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1. Introduction 
Statistical methods can be characterized according to 

the type of data to which they are applied. The field of 
survey statistics usually deals with cross-sectional data 
describing each of many different individuals or units at a 
single point in time. Econometrics commonly uses time 
series data describing a single entity, usually an economy 
or market. The econometrics literature reveals another 
type of data called “panel data”, which refers to the 
pooling of observations on a cross-section of households, 
countries, and firms over several time periods. Pooling 
this data achieves a deep analysis of the data and gives a 
richer source of variation which allows for more efficient 
estimation of the parameters. With additional, more 
informative data, we can get more reliable estimates and 
test more sophisticated behavioral models with less 
restrictive assumptions. Another advantage of panel data 
sets is their ability to control for individual heterogeneity. 0F

1 
Panel data sets are also more effective in identifying 

and estimating effects that are simply not detectable in 
pure cross-sectional or pure time series data. In particular, 
panel data sets are more effective in studying complex 
issues of dynamic behavior. For example, in a cross-
sectional data set, we can estimate the rate of 
unemployment at a particular point in time. Repeated 
cross sections can show how this proportion changes over 
time. Only panel data sets can estimate what proportion of 
those who are unemployed in one period remain 
                                                            
1 For more information about the benefits of using pooled cross-sectional 
and time series data analysis, see Dielman [15,16]. 

unemployed in another period. Some of the benefits and 
limitations of using panel data sets are listed in Baltagi [6] 
and Hsiao [26]. 

In pooled cross-sectional and time series data (panel 
data) models, the pooled least squares (classical pooling) 
estimator is the best linear unbiased estimator (BLUE) 
under the classical assumptions as in the general linear 
regression model.1F

2  An important assumption for panel 
data models is that the individuals in our database are 
drawn from a population with a common regression 
coefficient vector. In other words, the coefficients of a 
panel data model must be fixed. In fact, this assumption is 
not satisfied in most economic models, see, e.g., 
Livingston et al. [29] and Alcacer et al. [3]. In this paper, 
the panel data models are studied when this assumption is 
relaxed. In this case, the model is called “random-
coefficients panel data (RCPD) model". The RCPD model 
has been examined by Swamy in several publications 
[7,17,18,30,37,41,43,44,47]. Some statistical and econometric 
publications refer to this model as Swamy’s model or as 
the random coefficient regression (RCR) model, see, e.g., 
[1,21,34]. In RCR model, Swamy assumes that the 
individuals in our panel data are drawn from a population 
with a common regression parameter, which is a fixed 
component, and a random component, that will allow the 
coefficients to differ from unit to unit. This model has 
been developed by many researchers, see, e.g., 
[4,8,12,13,22,24,25,31]. 

Depending on the type of assumption about the 
coefficient variation, Dziechciarz [20] and Hsiao and 

                                                            
2 These assumptions are discussed in Dielman [15,16]. In the next 
section in this paper, we will discuss different types of classical pooling 
estimators under different assumptions. 
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Pesaran [27] classified the random-coefficients models 
into two categories: stationary and non-stationary random-
coefficients models. Stationary random-coefficients 
models regard the coefficients as having constant means 
and variance-covariances, like Swamy’s [41] model. On 
the other hand, the coefficients in non-stationary random-
coefficients models do not have a constant mean and/or 
variance and can vary systematically; these models are 
relevant mainly for modeling the systematic structural 
variation in time, like the Cooley-Prescott [14] model.3 

In general, the random-coefficients models have been 
applied in different fields and they constitute a unifying 
setup for many statistical problems. Moreover, several 
applications of Swamy’s model have appeared in the 
literature of finance and economics.4 Boot and Frankfurter 
[11] used the RCR model to examine the optimal mix of 
short and long-term debt for firms. Feige and Swamy [23] 
applied this model to estimate demand equations for liquid 
assets, while Boness and Frankfurter [10] used it to 
examine the concept of risk-classes in finance. Recently, 
Westerlund and Narayan [46] used the random-
coefficients approach to predict the stock returns at the 
New York Stock Exchange. Swamy et al. [45] applied a 
random-coefficient framework to deal with two problems 
frequently encountered in applied work; these problems 
are correcting for misspecifications in a small area level 
model and resolving Simpson's paradox. 

 The main objective of this paper is to provide the 
researchers with general and efficient estimators for the 
stationary RCPD modes. To achieve this objective, we 
examine the conventional estimators of stationary RCPD 
models in small and moderate samples; we also propose 
alternative consistent estimators of these models under an 
assumption that the errors are cross-sectional heteroskedastic 
and contemporaneously correlated as well as with the 
first-order autocorrelation of the time series errors. 

This paper is organized as follows. Section 2 presents 
the classical pooling estimations for panel data models 
when the coefficients are fixed. Section 3 provides 
generalized least squares (GLS) estimators for the 
different random-coefficients models. In section 4, we 
discuss the alternative estimators for these models, while 
section 5 examines the efficiency of these estimators. The 
Monte Carlo comparisons between various estimators 
have been carried out in section 6. Finally, section 7 offers 
the concluding remarks. 

2. Fixed-Coefficients Models and the 
Pooled Estimations 

Let there be observations for 𝑁 cross-sectional units 
over 𝑇  time periods. Suppose the variable 𝑦  for the 𝑖 th 
unit at time 𝑡 is specified as a linear function of 𝐾 strictly 
exogenous variables, 𝑥𝑘𝑘𝑘, in the following form: 

 1 x ,

1,2, , ; 1, 2, , ,

K
it ki kit it it i itky x u u

i N t T

γ γ== + = +

= … = …
∑  (1) 

                                                            
3 Cooley and Prescott [14] suggested a model where coefficients vary 
from one time period to another on the basis of a non-stationary process. 
Similar models have been considered by Sant [39] and Rausser et al. [38] 
4 The RCR model has been applied also in different sciences fields, see, 
e.g., [9]. 

where 𝑢𝑘𝑘  denotes the random error term, x𝑘𝑘  is a 1 × 𝐾 
vector of exogenous variables, and 𝛾𝑘 is the 𝐾 × 1 vector 
of coefficients. Stacking equation (1) over time, we obtain: 

 ,i i i iy X uγ= +  (2) 

where 𝑦𝑘 = (𝑦𝑘1, … ,𝑦𝑘𝑖)′,  𝑋𝑘 = (x𝑘1′ , … , x𝑘𝑖′ )′  𝛾𝑘 =
(𝛾𝑘1, … , 𝛾𝑘𝑖)′, and 𝑢𝑘 = (𝑢𝑘1, … ,𝑢𝑘𝑖)′.  

When the performance of one individual from the 
database is of interest, separate equation regressions can 
be estimated for each individual unit. If each relationship 
is written as in equation (2), the ordinary least squares 
(OLS) estimator of 𝛾𝑘, is given by: 

 ( ) 1 ' 'ˆ .i i i i iX X X yγ
−

=  (3) 

In order for 𝛾�𝑘  to be a BLUE of 𝛾𝑘 , the following 
assumptions must hold: 
Assumption 1: The errors have zero mean, i.e., 𝐸(𝑢𝑘) = 0 
for every 𝑖 =  1, 2, … ,𝑁. 
Assumption 2: The errors have a constant variance for 
each individual:  

 ( )'   
, 1, 2, , .

0
ii T

i j
I if i j

E u u i j N
if i j

σ =
= = … ≠

 

Assumption 3: The exogenous variables are non-
stochastic and the 𝑟𝑟𝑟𝑟(𝑋𝑘′𝑋𝑘) = 𝐾  for every 𝑖 =
 1, 2, … ,𝑁, where 𝐾 < 𝑇. 
Assumption 4: The exogenous variables and the errors are 
independent, i.e., 𝐸(𝑢𝑘𝑋𝑗) = 0 ∀ 𝑖 , 𝑗. 

These conditions are sufficient but not necessary for the 
optimality of the OLS estimator. 4F

5  When OLS is not 
optimal, estimation can still proceed equation by equation 
in many cases. For example, if variance of 𝑢𝑘  is not 
constant, the errors are either serially correlated and/or 
heteroskedastic, and the GLS method will provide 
relatively more efficient estimates than OLS, even if GLS 
was applied to each equation separately as in OLS. 

