previous and
present iterations for the Gauss-Seidel method

1
() (1) (1)

1 1

() (1)
Gauss Seidel

1

.

i n
k k k

i ij ijj j i
ii j j i

k k
i i

b a x a x x
a

x x

−
− −

= = +

−

−

    − − − 
    

 = − 

∑ ∑

This difference is essentially the error for the iteration
since at convergence this difference must approach zero.
The SOR method obtains the new estimated value by
multiplying this difference by a scaling factor ω and
adding it to the previous value. The SOR equation can
also be written in the following form

1 ()

1() (1)(1) .
(1)

1

i kb a xi ij j
jk kx xi i na kii a xij j

j i

ωω

− 
− ∑ 

 =−= − +  
 −− ∑ 

= +  

When ω = 1 the above equation is the formula for Gauss-
Seidel method, when ω < 1 it is the under-relaxation
method, and when ω < 1 it is the over-relaxation method.
We use the SOR method to solve the set of equations
presented in heat problem.

Figure 1 shows the number of iterations required for
convergence as a function of the scaling factor ω. There is
a minimum in the number of iterations at ω of about 1.2.
Normally the value of the scaling factor for a minimum
iteration is between 1 and 2 and this value cannot be
determined beforehand except for some special cases.
Under-relaxation method (ω < 1) always requires more
iterations than the Gauss-Seidel method. However under-
relaxation is sometimes used to slow the convergence if a
value of the scaling factor ≥ 1 leads to divergence.

Figure 1. The variation of number of iterations with scaling factor

2. Algorithm
To solve 𝐴𝐴𝐴𝐴 = 𝑏𝑏 given the parameter 𝜔𝜔 and an initial

approximation 𝐴𝐴(0):
INPUT the number of equations and unknowns n; the
entries 𝑎𝑎𝑖𝑖𝑗𝑗 , 1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑛𝑛 , of the matrix A; the entries

𝑏𝑏𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛, of 𝑏𝑏; the entries 𝑋𝑋𝑋𝑋𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛, of
𝑋𝑋𝑋𝑋 = 𝐴𝐴(0); the parameter ω; tolerance TOL; maximum
number of iterations N.
OUTPUT the approximate solution 𝐴𝐴1, 𝐴𝐴2, 𝐴𝐴𝑛𝑛 a
message that the number of iterations was exceeded.
Step 1 Set k = 1.
Step 2 While (k ≤ N) do Steps 3–6.
Step 3 For i = 1, . . . , n

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

10

20

30

40

50

60

70

80

90

100

Scale factor

N
um

be
r

of
 it

er
at

io
ns

 American Journal of Applied Mathematics and Statistics 115

Set ()
11

1
1 1

i n
x XO a x a XO bi i ij j ij j ia j j iii

ω ω
−

= − + − − +∑ ∑
= = +

  
  
  

Step 4 If || ||x XO TOL− < then OUTPUT 1 2, ,. . . . ;nx x x
(The procedure was successful.) STOP.
Step 5 Set 𝑘𝑘 = 𝑘𝑘 + 1.
Step 6 For 𝑖𝑖 = 1, . . . ,𝑛𝑛set 𝑋𝑋𝑋𝑋𝑖𝑖 ; = 𝐴𝐴𝑖𝑖 ;
Step 7 OUTPUT (‘Maximum number of iterations
exceeded’);
(The procedure was successful.) STOP.

3. Application of SOR
Now let’s move to our application of SOR. The

application utilizes the heat equation, which is

2 2 2

2 2 2 0u u u u
t x y z

α
 ∂ ∂ ∂ ∂

− + + =  ∂ ∂ ∂ ∂ 

Which simply states that as time increases, t, the
temperature, 𝑢𝑢, and changes over the three special
coordinates, 𝐴𝐴,𝑦𝑦, 𝑧𝑧 where alpha is a positive constant. For
our example, we’re only going to use two dimensions, 𝐴𝐴
and 𝑦𝑦. Let us move to that example. Utilizing an article by
Ronal S. Besser we picked and modified his first simple
example, the constant boundary temperature example. We
are given a 0.9 x 0.9 m plate and its sides are heated to
273 Kelvin. See the model below for the full, initial set up.

