
American Journal of Applied Mathematics and Statistics, 2016, Vol. 4, No. 2, 43-45 
Available online at http://pubs.sciepub.com/ajams/4/2/3 
© Science and Education Publishing 
DOI:10.12691/ajams-4-2-3 

A Common Fixed Point Result in Ordered Complete 
Cone Metric Spaces 

K. Prudhvi* 

Department of Mathematics, University College of Science, Saifabad, Osmania University, Hyderabad, Telangana State, India 
*Corresponding author: prudhvikasani@rocketmail.com 

Abstract  In this paper, we prove a common fixed point theorem for ordered contractions in ordered cone metric 
spaces without using the continuity. Our result generalizes some recent results existing in the references. 

Keywords: fixed point, common fixed point, ordered cone metric space, normal cone, nonnormal cone 

Cite This Article: K. Prudhvi, “A Common Fixed Point Result in Ordered Complete Cone Metric Spaces.” 
American Journal of Applied Mathematics and Statistics, vol. 4, no. 2 (2016): 43-45. doi: 10.12691/ajams-4-2-3. 

1. Introduction 
In 2007, Huang and Zhang [5] introduced the concept 

of a cone metric space and proved some fixed point 
theorems in cone metric space. Later on, many authors 
have generalized and extended the fixed point theorems of 
Huang and Zhang [5]. Fixed point theorems in partially 
ordered set was studied by Ran and Reurings [9], Nieto 
and Lopez [8]. Subsequently, many authors (see, e. g., 
[1,2,6]) were investigated the fixed point results on 
ordered metric spaces. Altun and Durmaz [4], Altun , 
Damnjanovic and Djoric [3] obtained fixed point theorems 
in ordered cone metric spaces. Recently, Kadelburg, Pavlovic 
and Radenovic [7] proved some common fixed point 
theorems in ordered contractions and quasicontractions in 
ordered cone metric spaces. In this paper, we proved a 
common fixed point theorem in ordered cone metric 
spaces without using the continuity. Our result, 
generalizes the results of [7]. 

The following definitions are in [5]. 
Definition 1.1. [5] Let E be a real Banach space and P be 
a subset of E. The set P is called a cone if and only if: 

(a). P is closed, non–empty and P ≠ {0}; 
(b). a, b ∈ ℝ, a,b 0≥ , x,y ∈ P imply ax+by ∈ P; 
(c). x ∈ P and –x ∈ P implies x = 0.  

Definition 1.2.[5] Let P be a cone in a Banach space E, 
define partial ordering   with respect to P by x y  if 
and only if y-x∈P. We shall write x   y to indicate x y  
but x ≠ y while x <<  y will stand for y-x ∈ int P, where 
int P denotes the interior of the set P. This cone P is called 
an order cone. 
Definition 1.3.[5] Let E be a Banach space and P⊂E be an 
order cone. The order cone P is called normal if there 
exists L>0 such that for all x, y∈E, 

 0 .x y x y⇒ ≤   

The least positive number L satisfying the above 
inequality is called the normal constant of P. 

Most of ordered Banach spaces used in applications 
posses a cone with the normal constant K = 1.  
Definition 1.4. [5] Let X be a nonempty set of E. Suppose 
that the map d: X × X→ E satisfies: 

(d1). 0   d(x, y) for all x, y ∈ X and d(x, y) = 0 if and 
only if x = y; 

(d2). d(x, y) = d(y, x) for all x, y ∈ X; 
(d3). d(x, y)   d(x, z) + d(z, y) for all x, y, z ∈ X. 
Then d is called a cone metric on X and (X, d) is called 

a cone metric space.  
Remark 1.5. [7] (1) If u   v and v <<  w , then u <<  w. 

(2) If 0 u <<  c for each c ∈ int P, then u = 0. 
(3) If a   b + c for each c ∈ int P, then a   b. 
(4) If 0   x   y and 0 ≤ a , then 0   ax   ay . 

(5) If 0   xn   yn , for each n∈, and 

lim ,n nx x→∞ =  limn ny y→∞ = , then 0   x   y. 
(6) If 0   d(xn, yn)   bn and bn → 0, then, d(xn,x) << c 

where xn , x are respectively, a sequence and a given point 
in X. 

(7) If E is a real Banach space with a cone P and if a   
λa where a ∈ P and 0 < λ < 1, then a = 0. 

(8) If c ∈ int P, 0   an and an → 0, then there exists n0 

such that for all n > n0 we have an <<  c. 