If the covariances between 𝑢𝑘  and 𝑢𝑗  (for every 
, 1, 2, ,i j N= … ) do not equal to zero, then contemporaneous 

correlation is present, and we have what Zellner [51] 
termed as seemingly unrelated regression (SUR) equations, 
where the equations are related through cross-equation 
correlation of errors. If the 𝑋𝑘 (𝑖 =  1, 2, … ,𝑁) matrices do 
not span the same column space5F

6 and contemporaneous 
correlation exists, a relatively more efficient estimator of 
𝛾𝑘  than equation by equation OLS is the GLS estimator 
applied to the entire equation system as shown in Zellner 
[51]. 

With either separate equation estimation or the SUR 
methodology, we obtain parameter estimates for each 
individual unit in the database. Now suppose it is 
necessary to summarize individual relationships and to 
draw inferences about certain population parameters. 
Alternatively, the process may be viewed as building a 
single model to describe the entire group of individuals 
                                                            
5 For more information about the optimality of the OLS estimators, see, 
e.g., [36,40] 
6  In case of 𝑋𝑘 involves exactly the same elements and/or no cross-
equation correlation of the errors, then no gain in efficiency is achieved 
by using Zellner's SUR estimator and OLS can be applied equation by 
equation. Dwivedi and Srivastava [19] showed further that whenever 𝑋𝑘 
spans the same column space, OLS can be applied equation by equation 
without a loss in efficiency. 
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rather than building a separate model for each. Again, 
assume that assumptions 1-4 are satisfied and add the 
following assumption: 
Assumption 5: The individuals in our database are drawn 
from a population with a common regression parameter 
vector �̅�, i.e., 𝛾1 = 𝛾2 = ⋯ = 𝛾𝑁 = �̅�. 

Under assumption 5, the observations for each 
individual can be pooled, and a single regression 
performed to obtain an efficient estimator of �̅� . The 
equation system is now written as: 

 ,Y X uγ= +  (4) 

where 𝑌 = (𝑦1′ , … ,𝑦𝑁′ )′ , 𝑋 = (𝑋1′ , … ,𝑋𝑁′ )′,  𝑢 =
(𝑢1′ , … ,𝑢𝑁′ )′ , and �̅� = (�̅�1, … , �̅�𝑖)′  is a vector of fixed 
coefficients which to be estimated. Here we will 
differentiate between three cases based on the variance-
covariance structure of 𝑢. In the first case, the errors have 
the same variance for each individual as given in the 
following assumption: 
Assumption 6:  

 𝐸�𝑢𝑘𝑢𝑗′� = �𝜎𝑢
2𝐼𝑖 𝑖𝑖 𝑖 = 𝑗
0 𝑖𝑖 𝑖 ≠ 𝑗  𝑖, 𝑗 = 1,2, … ,𝑁. 

The efficient and unbiased estimator of �̅�  under 
assumptions 1 and 3-6 is: 

 ( ) 1' '
1ˆ .CP X X X Yγ

−
=  (5) 

This estimator has been termed the classical pooling 
(CP) estimator. In the second case, the errors have 
different variances for each individual, as given in 
assumption 2, in this case, the efficient and unbiased CP 
estimator of �̅� under assumptions 1-5 is: 

 ( ) ( )
11 1' '

2ˆ ,CP H T H TX I X X I Yγ
−− −   = Σ ⊗ Σ ⊗      

 (6) 

where 𝛴𝐻 = 𝑑𝑖𝑟𝑑{𝜎𝑘𝑘}; for 𝑖 = 1,2, … ,𝑁. The third case, 
if the errors have different variances for each individual 
and contemporaneously correlated as in the SUR model: 
Assumption 7: 

 𝐸�𝑢𝑘𝑢𝑗′� = �
𝜎𝑘𝑘𝐼𝑖 𝑖𝑖 𝑖 = 𝑗
𝜎𝑘𝑗𝐼𝑖 𝑖𝑖 𝑖 ≠ 𝑗  𝑖, 𝑗 = 1,2, … ,𝑁. 

Under assumptions 1, 3, 4, 5, and 7, the efficient and 
unbiased CP estimator of �̅� is 

 ( ) ( )
11 1' '

3ˆ ,CP HC T HC TX I X X I Yγ
−− −   = Σ ⊗ Σ ⊗      

(7) 

where  

 𝛴𝐻𝐻 = �

𝜎11 𝜎12 ⋯ 𝜎1𝑁
𝜎21 𝜎22 ⋯ 𝜎2𝑁
⋮ ⋮ ⋱ ⋮
𝜎𝑁1 𝜎𝑁2 ⋯ 𝜎𝑁𝑁

�. 

To make the above estimators (�̅��CP2 and �̅��CP3) feasible, 
the σij  can be replaced with the following unbiased and 
consistent estimator: 

 
'ˆ ˆ

ˆ ; , 1, 2, , ,i j
ij

u u
i j N

T K
σ = ∀ = …

−
 (8) 

where 𝑢�𝑘  is the residuals vector obtained from applying 
OLS to equation number 𝑖: 

  ˆˆ ,i i i iu y X γ= −  (9) 

where 𝛾�𝑘  is defined in (3).6F

7 

3. Random-Coefficients Models 
In this section, we review the standard random-

coefficients model, proposed by Swamy [41]. Moreover, 
we present the random-coefficients model in the general 
case; when the errors are cross-sectional heteroskedastic 
and contemporaneously correlated as well as with the 
first-order autocorrelation of the time series errors. 

3.1. Swamy's (RCR) Model 
Suppose that each regression coefficient in equation (2) 

is now viewed as a random variable; that is the 
coefficients, 𝛾𝑘 , are viewed as invariant over time, but 
varying from one unit to another: 
Assumption 8: According to the stationary random 
coefficient approach, we assume that the coefficient vector 
𝛾𝑘 is specified as:7F

8 

 ,i iγ γ µ= +  (10) 

where �̅� is a 𝐾 × 1 vector of constants, and 𝜇𝑘 is a 𝐾 ×
1 vector of stationary random variables with zero means 
and constant variance-covariances: 

( ) ( )'0, , 1, 2, , ,
0i i j

if i j
E and E i j N

if i j
µ µ µ

Ψ =
= = = … ≠

 

where 𝛹 = 𝑑𝑖𝑟𝑑{𝜓𝑘
2};  for 𝑟 = 1,2, … ,𝐾 , where 𝐾 < 𝑁. 

Also, we assume that 𝐸(𝜇𝑘x𝑗𝑘) = 0 and 𝐸�𝜇𝑘𝑢𝑗𝑘� =
0 ∀ 𝑖 and 𝑗. 

Under the assumption 8, the model in equation (2) can 
be rewritten as: 

 ; ,Y X e e D uγ µ= + = +  (11) 

where  𝑌,𝑋,𝑢 , and �̅�  are defined in (4), while 𝜇 =
(𝜇1′ , … , 𝜇𝑁′ )′, and 𝐷 = 𝑑𝑖𝑟𝑑{𝑋𝑘}; for 𝑖 = 1,2, … ,𝑁. 

The model in (11), under assumptions 1-4 and 8, is 
called the “RCR model”, which was examined by Swamy 
[41,42,43,44], Youssef and Abonazel [1], and Mousa et al. 
[30]. We will refer to assumptions 1-4 and 8 as RCR 
assumptions. Under these assumptions, the BLUE of �̅� in 
equation (11) is: 

 ( ) 1' 1 ' 1ˆ Ω Ω ,RCR X X X Yγ
−− −=  (12) 

where Ω is the variance-covariance matrix of 𝑒:  

 ( ) ( ) 'Ω .H T NI D I D= Σ ⊗ + ⊗Ψ  (13) 

                                                            
7 The 𝜎�𝑘𝑗  in (8) is unbiased estimator, because we assume, in the first, 
that the number of exogenous variables of each equation is equal, i.e., 
𝐾𝑘 = 𝐾  for 𝑖 = 1,2, … ,𝑁 . However, in the general case,  𝐾𝑘 ≠ 𝐾𝑗 , the 
unbiased estimator is 𝑢�𝑘′𝑢�𝑗 �𝑇 − 𝐾𝑘 − 𝐾𝑗 + 𝑡𝑟(𝑃𝑥𝑥)�⁄ , where 𝑃𝑥𝑥 =
𝑋𝑘(𝑋𝑘′𝑋𝑘)−1𝑋𝑘′𝑋𝑗�𝑋𝑗′𝑋𝑗�

−1𝑋𝑗′. See [6,14]. 
8 This means that the individuals in our database are drowning from a 
population with a common regression parameter  �̅� , which is fixed 
component, and a random component  𝜇𝑘 , which will allow the 
coefficients to differ from unit to unit. 
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Swamy [41] showed that the �̅��𝑅𝐻𝑅  estimator can be 
rewritten as: 

 

( )

( )

1
1' '

1

1' '

1

  

1

ˆ

,ˆ

N

RCR i i i ii T i
i

N

i i i ii T i
i
N

i i
i

X X X I X

X X X I y

W

γ σ

σ

γ

−
−

=

−

=

=

 
= Ψ + 
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Ψ +

=

∑

∑

∑

 (14) 

where 𝛾�𝑘  is defined in (3), and 
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=

−−

=

   = Ψ +  
   

   Ψ +  
   

∑

∑

 (15) 

It shows that the �̅��𝑅𝐻𝑅 is a weighted average of the least 
squares estimator for each cross-sectional unit, 𝛾�𝑘 , and 
with the weights inversely proportional to their covariance 
matrices. 9  It also shows that the  �̅��𝑅𝐻𝑅  requires only a 
matrix inversion of order 𝐾, and so it is not much more 
complicated to compute than the sample least squares 
estimator.  

The variance-covariance matrix of �̅��𝑅𝐻𝑅  under RCR 
assumptions is:  

 
( ) ( )

( )

1' 1

111'

1

ˆ ΩRCR

N

ii i i
i

var X X

X X

γ

σ

−−

−−−

=

=

   = Ψ +  
   

∑ .

 (16) 

To make the �̅��𝑅𝐻𝑅 estimator feasible, Swamy [42] 
suggested using the estimator in (8) as an unbiased and 
consistent estimator of 𝜎𝑘𝑘 , and the following unbiased 
estimator for 𝛹: 

 

( )

  ' ? '^ ^ ^ ^ ^

1 1 1

^ 1'

1

1 1
1

1 .

N N N

i i i i
i i i

N
ii i i

i

N N

X X
N

γ γ γ γ

σ

= = =

−

=

  
  Ψ = −

  −   
 

−  
  

∑ ∑ ∑

∑

 (17) 

Swamy [43,44] showed that the estimator �̅��𝑅𝐻𝑅  is 
consistent as both 𝑁,𝑇 → ∞  and is asymptotically 
efficient as 𝑇 → ∞.10 

It is worth noting that, just as in the error-components 
model, the estimator (17) is not necessarily non-negative 
definite. Mousa et al. [30] explained that it is possible to 
obtain negative estimates of Swamy’s estimator in (17) in 
case of small samples and if some/all coefficients are 
fixed. But in medium and large samples, the negative 
variance estimates does not appear even if all coefficients 

                                                            
9  The final equality in (14) is obtained by using the fact that: (𝐴 +
𝐵𝐵𝐵′)−1 = 𝐴−1 − 𝐴−1𝐵𝐸𝐵′𝐴−1 + 𝐴−1𝐵𝐸(𝐸 + 𝐵)−1𝐸𝐵′𝐴−1 , where 
𝐸 = (𝐵′𝐴−1𝐵)−1. See Rao ([35], p. 33). 
10 The statistical properties of �̅��𝑅𝐻𝑅 have been examined by Swamy [42], 
of course, under RCR assumptions. 

are fixed. To solve this problem, Swamy has suggested 
replacing (17) by:10F

11 

  ' '

1 1 1

1 1ˆ ˆ ˆ ˆ ˆ ,
1

N N N

i i i i
i i iN N
γ γ γ γ+

= = =

 
Ψ = −  −  

∑ ∑ ∑  (18) 

this estimator, although biased, is non-negative definite 
and consistent when 𝑇 → ∞. See Judge et al. ([28], p. 542). 

It is worth mentioning here that if both 𝑢𝑘𝑘 and 𝜇𝑘  are 
normally distributed, the GLS estimator of �̅� is the maximum 
likelihood estimator of �̅� conditional on 𝛹 and 𝜎𝑘𝑘. Without 
knowledge of 𝛹  and 𝜎𝑘𝑘 , we can estimate �̅� , 𝛹  and 
𝜎𝑘𝑘(𝑖 = 1,2, . . . ,𝑁) simultaneously by the maximum likelihood 
method. However, computationally it can be tedious. A 
natural alternative is to first estimate Ω, then substitute the 
estimated Ω into (12). See Hsiao and Pesaran [27]. 

3.2. Generalized RCR Model 
To generalize RCR model so that it would be more suitable 

for most economic models, we assume that the errors are 
cross-sectional heteroskedastic and contemporaneously 
correlated, as in assumption 7, as well as with the first-
order autocorrelation of the time series errors. Therefore, 
we add the following assumption to assumption 7: 
Assumption 9: 𝑢𝑘𝑘 = 𝜌𝑘𝑢𝑘,𝑘−1 + 𝜀𝑘𝑘 ; |𝜌𝑘| < 1 , where 
𝜌𝑘 (𝑖 = 1,2, … ,𝑁)  are first-order autocorrelation 
coefficients and are fixed. Assume that: 𝐸(𝜀𝑘𝑘) =
0,𝐸�𝑢𝑘,𝑘−1𝜀𝑗𝑘� = 0; ∀ 𝑖 and 𝑗, and 

 ( )'
  

 , 1, 2, , ,
  

Tii
i j

Tij

I if i j
E i j N

I if i j
ε

ε

σ
ε ε

σ

== = … ≠
 

it is assumed that in the initial time period the errors have 
the same properties as in subsequent periods. So, we 
assume that: 𝐸(𝑢𝑘02 ) = 𝜎𝜀𝑖𝑖 1 − 𝜌𝑘2⁄  and 𝐸�𝑢𝑘0𝑢𝑗0� =
𝜎𝜀𝑖𝑖 1 − 𝜌𝑘𝜌𝑗⁄  ∀ 𝑖 and 𝑗. 

We will refer to assumptions 1, 3, 4, and 7-9 as the 
general RCR assumptions. Under these assumptions, the 
BLUE of 𝛾 �  is: 

 ( ) 1' * 1 ' * 1ˆ Ω Ω ,GRCR X X X Yγ
−− −=  (19) 

Where 
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with  
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 (21) 

                                                            
11This suggestion was been used by Stata program, specifically in xtrchh 
and xtrchh2 Stata’s commands. See [34].  
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Since the elements of Ω∗ are usually unknowns, we 
develop a feasible Aitken estimator of �̅�  based on 
consistent estimators of the elements of Ω∗: 

 , 12
2
, 12

ˆ ˆ
ˆ ,

ˆ

T
it i tt

i T
i tt

u u

u
ρ −=

−=

=
∑
∑

 (22) 

where 𝑢�𝑘 = (𝑢�𝑘1, … ,𝑢�𝑘𝑖)′ is given in (9). 
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ε ε
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−
 (23) 

where 𝜀�̂� = (𝜀�̂�1, 𝜀�̂�2, … , 𝜀�̂�𝑖)′;  𝜀�̂�1 = 𝑢�𝑘1�1 − 𝜌�𝑘2 , and 
𝜀�̂�𝑘 = 𝑢�𝑘𝑘 − 𝜌�𝑘𝑢�𝑘,𝑘−1 for 𝑡 = 2, … ,𝑇. 