273 273 273 273 273 273 273 273 273 273
273 0 0 0 0 0 0 0 0 273
273 0 0 0 0 0 0 0 0 273
273 0 0 0 0 0 0 0 0 273
273 0 0 0 0 0 0 0 0 273
273 0 0 0 0 0 0 0 0 273
273 0 0 0 0 0 0 0 0 273
273 0 0 0 0 0 0 0 0 273
273 0 0 0 0 0 0 0 0 273
273 273 273 273 273 273 273 273 273 273

The value at each entry in the matrix represents the
temperature at that position, aka a node, on the plate. To
solve this system, we used the finite difference method.
The FDM utilizes some large but finite about of
rectangular elements such that 𝑢𝑢𝐴𝐴𝐴𝐴 + 𝑢𝑢𝑦𝑦𝑦𝑦 = 0 Where 𝑢𝑢𝐴𝐴𝐴𝐴
and 𝑢𝑢𝑦𝑦𝑦𝑦 are the temperatures at the points x and y
respectfully. We can rewrite the FDM equation like so

 () () ()

() ()

, 1
2 2 22

2 2

2 2 1, 1,

1 1, 1 1, 0

i ju
u i j u i j

x y yx

u i j U i j
x y

+    
− + + +      ∆ ∆ ∆∆    

  
+ − + − =    ∆ ∆   

and rewriting it and multiplying everything by -1, we get

() () ()

() ()

2 2 2 2

2 2

1 2 2 1
, 1 , 1,

1 1, 1 1, .

u i j u i j u i j
x x y y

u i j u i j
x y

− + + + + +
∆ ∆ ∆

    
             
  

= − + −    ∆ ∆   

To set the matrix system up, first we need to establish
out ∆𝐴𝐴 and ∆𝑦𝑦 values. For this, we set ∆𝐴𝐴= ∆𝑦𝑦= 1.

Our coefficient matrix A2, comes from the inner 8 × 8
matrix of zeros from the bigger matrix A, and b will be
our vector of known values surrounding the nodal points
of A2. To find our values, we start at the A22,j and add up
the values around the node. If the value is known, it is put
into the b vector, if it is unknown; it is set as a variable, 𝐴𝐴1
through 𝐴𝐴8. As an example, to find the first row of A2, we
add the 273 at position 𝐴𝐴221 and the 273 at 𝐴𝐴212from the
larger matrix A. Those values are stored as 𝑏𝑏1 . A21,1 is
treated as 4 ∗ 𝐴𝐴1 based on our choices in delta x and delta
y, A22,3 is −1 ∗ 𝐴𝐴2 and A22,1 is −1 ∗ 𝐴𝐴1 in the row below.
Our full system looks like this.

1

2

3

4

5

6

7

8

4 1 0 0 0 0 0 0 546
1 4 1 0 0 0 0 0 273

0 1 4 1 0 0 0 0 273
0 0 1 4 1 0 0 0 273
0 0 0 1 4 1 0 0 273
0 0 0 0 1 4 1 0 273
0 0 0 0 0 1 4 1 273
0 0 0 0 0 0 1 4 546

x
x
x
x
x
x
x
x

−     
    − −     
    − −
    

− −     × =    − −
    

− −     
    − −     

−         

Before we move on to the coding of the problem into
MATLAB, let’s first discuss how the relaxation factor was
chosen. If A is a positive definite matrix and 0 < 𝜔𝜔 < 2,
then the SOR is guaranteed to converge for any initial
choice of 𝐴𝐴0 .If in addition A is tridiagonal and
𝜌𝜌�𝑇𝑇𝑔𝑔�where 𝑇𝑇𝑔𝑔 = 𝐷𝐷−1(𝐿𝐿 + 𝑈𝑈) < 1 then the optimal

choice of the relaxation factor is

() 2

2

1 1 gT
ω

ρ
=

+ −

which is how we obtained our optimum relaxation factor,
1.1805. All of our pieces are now set, let’s put it all
together in MATLAB. Running the code through, the x
vector’s last iteration is

192.4278
168.6481
161.6298
159.5585

.
158.9471
158.7667
158.7135
158.6978

 
 
 
 
 
 
 
 
 
 
 
  

If we compare that with the exact results of inv(𝐴𝐴) ∗ 𝑏𝑏,
we get

173.0784
146.3137
139.1765
137.3922
137.9222
139.1765
146.3137
173.0784

 
 
 
 
 
 
 
 
 
 
 
  

116 American Journal of Applied Mathematics and Statistics

and if we compare the errors as decimals, we get

0.1118
0.1526
0.1613
0.1613

.
0.1569
0.1408
0.0847
0.0831

 
 
 
 
 
 
 
 
 
 
 
−  

Compare the times. Running just the SOR through
MATLAB, it takes 0.084 seconds from the setup of the
matrix to displaying the results at the very end of it while
MATLAB’s built in functions can solve the exact answer
in 0.020 seconds. While that is much faster, bear in mind
SOR does not need to have the inverse of matrix A, which
that alone can make a world of difference in deciding on
which method to solve 𝐴𝐴𝐴𝐴 = 𝑏𝑏. SOR can also be a very
nice system to use if matrix A is very large and sparse.
Storing all of those zeros can be a waste of space in the
computer as it slows down computation times.