2. Main Result  
In this section, we prove a common fixed point theorem 

in an ordered complete cone metric spaces. 
Theorem 2.1. Let (X, ⊑, d) be an ordered complete cone 
metric cone space. Let (f, g) be weakly increasing pair of 
self-maps on X w. r. t. ⊑. Suppose that the following 
conditions hold: 

(i) there exists p, q, r, s, t ≥ 0 satisfying p + q + r + s + t 
< 1 and q = r or s = t, such that  

 
( ) ( ) ( ) ( )

( ) ( )
d fx,  gy pd x, y qd x, fx +rd y,gy

 sd x,gy td y, fx

+

+ +


 (1) 
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for all comparable x, y∈X; 
(ii) if a nondecreasing sequence {xn} converges to x∈X, 

then xn ⊑ x for all n∈ . Then, f and g have a common 
fixed point in X. 
Proof. Let x0 ∈X be arbitrary and define a sequence {xn} 
by x2n+1 = fx2n and x2n+2 = gx2n+1 for all n∈N. Since, (f, g) is 
weakly increasing , it can be easily shown that the 
sequence {xn} is nondecreasing w. r. t. ⊑, that is, 
x0⊑x1⊑…⊑xn⊑xn+1⊑…. In particular, x2n and x2n+1 are 
comparable, by (1) we have 

 

( ) ( )
( ) ( )
( ) ( )
( )
( ) ( ) ( )
( ) ( )

2n 1 2n 2 2n 2n 1

2n 2n 1 2n 2n 1

2n 1 2n 2 2n 2n 2

2n 1 2n 1

2n 2n 1 2n 2n 1 2n 1 2n 2

2n 2n 1 2n 1 2n 2

d x ,x d fx ,gx

pd x ,x qd x ,x

rd x ,x sd x ,x

td x ,x

pd x ,x qd x ,x  rd x ,x

s[d x ,x d x ,x ].

+ + +

+ +

+ + +

+ +

+ + + +

+ + +

=

+

+ +

+

+ +

+ +





 

It follows that 

 ( ) ( ) ( ) ( )2n 1 2n 2 2n 2n 11 r s d x ,x p q s d x ,x .+ + +− − + +  

That is, 

 ( ) ( )2n+1 2n 2 2n 2n 1
p q sd x ,x d x ,x .
1 r s+ +
+ +
− −

  (2) 

Similarly, we obtain 

 ( ) ( )2n 2 2n 3 2n 2n 1
p q t p q sd x ,x d x ,x .
1 q t 1 r s+ + +
+ + + +
− − − −

  

From (1) and (2), by induction, we obtain that 

 

( ) ( )

( )

( )

( )

2n+1 2n 2 2n 2n 1

2n-1 2n

2n-2 2n-1

0 1

p q sd x ,x d x ,x
1 r s

p q p r s. d x ,x
1 r s 1 q t
p q p r s p r s. . d x ,x
1 r s 1 q t 1 q t

p q p r s p q... . . d x ,x ,
1 r s 1 q t 1 r s

n

s

s

s s

+ +
+ +
− −

+ + + +
− − − −
+ + + + + +
− − − − − −

 + + + + + +
 − − − − − − 







 

 

and 

 
( ) ( )

( )

2n 2 2n 3 2n+1 2n 2

1

0 1

p q td x ,x d x ,x
1 q t

p r s p q... . d x ,x .
1 q t 1 r s

ns

+ + +

+

+ +
− −

 + + + +
 − − − − 



 
 

Let p qM ,
1 r s

s+ +
=

− −
 p r sN .

1 q t
+ +

=
− −

 

In the case q = r, 

 p q p r sMN . 1 1 1.
1 r s 1 q t

s+ + + +
= < × =

− − − −
 

Now, for n < m we have 

 
( ) ( ) ( )

( ) ( )( ) ( )
2n 1 2m 1 2n+1 2n 2 2n 2m 1

1 1
0 11

d x ,x d x ,x ... d x ,x

M MN MN d x ,x ,m mi i
i n i n

+ + + +

−
= = +

+ +

+∑ ∑




 

 

( ) ( ) ( )

( ) ( ) ( )

1

0 1

0 1

M MN MN
d x ,x ,

1 MN 1 MN

M MN
1 N d x ,x .

1 MN

n n

n

− 
 +
 − − 

= +
−


 

Similarly, we obtain 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2n 2n 1 0 1

2n 2m 0 1

MN
d x ,x 1 M d x ,x ,

1 MN

MN
d x ,x 1 M d x ,x ,

1 MN

n

n

+ +
−

+
−





 

and ( ) ( ) ( ) ( )2n 1 2m 0 1
M MN

d x , x 1 N d x ,x .
1 MN

n

+ +
−

  

Hence, for n < m  

 
( )

( ) ( )

( ) ( )
( )

( )

n m 0 1

n 0 1

M MN
1 N ,

1 MNd x , x max d x ,x
MN

1 M
1 MN

b d x ,x ,

n

n

 
 +
 −
 
 

+ − 
=


 

where bn → 0, as n→∞. 
By using (8) and (1) of Remark 1.5 and only the 

assumption that the underlying cone is solid, we conclude 
that {xn} is a Cauchy sequence.  