By replacing 𝜌𝑘  by 𝜌�𝑘  in (21), we get consistent 
estimators of ω𝑘𝑗, say 𝜔�𝑘𝑗. And then we will use 𝜎�𝜀𝑖𝑖  and 
𝜔�𝑘𝑗 to get a consistent estimator of 𝛹:12 
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 (24) 

where  

 ( ) 1* ' 1 ' 1ˆ ˆ ˆ .i i ii i i ii iX X X yγ ω ω
−− −=  (25) 

By using the consistent estimators (𝜎�𝜀𝑖𝑖 , 𝜔�𝑘𝑗 , and 𝛹�∗) in 
(20), we have a consistent estimator of Ω∗, say Ω�∗. Then 
we use Ω�∗ to get the generalized RCR (GRCR) estimator 
of �̅�: 

 ( ) 1' * 1 ' * 1ˆ ˆˆ Ω Ω .GRCR X X X Yγ
−− −=  (26) 

The estimated variance-covariance matrix of �̅��𝐺𝑅𝐻𝑅 is: 

 ( ) ( )^ 1' * 1ˆˆ Ω .GRCRvar X Xγ
−−=  (27) 

4. Mean Group Estimation 

A consistent estimator of �̅� can also be obtained under 
more general assumptions concerning 𝛾𝑘  and the 
regressors. One such possible estimator is the mean group 
(MG) estimator, proposed by Pesaran and Smith [33] for 
estimation of dynamic panel data (DPD) models with 
random coefficients.13 The MG estimator is defined as the 
simple average of the OLS estimators: 
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MG i
iN

γ γ
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= ∑  (28) 

                                                            
12 The estimator of 𝜌𝑘 in (22) is consistent, but it is not unbiased. See 
Srivastava and Giles ([40], p. 211) for other suitable consistent 
estimators of 𝜌𝑘 that are often used in practice. 
13 For more information about the estimation methods for DPD models, 
see, e.g., [2,6,48,49,50].  

Even though the MG estimator has been used in DPD 
models with random coefficients, it will be used here as 
one of the alternative estimators of static panel data 
models with random coefficients. Moreover, the efficiency 
of MG estimator in the two random-coefficients models 
(RCR and GRCR) will be studied. Note that the simple 
MG estimator in (28) is more suitable for the RCR Model. 
But to make it suitable for the GRCR model, we suggest a 
general mean group (GMG) estimator as: 

 *

1

1ˆ ˆ ,
N

GMG i
iN

γ γ
=

= ∑  (29) 

where 𝛾�𝑘∗ is defined in (25).  
Lemma 1.  

If the general RCR assumptions are satisfied, then the 
�̅��𝑀𝐺  and �̅��𝐺𝑀𝐺  are unbiased estimators of �̅�  and the 
estimated variance-covariance matrices of �̅��𝑀𝐺  and �̅��𝐺𝑀𝐺 
are: 
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It is noted from lemma 1 that the variance of GMG 
estimator is less than the variance of MG estimator when 
the general RCR assumptions are satisfied. In other words, 
the GMG estimator is more efficient than the MG 
estimator. But under RCR assumptions, we have: 
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5. Efficiency Comparisons 
In this section, we examine the efficiency gains from 

the use of GRCR estimator. Moreover, the asymptotic 
variances (as 𝑇 → ∞ with 𝑁 fixed) of GRCR, RCR, GMG, 
and MG estimators have been derived.  

Under the general RCR assumptions, It is easy to verify 
that the classical pooling estimators (�̅��𝐻𝐶1, �̅��𝐻𝐶2, and �̅��𝐻𝐶3) 
and Swamy’s estimator (�̅��𝑅𝐻𝑅) are unbiased for �̅� and with 
variance-covariance matrices: 
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 ( ) ( )* ' * '
1 1 1 2 2 2ˆ ˆ Ω ,? Ω ,CP CPvar G G var G Gγ γ= =  (33) 

 ( ) ( )* ' * '
3 3 3 4 4ˆ ˆΩ ,?  Ω ,CP RCRvar G G var G Gγ γ= =  (34) 

where 𝐺1 = (𝑋′𝑋)−1𝑋′, 𝐺2 = [𝑋′(Σ𝐻−1⨂𝐼𝑖)𝑋]−1𝑋′(Σ𝐻−1⨂𝐼𝑖), 
𝐺3 = [𝑋′(Σ𝐻𝐻−1⨂𝐼𝑖)𝑋]−1𝑋′(Σ𝐻𝐻−1⨂𝐼𝑖) , and 𝐺4 =
(𝑋′Ω−1𝑋)−1𝑋′Ω−1. The efficiency gains, from the use of 
GRCR estimator, it can be summarized in the following 
equation: 
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where the subscript 𝛼 indicates the estimator that is used 
(CP1, CP2, CP3, or RCR), 𝐺ℎ matrices are defined in (33) 
and (34), and 𝐺0 = (𝑋′Ω∗−1𝑋)−1𝑋′Ω∗−1 . Since 
Ω∗,𝛴𝐻,𝛴𝐻𝐻, and Ω are positive definite matrices, then 𝐸𝐺𝛼 
matrices are positive semi-definite matrices. In other 
words, the GRCR estimator is more efficient than CP1, 
CP2, CP3, and RCR estimators. These efficiency gains are 
increasing when |𝜌𝑘|,𝜎𝜀𝑖𝑖 , and 𝜓𝑘

2 are increasing. However, 
it is not clear to what extent these efficiency gains hold in 
small samples. Therefore, this will be examined in a 
simulation study. 

The next lemma explains the asymptotic variances (as 
𝑇 → ∞ with 𝑁 fixed) properties of GRCR, RCR, GMG, 
and MG estimators. In order to the derivation of the 
asymptotic variances, we must assume the following: 
Assumption 10: plim

𝑖→∞
𝑇−1𝑋𝑘′𝑋𝑘 and plim

𝑖→∞
𝑇−1𝑋𝑘′𝜔�𝑘𝑘−1𝑋𝑘  are 

finite and positive definite for all 𝑖 and for 0 < |𝜌𝑘| < 1. 
Lemma 2.  
If the general RCR assumptions and assumption 10 are 

satisfied, then the estimated asymptotic variance-
covariance matrices of GRCR, RCR, GMG, and MG 
estimators are equal:  
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We can conclude from lemma 2 that the means and the 
variance-covariance matrices of the limiting distributions 
of �̅��𝐺𝑅𝐻𝑅 , �̅��𝑅𝐻𝑅 , �̅��𝐺𝑀𝐺 , and �̅��𝑀𝐺  estimators are the same 
and are equal to �̅� and 1

𝑁
𝛹 respectively even if the errors 

are correlated as in assumption 9. Therefore, it is not 
expected to increase the asymptotic efficiency of �̅��𝐺𝑅𝐻𝑅 
about �̅��𝑅𝐻𝑅, �̅��𝐺𝑀𝐺 , and �̅��𝑀𝐺 . This does not mean that the 
GRCR estimator cannot be more efficient than RCR, 
GMG, and MG in small samples when the errors are 
correlated as in assumption 9, this will be examined in a 
simulation study. 

6. The Simulation Study 
In this section, the Mote Carlo simulation has been used 

for making comparisons between the behavior of the 
classical pooling estimators ( �̅��𝐻𝐶1 , �̅��𝐻𝐶2 , and �̅��𝐻𝐶3 ), 
random-coefficients estimators ( �̅��𝑅𝐻𝑅  and �̅��𝐺𝑅𝐻𝑅 ), and 
mean group estimators ( �̅��𝑀𝐺  and �̅��𝐺𝑀𝐺 ) in small and 

moderate samples. We use R language to create our 
program to set up the Monte Carlo simulation and this 
program is available if requested. 

6.1. Design of the Simulation 
Monte Carlo experiments were carried out based on the 

following data generating process: 
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∑  (36) 

To perform the simulation under the general RCR 
assumptions, the model in (36) was generated as follows: 

1. The values of the independent variables, 
(𝑥𝑘𝑘𝑘;𝑟 = 1, 2, 3), were generated as independent 
normally distributed random variables with 
constant mean zero and also constant standard 
deviation one. The values of 𝑥𝑘𝑘𝑘 were allowed to 
differ for each cross-sectional unit. However, 
once generated for all N cross-sectional units the 
values were held fixed over all Monte Carlo trials. 

2. The coefficients, 𝛾𝑘𝑘 , were generated as in 
assumption 8: 𝛾𝑘 = �̅� + 𝜇𝑘 , where the vector of 
�̅� = (1,1,1)′ , and 𝜇𝑘  were generated as 
multivariate normal distributed with means zeros 
and a variance-covariance matrix 𝛹 =
𝑑𝑖𝑟𝑑{𝜓𝑘

2};𝑟 = 1,2,3 . The values of 𝜓𝑘
2  were 

chosen to be fixed for all 𝑟 and equal to 0, 5, or 
25. Note that when 𝜓𝑘

2 = 0, the coefficients are 
fixed. 