4. Conclusion and Future Work
In this paper, we have highlighted the importance of

using SOR interactive solve method for accelerating
solution of real word problems.It should come as no
surprise the SOR method is an industry standard for
solving matrix systems 𝐴𝐴𝐴𝐴 = 𝑏𝑏. Further research will be
needed to find an SOR algorithm that would produce
better, closer results to the exact values. That being said,
where the SOR method shines through lays in its speed
and its ability to solve any n x n system without the need
of the coefficient matrix A having an inverse and without
the need to store the matrix entirely, saving space and time.

Acknowledgement
It is with great pleasure that we publish this paper first

and foremost and our sincere thank and appreciation to
MATH674 course (Spring 2016) instructor Dr. Ruijun
Zhao, Associate Professor Mathematics, Department of
Mathematics and Statistics, Minnesota state university,
Mankato, USA for his tremendous assistance and valuable
guidance.

References
[1] A. Hadjidimos, “Successive Overrelaxation (SOR) andrelated

methods,”Journal of Computational and Applied Mathematics, vol.
123, no. 1, pp. 177-199, 2000.

[2] D. Xie, “A new block parallel sor method and its analysis,”SIAM
Journal on Scientific Computing, vol. 27, no. 5, pp. 1513-1533,
2006.

[3] Ioannis K Argyros (2000) BACK MATTER. Advances in the
Efficiency of Computational Methods and Applications: pp. 503-
546.

[4] O. Mangasarian and D. Musicant, “Successive Overrelaxation for
support vector machines,” Neural Networks, IEEE Transactions
on, vol. 10, no. 5, pp. 1032-1037, 1999.

[5] Ortega, J. M., NumericalAnalysis; A Second Course, Academic
Press, New York, 1972, 201 pp.

[6] Richard L. Burden and J. Douglas Faires, 2010: Numerical
Analysis 9th edition, Brooks-Cole CENGAGE Learning, 895 pgs.

[7] Ronald S. Besser, 2002, Spreadsheet Solutions to Two-
Dimensional Heat Transfer Problems, 6 pp.

[8] Shi-Liang Wu and Yu-Jun Liu, A New Version of the Accelerated
Overrelaxation Iterative Method, Hindawi Publishing Corporation
Journal of Applied Mathematics, Volume 2014, Article ID 725360,
6 pages

[9] Sparsh Mittal, “A Study of Successive Overrelaxation Method
Parallelization Over Modern HPC Languages”, International
Journal of High Performance Computing and Networking archive
Volume 7 Issue 4, June 2014 Pages 292-298

[10] Wikipedia, 2016: Successive Over-relaxation
[https://en.wikipedia.org/wiki/Successive_over-relaxation].

Appendix
The code itself
clear all;
clc;
format short;

A = [273 273 273 273 273 273 273 273 273 273; 273 0 0 0 0 0 0 0 0 273; 273 0 0 0 0 0 0 0 0 273;
 273 0 0 0 0 0 0 0 0 273 ; 273 0 0 0 0 0 0 0 0 273; 273 0 0 0 0 0 0 0 0 273 ; 273 0 0 0 0 0 0 0 0 273;
 273 0 0 0 0 0 0 0 0 273; 273 0 0 0 0 0 0 0 0 273; 273 273 273 273 273 273 273 273 273 273]
k = length(A);
A2 = zeros(k-2);% Inner most set of zeros, in this case, 8 x 8.
m = length(A2);

b = zeros(8,1); % Seed for the b vector.

dx = 1;
dy = 1;

for a = 1:m;
 A2(a,a) = (2/(dx^2)) + (2/(dy^2)); % Sets the main diagonal of A2.
end

 American Journal of Applied Mathematics and Statistics 117

for c = 1:(m-1)
 A2(c,c+1) = (-1)/(dx^2); % Sets the off diagonals of A2 = -1.
 A2(c+1, c) = (-1)/(dy^2); % Had to do it this way because it added rows and collums, giving us a 9x9.
end

b = [546 273 273 273 273 273 273 546]';

condnum = norm(A2) * norm(inv(A2))
D = diag(diag(A2)); % Matrix with only the values of the diagonal of A2.
F = tril(-A2,-1); % " " values of the lower triangular matrix of A2.
E = triu(-A2,1); % Upper triangular part.

Tj = inv(D * (F+E));

rho_Tj = max(abs(eig(Tj)));

% omega = 1.1; % The relaxation factor, must be > 1. Use 1.1

omega = 2/(1+sqrt(1-rho_Tj^2));

fi = [273; 273; 273; 273 ;273; 273 ;273 ;273]; % Initial guess.

fori = 1:m
 sigma = zeros(m,1);

for j = 1:m
ifi ~= j % ~= is "not equal to".
 sigma = sigma + (A2(i,j)*fi(j));
end

end
 fi(i) = (1-omega)*fi(i) + (omega/A2(i,i)*(b(i)-sigma(i)));
end

fi

exac = inv(A2) * b;