Since (X, d) is complete, there exists u∈X such that xn 
→u (as n→∞). 

 
( ) ( )

( ) ( ) ( )
( ) ( )

2n 2 2n 1

2n 1 2n 1

2n 1 2n 1

d fu, x d fu,gx

pd u,u qd u, fu rd x ,gx

sd u,gx td x , fu .

+ +

+ +

+ +

=

+ +

+ +

  

Letting n→+ ∞ 

 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )

fu, u pd u,u qd u, fu rd u,gu

sd u,gu td u, fu

q t d u, fu r s d u,gu .

(1 q t)d fu,u r+s d u,gu .

r+sd fu,u d u,gu .
1 q t

+ +

+ +

+ + +

⇒ − −

 
⇒  − − 








 (3) 

Let c >>  0 be given. Choose a natural number N1 such 

that d(u, gu) <<  r+s
1 q t
 
 − − 

 c. Then from (3) we get that 

d(fu, u) <<  c. 
Since c is arbitrary, we get that 

 ( )d fu,u for each mc
m

<< ∈� 

Noting that c
m

 → 0 as m→∞, we conclude that 

( ) ( )d fu,u d fu,uc
m

→−  as m→∞. 

Hence, P is closed, then - d(fu, u) ∈ P. 
Thus d(fu, u) ∈ P ∩ (-P). Hence d(fu, u) = 0. 
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Therefore, fu = u.  
And  

 

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( )

2n 1 2n 2 2n 1 2n 2

2n 1 2n 1 2n 2 2n 2

2n 1 , 2n 1 2n 2 2n 1

2n 1 2n 2 2n 1 2n 1

2n 2 2n 2 2n 1 2n 1

2n 2 2n 1

d fx ,gx pd x ,x

qd x ,fx rd x ,gx

sd x gx td x ,fx

pd x ,x +qd x ,fx

rd x ,gx sd x ,gx

td x ,fx .

+ + + +

+ + + +

+ + + +

+ + + +

+ + + +

+ +

+ +

+ +

+ +

+




 

Letting n→+ ∞  

 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( )( ) ( )
( )( ) ( )

( )

d fu,gu pd u,u qd u, fu rd u,gu

sd u,gu td u, fu

d fu,gu pd u,u qd u,u rd fu,gu

sd fu,gu td u,u ,

d fu,gu r s d fu,gu ,

1 r s d fu,gu 0,

1 r+s d fu,gu 0,

d fu,gu 0.

+ +

+ +

⇒ + +

+ +

⇒ +

⇒ − +

⇒ −

⇒













 

That is, fu = gu. 
Now we show that fu = gu = u. By (1), we have 

 
( ) ( )

( ) ( ) ( )
( ) ( )

2n 1 2n

2n 2n 2n

2n 2n

d x ,gu d fx ,gu

pd x ,u qd x ,fx +rd u,gu

sd x ,gu td u,fx .

+ =

+

+ +

  

Letting n→+ ∞ 

 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )
( )
( )

,d u gu pd u,u qd u, fu rd u,gu

sd u,gu td u, u

pd u,u qd u,u rd u,gu

sd u,gu +td u, u

r s d u,gu

1 r s d u,gu 0

d u,gu 0

d u,gu 0. That is, u gu.

+ +

+ +

+ +

+

+

⇒ − −

⇒

⇒ = =










 

Therefore, fu = gu = u and u is a common fixed point of 
f and g. 

Now, we consider the case when condition (ii) is 
satisfied. For the sequence {xn} we have xn → u ∈X(as 

n→∞) and xn ⊑ u(n∈ ). By the construction, fxn → u 
and gxn → u(as n→∞). 

Let us prove that u is a common fixed point of f and g. 
Putting x = u and y = xn in (1)(since they are comparable) 
we get that 

 
( ) ( ) ( ) ( )

( ) ( )
n n n n

n n

d fu,gx pd u, x qd u, fu rd x ,gx

sd u,gx +td x ,fu .

+ +

+


 

For the first and fourth term of the right hand side we 
have d(xn,u) << c and d(u, gxn ) << c( for c∈int P arbitrary 
and n ≥ n0). For the second term d(u ,f u) ≼ d(u ,xn) + 
d(xn ,gxn) + d( gxn , fu)(again the first term n the right can 
be neglected) and for the fifth term d(xn ,f u) ≼ d( xn , gxn) 
+ d(gxn , fu). It follows that 

 ( ) ( ) ( )n n n1 q t d fu,gx (q r t)d x ,gx .− − + +  

But xn → u and gxn → u ⇒ d(xn, gxn) << c, which 
means that d(fu, gxn)<<c, that is, gxn →fu. It follows that, 
fu = u and in a symmetric way ( by using that u⊑u), gu =u. 
Remark 2.2. If we choose f and g are continuous 
mappings in the above Theorem 2.1, then we get the 
Theorem 2.1 of [7]. 
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