3. The errors, 𝑢𝑘𝑘, were generated as in assumption 
9:  𝑢𝑘𝑘 = 𝜌𝑢𝑘,𝑘−1 + 𝜀𝑘𝑘 , where the values of 
𝜀𝑘 = (𝜀𝑘1, … , 𝜀𝑘𝑖)′ ∀ 𝑖 = 1, 2, … ,𝑁  were 
generated as multivariate normal distributed with 
means zeros and a variance-covariance matrix:  
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The values of 𝜎𝜀𝑖𝑖, 𝜎𝜀𝑖𝑖, and 𝜌 were chosen to be: �𝜎𝜀𝑖𝑖 
= 5 or 15; 𝜎𝜀𝑖𝑖= 0, 0.75, or 0.95; and 𝜌 = 0, 0.55, or 0.85, 
where the values of 𝜎𝜀𝑖𝑖 , 𝜎𝜀𝑖𝑖 , and 𝜌 are constants for all 
𝑖, 𝑗 = 1, 2, … ,𝑁  in each Monte Carlo trial. The initial 
values of 𝑢𝑘𝑘  are generated as 𝑢𝑘1 = 𝜀𝑘1 �1 − 𝜌2 ⁄ ∀ 𝑖 =
1, 2, … ,𝑁. The values of errors were allowed to differ for 
each cross-sectional unit on a given Monte Carlo trial and 
were allowed to differ between trials. The errors are 
independent with all independent variables.  

4. The values of N and T were chosen to be 5, 8, 10, 
12, 15, and 20 to represent small and moderate 
samples for the number of individuals and the 
time dimension. To compare the small and 
moderate samples performance for the different 
estimators, the three different samplings have 
been designed in our simulation where each 
design of them contains four pairs of N and T; the 
first two of them represent the small samples 
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while the moderate samples are represented by 
the second two pairs. These designs have been 
created as follows: First, case of N < T , the 
different pairs of N and T were chosen to be (𝑁,𝑇) 
= (5, 8), (5, 12), (10, 15), or (10, 20). Second, 
case of 𝑁 = 𝑇, the different pairs are (𝑁,𝑇) = (5, 
5), (10, 10), (15, 15), or (20, 20). Third, case of 
𝑁 > 𝑇, the different pairs are (𝑁,𝑇) = (8, 5), (12, 
5), (15, 10), or (20, 10).  

5. In all Monte Carlo experiments, we ran 1000 
replications and all the results of all separate 
experiments are obtained by precisely the same 
series of random numbers. 

To raise the efficiency of the comparison between these 
estimators, we calculate the total standard errors (TSE) for 
each estimator by: 

 
1000 0.5

1

1 ˆTSE ( ) ,
1000 l

l
trace var γ

=

   =     
∑  

where  �̅��𝑙  is the estimated vector of the true vector of 
coefficients mean (�̅�) in (36), and 𝑣𝑟𝑟(�̅��𝑙) is the estimated 
variance-covariance matrix of the estimator. More detailed, 
to calculate TSE for �̅��𝐺𝑅𝐻𝑅, �̅��𝐻𝐶1, �̅��𝐻𝐶2, �̅��𝐻𝐶3, �̅��𝑅𝐻𝑅, �̅��𝑀𝐺 , and 

�̅��𝐺𝑀𝐺, equations (27), (33), (34), (30), and (31) should be 
used, respectively. 

6.2. Monte Carlo Results 
The results are given in Table 1- Table 6. Specifically, 

Table 1 - Table 3 present the TSE values of the estimators 
when �𝜎𝜀𝑖𝑖 = 5 , and in cases of  𝑁 < 𝑇 , 𝑁 = 𝑇 , and 
𝑁 > 𝑇 , respectively. While case of �𝜎𝜀𝑖𝑖 = 15  is 
presented in Table 4-Table 6 in the same cases of 𝑁 and 𝑇. 
In our simulation study, the main factors that have an 
effect on the TSE values of the estimators are 
𝑁,𝑇,𝜎𝜀𝑖𝑖 ,𝜎𝜀𝑖𝑖 ,𝜌, and 𝜓𝑘

2. From Table 1-Table 6, we can 
summarize some effects for all estimators (classical 
pooling, random-coefficients, and mean group estimators) 
in the following points: 
• When the value of 𝜓𝑘

2 is increased, the values of 
TSE are increasing for all simulation situations. 

• When the values of 𝑁  and 𝑇 are increased, the 
values of TSE are decreasing for all situations. 

• When the value of 𝜎𝜀𝑖𝑖 is increased, the values of 
TSE are increasing in most situations. 

• When the values of (𝜎𝜀𝑖𝑖 ,𝜌) are increased, the 
values of TSE are increasing in most situations. 

Table 1. TSE for various estimators when �𝝈𝜺𝒊𝒊 = 𝟓 and 𝑵 < 𝑻 
(𝝈𝜺𝒊𝒊 ,𝝆) (0, 0) (0.75, 0.55) (0.95, 0.85) 
(𝑵,𝑻) (5, 8) (5, 12) (10, 15) (10, 20) (5, 8) (5, 12) (10, 15) (10, 20) (5, 8) (5, 12) (10, 15) (10, 20) 
𝝍𝒌
𝟐 = 𝟎             

CP1 2.579 1.812 0.965 0.765 2.970 1.764 1.071 0.893 5.016 2.881 1.473 1.337 
CP2 2.739 1.819 0.950 0.746 3.087 1.773 1.052 0.882 5.483 2.875 1.493 1.324 
CP3 2.875 1.795 0.904 0.657 3.235 1.723 0.955 0.785 5.796 2.756 1.344 1.144 
MG 2.793 1.912 1.068 0.813 2.925 1.917 1.165 0.960 5.337 2.935 1.594 1.267 
GMG 2.055 1.479 0.904 0.701 2.207 1.218 0.846 0.684 3.441 1.531 0.785 0.613 
RCR 14.467 3.074 2.333 2.127 13.457 5.275 4.653 4.487 12.508 21.747 9.985 7.719 
GRCR 2.394 1.728 0.839 0.672 2.527 1.623 0.812 0.714 4.165 2.255 0.992 0.810 
𝝍𝒌
𝟐 = 𝟓             

CP1 4.849 4.387 2.598 3.415 5.235 4.275 3.613 2.638 5.904 4.929 3.217 3.528 
CP2 5.204 4.633 2.767 3.602 5.671 4.534 3.978 2.801 6.504 5.376 3.730 4.017 
CP3 5.607 4.835 3.133 3.872 6.216 4.648 4.530 2.960 6.900 5.467 3.951 4.063 
MG 4.222 3.892 2.332 3.127 4.508 3.697 3.231 2.417 6.058 4.697 2.947 3.147 
GMG 4.187 3.886 2.330 3.127 4.524 3.629 3.203 2.388 5.432 4.518 2.836 3.074 
RCR 16.589 4.543 2.306 3.126 9.822 5.695 3.227 2.489 15.662 12.161 4.955 4.513 
GRCR 4.007 3.869 2.227 3.095 4.287 3.546 3.126 2.330 5.042 4.323 2.675 3.009 
𝝍𝒌
𝟐 = 𝟐𝟓             

CP1 11.791 10.687 8.097 6.234 9.382 8.687 9.483 6.166 10.457 7.060 7.520 6.983 
CP2 13.194 11.391 8.719 6.583 10.605 9.250 10.443 6.621 11.714 7.942 9.039 8.115 
CP3 14.553 12.095 10.108 7.155 11.417 9.591 11.928 7.098 12.595 8.199 9.714 8.220 
MG 9.483 9.145 6.812 5.736 7.836 7.185 7.993 5.568 9.170 6.431 6.711 6.208 
GMG 9.469 9.143 6.812 5.736 7.850 7.143 7.980 5.556 8.935 6.278 6.665 6.172 
RCR 9.797 9.863 6.810 5.735 70.360 10.059 8.042 5.568 11.511 20.520 6.725 6.235 
GRCR 9.329 9.107 6.781 5.718 7.726 7.107 7.946 5.533 8.353 6.155 6.612 6.142 

For more deeps in simulation results, we can conclude 
the following results: 

1. In general, when 𝜎𝜀𝑖𝑖 = 𝜌 = 𝜓𝑘
2 = 0 , the TSE 

values of classical pooling estimators (CP1, CP2, 
and CP3) are similar (approximately equivalent), 
especially when the sample size is moderate 
and/or 𝑁 ≤ 𝑇. However, the TSE values of GMG 
and GRCR estimators are smaller than the 
classical pooling estimators in this situation 
( 𝜎𝜀𝑖𝑖 = 𝜌 = 𝜓𝑘

2 = 0 ) and other simulation 

situations (case of 𝜎𝜀𝑖𝑖 ,𝜎𝜀𝑖𝑖 ,𝜌,  and 𝜓𝑘
2  are 

increasing). In other words, the GMG and GRCR 
estimators are more efficient than CP1, CP2, and 
CP3 estimators whether the regression 
coefficients are fixed ( 𝜓𝑘

2 = 0 ) or random 
(𝜓𝑘

2 > 0). 
2. Also, when the coefficients are random (when 

𝜓𝑘
2 > 0), the values of TSE for GMG and GRCR 

estimators are smaller than MG and RCR 
estimators in all simulation situations (for any 
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𝑁,𝑇,𝜎𝜀𝑖𝑖 ,𝜎𝜀𝑖𝑖 , and 𝜌). However, the TSE values 
of GRCR estimator are smaller than the values of 
TSE for GMG estimator in most situations, 
especially when the sample size is moderate. In 

other words, the GRCR estimator performs well 
than all other estimators as long as the sample 
size is moderate regardless of other simulation 
factors. 

Table 2. TSE for various estimators when �𝝈𝜺𝒊𝒊 = 𝟓 and 𝑵 = 𝑻 
(𝝈𝜺𝒊𝒊 ,𝝆) (0, 0) (0.75, 0.55) (0.95, 0.85) 
(𝑵,𝑻) (5, 5) (10, 10) (15, 15) (20, 20) (5, 5) (10, 10) (15, 15) (20, 20) (5, 5) (10, 10) (15, 15) (20, 20) 
𝝍𝒌
𝟐 = 𝟎             

CP1 4.015 1.398 0.704 0.496 10.555 1.385 0.810 0.580 10.411 2.371 1.314 0.907 
CP2 5.107 1.451 0.682 0.478 13.245 1.434 0.802 0.569 14.354 2.549 1.325 0.892 
CP3 6.626 2.038 0.858 0.548 14.811 1.888 0.989 0.608 16.655 3.202 1.501 0.830 
MG 4.078 1.573 0.791 0.551 9.155 1.605 0.907 0.632 10.010 2.612 1.318 0.896 
GMG 2.848 1.302 0.701 0.501 6.401 1.120 0.681 0.453 6.880 1.402 0.747 0.455 
RCR 5.362 2.368 1.203 1.554 9.809 7.191 3.232 2.256 14.884 14.094 10.858 18.453 
GRCR 3.376 1.152 0.541 0.330 8.166 1.045 0.549 0.335 8.778 1.600 0.735 0.402 
𝝍𝒌
𝟐 = 𝟓             

CP1 5.789 3.435 2.077 2.039 9.953 3.464 2.370 2.252 10.443 3.261 2.842 2.419 
CP2 7.578 3.879 2.248 2.165 12.696 3.972 2.641 2.452 14.440 3.722 3.362 2.829 
CP3 10.048 6.187 3.930 3.971 14.156 6.277 4.454 4.423 16.836 5.301 5.285 4.622 
MG 5.203 3.054 1.915 1.869 8.545 3.118 2.148 2.073 10.005 3.216 2.558 2.176 
GMG 4.948 3.051 1.914 1.869 7.302 3.070 2.129 2.052 7.742 3.080 2.510 2.117 
RCR 7.719 3.101 1.897 1.865 10.074 3.710 2.137 2.067 15.432 7.726 3.317 2.217 
GRCR 4.762 2.823 1.809 1.812 7.761 2.876 2.023 1.999 11.464 2.551 2.332 2.027 
𝝍𝒌
𝟐 = 𝟐𝟓             

CP1 12.123 7.455 5.439 5.141 11.900 7.637 6.373 4.987 13.839 6.262 5.750 4.680 
CP2 16.067 8.605 5.958 5.477 15.172 8.912 7.183 5.448 19.262 7.604 6.980 5.596 
CP3 21.362 14.099 10.719 10.258 16.722 14.102 12.534 9.985 22.554 11.238 11.359 9.333 
MG 9.441 6.325 4.876 4.639 9.652 6.465 5.599 4.530 11.947 5.229 4.994 4.197 
GMG 9.357 6.323 4.876 4.639 9.348 6.441 5.591 4.521 11.803 5.141 4.962 4.166 
RCR 11.912 6.297 4.875 4.639 10.657 6.450 5.599 4.528 26.889 6.663 5.019 4.214 
GRCR 9.041 6.218 4.837 4.617 8.910 6.359 5.553 4.497 11.524 4.800 4.867 4.123 

Table 3. TSE for various estimators when �𝝈𝜺𝒊𝒊 = 𝟓 and 𝑵 > 𝑻 
(𝝈𝜺𝒊𝒊 ,𝝆) (0, 0) (0.75, 0.55) (0.95, 0.85) 
(𝑵,𝑻) (8, 5) (12, 5) (15, 10) (20, 10) (8, 5) (12, 5) (15, 10) (20, 10) (8, 5) (12, 5) (15, 10) (20, 10) 
𝝍𝒌
𝟐 = 𝟎             

CP1 8.059 5.011 0.915 1.286 5.775 8.819 1.215 1.020 10.427 9.936 2.104 1.597 
CP2 12.611 9.223 0.914 1.474 8.959 15.237 1.272 1.106 15.700 18.193 2.455 1.789 
CP3 12.098 8.479 1.037 1.790 8.614 14.618 1.472 1.472 18.234 17.588 2.734 2.279 
MG 7.346 4.968 1.048 1.497 5.346 7.303 1.386 1.228 10.191 9.075 2.266 1.875 
GMG 5.085 3.780 0.912 1.161 4.694 4.072 1.019 0.944 5.637 8.109 1.636 1.100 
RCR 7.583 6.827 1.963 3.424 21.049 7.390 3.765 7.005 16.782 42.044 12.592 10.106 
GRCR 6.269 3.781 0.594 0.984 4.661 5.896 0.780 0.673 7.861 7.448 1.469 0.937 
𝝍𝒌
𝟐 = 𝟓             

CP1 7.211 4.939 2.659 2.498 6.885 6.820 2.132 2.285 9.652 9.851 2.663 2.811 
CP2 11.436 9.220 3.138 2.956 10.504 12.145 2.475 2.735 14.789 18.384 3.233 3.642 
CP3 10.724 8.292 3.822 3.592 10.083 11.084 3.014 3.324 17.059 17.539 3.642 4.099 
MG 6.429 4.963 2.360 2.346 6.065 5.477 2.001 2.107 9.610 9.036 2.658 2.698 
GMG 6.011 4.623 2.359 2.343 6.043 5.124 1.969 2.082 6.398 8.538 2.712 2.614 
RCR 7.966 7.216 2.363 2.801 9.943 10.356 3.427 69.747 19.301 35.246 6.077 5.216 
GRCR 5.929 3.838 2.173 1.938 5.356 4.909 1.602 1.797 7.570 7.515 1.997 2.122 
𝝍𝒌
𝟐 = 𝟐𝟓             

CP1 8.409 7.200 5.316 5.907 10.697 9.053 4.732 5.113 10.190 11.609 5.723 5.620 
CP2 13.196 13.419 6.278 7.128 16.445 16.848 5.724 6.255 15.927 21.264 7.436 7.688 
CP3 12.464 12.334 7.654 8.452 16.636 14.188 6.895 7.413 17.419 20.728 8.426 8.309 
MG 7.703 6.546 4.555 4.956 8.304 7.363 4.022 4.418 10.221 10.246 4.907 4.849 
GMG 7.762 6.554 4.554 4.954 8.312 7.512 4.007 4.407 9.875 10.139 4.946 4.804 
RCR 11.761 7.170 4.547 4.882 28.804 8.898 4.002 4.399 14.425 14.960 4.997 4.805 
GRCR 6.661 5.629 4.462 4.782 7.712 7.055 3.846 4.286 8.354 8.680 4.554 4.557 

3. If 𝑇 ≥ 15, the values of TSE for MG and GMG 
estimators are approximately equivalent. This 
result is consistent with Lemma 2. According our 

study, the case of 𝑇 ≥ 15 is achieved when the 
sample size is moderate in Table 1, Table 2, 
Table 4 and Table 5. Moreover, that convergence 
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is slowing down if 𝜎𝜀𝑖𝑖 ,𝜎𝜀𝑖𝑖 , and 𝜌 are increasing. 
But the situation for RCR and GRCR estimators 
is different; the convergence between them is 
very slow even if 𝑇 = 20. So the MG and GMG 
estimators are more efficient than RCR estimator 
in all simulation situations. 

4. Generally, the performance of all estimators in 
cases of 𝑁 < 𝑇  and 𝑁 = 𝑇  is better than their 
performance in case of 𝑁 > 𝑇. Similarly, Their 
performance in cases of �𝜎𝜀𝑖𝑖 = 5 is better than 
the performance in case of �𝜎𝜀𝑖𝑖 = 15, but it is 
not significantly as in 𝑁 and 𝑇. 

Table 4. TSE for various estimators when �𝝈𝜺𝒊𝒊 = 𝟏𝟓 and 𝑵 < 𝑻 
(𝝈𝜺𝒊𝒊 ,𝝆) (0, 0) (0.75, 0.55) (0.95, 0.85) 
(𝑵,𝑻) (5, 8) (5, 12) (10, 15) (10, 20) (5, 8) (5, 12) (10, 15) (10, 20) (5, 8) (5, 12) (10, 15) (10, 20) 
𝝍𝒌
𝟐 = 𝟎             

CP1 4.700 2.869 1.578 1.344 6.294 2.990 1.827 1.522 9.733 4.994 2.793 2.177 
CP2 4.854 2.876 1.564 1.316 6.823 3.020 1.805 1.502 10.431 5.022 2.758 2.167 
CP3 5.109 2.822 1.505 1.178 7.166 2.941 1.667 1.339 10.790 4.959 2.460 1.880 
MG 4.823 3.074 1.747 1.466 6.259 3.127 1.979 1.663 9.745 5.422 2.946 2.049 
GMG 3.652 2.410 1.480 1.258 4.985 2.204 1.474 1.118 4.269 2.336 1.436 1.041 
RCR 7.652 10.706 2.723 8.070 16.169 5.969 8.925 5.743 11.531 15.708 13.279 38.349 
GRCR 4.324 2.725 1.389 1.191 5.674 2.717 1.502 1.202 7.352 3.872 1.801 1.320 
𝝍𝒌
𝟐 = 𝟓             

CP1 6.069 4.812 3.119 3.565 6.382 3.283 4.274 4.306 8.993 4.950 3.200 3.396 
CP2 6.311 4.969 3.279 3.720 6.996 3.349 4.619 4.615 9.682 5.095 3.271 3.745 
CP3 6.704 5.101 3.651 3.948 7.415 3.290 5.165 4.883 9.905 5.076 3.151 3.664 
MG 5.598 4.489 2.874 3.274 6.331 3.337 3.836 3.998 9.174 5.334 3.286 3.147 
GMG 5.461 4.462 2.871 3.273 5.948 3.027 3.787 3.919 5.693 4.178 2.852 2.948 
RCR 11.318 6.401 3.760 3.452 10.609 13.571 4.511 4.017 16.977 31.590 19.676 10.222 
GRCR 5.476 4.308 2.659 3.143 5.996 3.116 3.581 3.829 7.382 4.398 2.430 2.770 
𝝍𝒌
𝟐 = 𝟐𝟓             

CP1 11.783 10.693 8.316 7.119 13.570 8.748 7.442 7.734 8.176 14.887 7.895 6.279 
CP2 12.614 11.288 8.920 7.496 14.942 9.425 8.219 8.342 9.083 16.391 9.390 7.273 
CP3 13.791 11.705 10.160 8.070 15.989 9.956 9.417 9.007 9.310 16.943 10.113 7.413 
MG 9.398 9.171 7.055 6.387 11.139 7.758 6.555 6.899 8.718 12.302 7.244 5.824 
GMG 9.395 9.156 7.054 6.386 11.228 7.717 6.520 6.852 6.889 11.999 7.085 5.711 
RCR 12.364 10.120 7.048 6.382 474.873 12.815 6.559 6.889 88.890 18.314 7.466 8.117 
GRCR 9.239 9.030 6.973 6.331 10.788 7.600 6.411 6.802 7.734 12.024 6.904 5.628 

Table 5. TSE for various estimators when �𝝈𝜺𝒊𝒊 = 𝟏𝟓 and 𝑵 = 𝑻 
(𝝈𝜺𝒊𝒊 ,𝝆) (0, 0) (0.75, 0.55) (0.95, 0.85) 
(𝑵,𝑻) (5, 5) (10, 10) (15, 15) (20, 20) (5, 5) (10, 10) (15, 15) (20, 20) (5, 5) (10, 10) (15, 15) (20, 20) 
𝝍𝒌
𝟐 = 𝟎             

CP1 25.198 2.054 1.214 0.882 12.304 2.575 1.408 1.033 22.924 3.645 2.181 1.554 
CP2 31.269 2.081 1.172 0.852 15.469 2.659 1.385 1.014 29.981 3.913 2.216 1.551 
CP3 41.189 2.802 1.463 0.992 16.359 3.599 1.701 1.150 55.404 4.976 2.490 1.454 
MG 20.301 2.302 1.336 0.966 10.396 2.818 1.526 1.129 21.736 4.045 2.296 1.584 
GMG 12.441 1.946 1.184 0.872 8.180 2.118 1.198 0.849 13.756 2.422 1.149 0.785 
RCR 21.118 4.029 2.303 1.519 35.396 7.438 35.939 4.282 23.866 14.154 12.892 8.994 
GRCR 18.106 1.687 0.876 0.592 9.674 1.950 0.949 0.618 18.606 2.711 1.203 0.702 
𝝍𝒌
𝟐 = 𝟓             

CP1 24.857 3.789 2.731 2.660 12.342 3.594 2.648 2.424 21.516 3.445 2.948 2.504 
CP2 30.642 4.151 2.931 2.814 15.877 3.930 2.878 2.601 28.305 3.605 3.288 2.821 
CP3 40.026 6.472 5.114 5.173 16.719 5.935 4.771 4.447 49.204 4.579 4.572 4.208 
MG 19.204 3.492 2.541 2.458 10.361 3.527 2.486 2.228 20.526 3.896 2.880 2.351 
GMG 13.204 3.487 2.540 2.457 9.071 3.469 2.451 2.185 14.664 3.427 2.638 2.166 
RCR 24.814 5.061 2.509 2.445 18.642 8.365 2.945 2.243 24.831 19.997 18.780 4.708 
GRCR 17.694 3.031 2.305 2.323 9.887 2.903 2.136 2.012 17.352 2.669 2.198 1.895 
𝝍𝒌
𝟐 = 𝟐𝟓             

CP1 22.111 8.161 6.346 4.752 15.841 8.101 7.383 5.726 20.627 7.499 6.586 4.702 
CP2 28.169 9.273 6.914 5.056 20.204 9.567 8.273 6.237 27.543 9.081 7.973 5.573 
CP3 37.528 14.875 12.451 9.510 21.343 15.129 14.478 11.181 51.439 13.459 12.643 9.041 
MG 16.156 6.873 5.690 4.300 12.892 7.112 6.385 5.011 19.940 6.696 5.842 4.253 
GMG 15.764 6.872 5.690 4.299 13.272 7.084 6.372 4.992 18.283 6.546 5.727 4.150 
RCR 24.433 6.837 5.687 4.297 27.430 7.613 6.392 5.016 29.796 31.041 5.860 4.287 
GRCR 16.830 6.674 5.596 4.225 12.785 6.805 6.269 4.919 18.204 5.921 5.536 4.020 
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Table 6. TSE for various estimators when �𝝈𝜺𝒊𝒊 = 𝟏𝟓 and 𝑵 > 𝑻 
(𝝈𝜺𝒊𝒊 ,𝝆) (0, 0) (0.75, 0.55) (0.95, 0.85) 
(𝑵,𝑻) (8, 5) (12, 5) (15, 10) (20, 10) (8, 5) (12, 5) (15, 10) (20, 10) (8, 5) (12, 5) (15, 10) (20, 10) 
𝝍𝒌
𝟐 = 𝟎             

CP1 8.099 17.393 1.731 1.392 10.036 9.281 2.099 1.675 12.098 58.422 3.198 2.578 
CP2 12.381 32.968 1.781 1.406 16.362 16.928 2.229 1.727 18.230 95.939 3.496 2.705 
CP3 12.232 29.385 2.033 1.963 18.922 15.942 2.556 2.392 19.356 93.663 3.873 3.693 
MG 7.742 14.751 2.034 1.648 10.003 9.046 2.453 1.892 10.226 44.144 3.628 2.836 
GMG 5.447 9.402 1.768 1.463 6.250 7.273 2.045 1.736 10.228 38.853 2.075 1.775 
RCR 8.382 17.489 3.876 10.630 15.198 48.547 6.812 46.391 20.562 48.053 19.644 21.881 
GRCR 6.386 12.973 1.153 0.834 8.263 7.059 1.423 1.010 9.115 37.422 1.908 1.403 
𝝍𝒌
𝟐 = 𝟓             

CP1 7.977 15.698 3.145 2.695 9.307 9.106 2.874 2.892 12.425 55.988 3.053 2.948 
CP2 12.251 29.797 3.544 3.100 15.449 16.513 3.210 3.379 18.659 92.529 3.340 3.272 
CP3 12.069 26.622 4.361 3.805 17.208 15.601 3.799 4.140 20.114 89.044 3.635 4.271 
MG 7.550 12.435 2.977 2.522 9.329 8.838 2.927 2.704 10.485 42.576 3.558 3.085 
GMG 6.193 9.803 2.975 2.520 7.059 7.670 2.915 2.731 10.795 37.501 3.151 2.916 
RCR 9.369 15.712 3.497 2.553 12.705 21.261 3.835 2.992 18.461 47.773 26.250 22.414 
GRCR 6.490 11.975 2.384 1.995 8.071 6.935 2.060 2.101 9.445 35.999 2.038 1.799 
𝝍𝒌
𝟐 = 𝟐𝟓             

CP1 10.148 14.075 6.294 5.831 9.455 9.717 6.780 5.270 13.786 57.674 6.578 5.433 
CP2 15.623 26.924 7.411 6.918 15.729 17.896 8.220 6.437 20.662 91.990 8.384 7.082 
CP3 15.672 23.191 9.144 8.111 17.441 17.000 9.768 7.650 22.626 91.419 9.488 7.981 
MG 9.006 11.305 5.418 4.844 9.752 9.346 5.856 4.467 11.409 43.289 6.030 4.925 
GMG 8.838 11.598 5.417 4.843 8.971 9.206 5.853 4.489 11.916 38.975 5.877 4.826 
RCR 11.771 13.046 5.377 4.813 14.957 11.915 5.896 4.437 21.958 42.733 8.370 4.872 
GRCR 8.098 11.092 5.132 4.607 8.488 7.649 5.477 4.130 10.302 37.793 5.172 4.239 

7. Conclusion 
In this paper, the classical pooling (CP1, CP2, and CP3), 

random-coefficients (RCR and GRCR), and alternative 
(MG and GMG) estimators of stationary RCPD models 
were examined in different sample sizes in case the errors 
are cross-sectionally and serially correlated. Efficiency 
comparisons for these estimators indicate that the mean 
group and random-coefficients estimators are equivalent 
when 𝑇  sufficiently large. Moreover, we carried out 
Monte Carlo simulations to investigate the small samples 
performance for all estimators given above. 

The Monte Carlo results show that the classical pooling 
estimators are not suitable for random-coefficients models 
absolutely. Also, the MG and GMG estimators are more 
efficient than RCR estimator in random- and fixed-
coefficients models especially when 𝑇 is small (𝑇 ≤ 12). 
Moreover, the GMG and GRCR estimators perform well 
in small samples if the coefficients are random or fixed. 
The MG, GMG, and GRCR estimators are approximately 
equivalent when 𝑇 ≥ 20. However, the GRCR estimator 
performs well than the GMG estimator in most situations 
especially in moderate samples. Therefore, we conclude 
that the GRCR estimator is suitable to stationary RCPD 
models whether the coefficients are random or fixed. 
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Appendix 

A.1 Proof of Lemma 1 
a. Show that 𝑬(𝜸��𝑮𝑮𝑮) = 𝑬(𝜸��𝑮𝑮) = 𝜸�: 
By substituting (25) into (29), we can get 

 ( ) 1' 1 ' 1

1
,1ˆ

N

GMG i ii i i ii i
i

X X X y
N

γ ω ω
−− −

=
= ∑  (A.1) 

by substituting 𝑦𝑘 = 𝑋𝑘𝛾𝑘 + 𝑢𝑘 into (A.1), then 

 ( ) 1' 1 ' 1

1

1ˆ .
N

GMG i i ii i i ii i
i

X X X u
N

γ γ ω ω
−− −

=

 = + 
 

∑  (A.2) 

Similarly, we can rewrite �̅��𝑀𝐺  in (28) as:  

 ( ) 1' '

1

1ˆ .
N

MG i i i i i
i

X X X u
N

γ γ
−

=

 
= + 
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∑  (A.3) 

Taking the expectation for (A.2) and (A.3), and using 
assumption 1, we get 

 ( ) ( )
1

1ˆ ˆ .
N

GMG MG i
i

E E
N

γ γ γ γ
=

= = =∑  

b. Derive the variance-covariance matrix of 𝜸��𝑮𝑮𝑮: 
Beginning, note that under assumption 8, we have 

𝛾𝑘 = �̅� + 𝜇𝑘. Let us add 𝛾�𝑘∗ to the both sides: 

 * *ˆ ,i i i iγ γ γ µ γ+ = + +  

 ( )* *ˆ ˆ ,i i i iγ γ µ γ γ= + + −  (A.4) 

let 𝛾�𝑘∗ − 𝛾𝑘 = 𝜏𝑘 , then we can rewrite the equation (A.4) as 
follows: 

 *ˆ ,i i iγ γ µ τ= + +  (A.5) 
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where 𝜏𝑘 = (𝑋𝑘′𝜔𝑘𝑘
−1𝑋𝑘)−1𝑋𝑘′𝜔𝑘𝑘

−1𝑢𝑘 . From (A.5), we can 
get 

 *
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1 1 1ˆ ,
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which means that 

 ˆ ,GMGγ γ µ τ= + +  (A.6) 

where �̅� = 1
𝑁
∑ 𝜇𝑘𝑁
𝑘=1  and 𝜏̅ = 1

𝑁
∑ 𝜏𝑘𝑁
𝑘=1 . From (A.6) and 

using the general RCR assumptions, we get 
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 (A.7) 

Using the consistent estimators of 𝛹,𝜎𝜀𝑖𝑗 , and 𝜔𝑘𝑗  that 
defined in above, we get  

 ( ) ( ) ( )

( )

' '* * * *

1 1 1

^ 1' 1

, 1

1' 1 1 ' 1

1ˆ ˆ ˆ ˆ

1ˆ ˆˆ .
1

ˆ ˆ ˆ ˆ

N N N

i i i i
i i i

N

GMG i ii iij
i j

i j

i ii ij jj j j jj j

N

var X X
N N

X X X X

ε

γ γ γ γ

γ σ ω

ω ω ω ω

= = =

−−

≠

=

−− − −

−

= +
−

  
      
 
 
 
 
 
 
 

∑ ∑ ∑

∑  

c. Derive the variance-covariance matrix of 𝜸��𝑮𝑮: 
As above, we can rewrite the equation (3) as follows: 

 ˆ ,i i iγ γ µ λ= + +  (A.8) 

where 𝜆𝑘 = 𝛾�𝑘 − 𝛾𝑘 = (𝑋𝑘′𝑋𝑘)−1𝑋𝑘′𝑢𝑘. From (A.8), we can 
get 
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which means that 
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𝑘=1 . From (A.9) and 

using the general RCR assumptions, we get 
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(A.10) 

As in GMG estimator, by using the consistent 
estimators of 𝛹,𝜎𝜀𝑖𝑗 , and 𝜔𝑘𝑗, we get 
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A.2. Proof of Lemma 2: 
Following the same argument as in Parks (1967) and 

utilizing assumption 10, we can show that 
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and then, 
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Substituting (A.11) and (A.12) in (24), we get 
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By substitute (A.11)-(A.13) into (30), (31), and (27), 
we get 
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Similarly, we will use the results in (A.11)-(A.13) in 
case of RCR estimator: 
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From (A.14)-(A.17), we can conclude that: 
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