A Common Fixed Point Result in Ordered Complete Cone Metric Spaces

K. Prudhvi*
Department of Mathematics, University College of Science, Saifabad, Osmania University, Hyderabad, Telangana State, India
*Corresponding author: prudhvikasani@rocketmail.com

Abstract

In this paper, we prove a common fixed point theorem for ordered contractions in ordered cone metric spaces without using the continuity. Our result generalizes some recent results existing in the references.

Keywords: fixed point, common fixed point, ordered cone metric space, normal cone, nonnormal cone
Cite This Article: K. Prudhvi, "A Common Fixed Point Result in Ordered Complete Cone Metric Spaces." American Journal of Applied Mathematics and Statistics, vol. 4, no. 2 (2016): 43-45. doi: 10.12691/ajams-4-2-3.

1. Introduction

In 2007, Huang and Zhang [5] introduced the concept of a cone metric space and proved some fixed point theorems in cone metric space. Later on, many authors have generalized and extended the fixed point theorems of Huang and Zhang [5]. Fixed point theorems in partially ordered set was studied by Ran and Reurings [9], Nieto and Lopez [8]. Subsequently, many authors (see, e. g., $[1,2,6]$) were investigated the fixed point results on ordered metric spaces. Altun and Durmaz [4], Altun , Damnjanovic and Djoric [3] obtained fixed point theorems in ordered cone metric spaces. Recently, Kadelburg, Pavlovic and Radenovic [7] proved some common fixed point theorems in ordered contractions and quasicontractions in ordered cone metric spaces. In this paper, we proved a common fixed point theorem in ordered cone metric spaces without using the continuity. Our result, generalizes the results of [7].

The following definitions are in [5].
Definition 1.1. [5] Let E be a real Banach space and P be a subset of E . The set P is called a cone if and only if:
(a). P is closed, non-empty and $\mathrm{P} \neq\{0\}$;
(b). a, b $\in \mathbb{R}, a, b \geq 0, x, y \in P$ imply ax+by $\in P$;
(c). $x \in P$ and $-x \in P$ implies $x=0$.

Definition 1.2.[5] Let P be a cone in a Banach space E, define partial ordering \preceq with respect to P by $x \preceq y$ if and only if y -x $\in \mathrm{P}$. We shall write $\mathrm{x} \prec \mathrm{y}$ to indicate $x \preceq y$ but $\mathrm{x} \neq \mathrm{y}$ while $\mathrm{x} \ll \mathrm{y}$ will stand for y - $\mathrm{x} \in$ int P , where int P denotes the interior of the set P . This cone P is called an order cone.
Definition 1.3.[5] Let E be a Banach space and P $\subset E$ be an order cone. The order cone P is called normal if there exists $L>0$ such that for all $x, y \in E$,

$$
0 \preceq x \preceq y \Rightarrow\|x\| \leq\|y\| .
$$

The least positive number L satisfying the above inequality is called the normal constant of P .

Most of ordered Banach spaces used in applications posses a cone with the normal constant $\mathrm{K}=1$.
Definition 1.4. [5] Let X be a nonempty set of E. Suppose that the map $\mathrm{d}: \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{E}$ satisfies:
(d1). $0 \preceq d(x, y)$ for all $x, y \in X$ and $d(x, y)=0$ if and only if $\mathrm{x}=\mathrm{y}$;
(d2). $\mathrm{d}(\mathrm{x}, \mathrm{y})=\mathrm{d}(\mathrm{y}, \mathrm{x})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$;
(d3). $d(x, y) \preceq d(x, z)+d(z, y)$ for all $x, y, z \in X$.
Then d is called a cone metric on X and (X, d) is called a cone metric space.
Remark 1.5. [7] (1) If $u \preceq v$ and $v \ll w$, then $u \ll w$.
(2) If $0 \preceq u \ll c$ for each $c \in \operatorname{int} P$, then $u=0$.
(3) If $\mathrm{a} \preceq \mathrm{b}+\mathrm{c}$ for each $\mathrm{c} \in \operatorname{int} \mathrm{P}$, then $\mathrm{a} \preceq \mathrm{b}$.
(4) If $0 \preceq x \preceq y$ and $0 \leq \mathrm{a}$, then $0 \preceq \mathrm{ax} \preceq$ ay .
(5) If $0 \preceq x_{n} \preceq y_{n}$, for each $n \in \mathbb{N}$, and $\lim _{n \rightarrow \infty} x_{n}=x, \lim _{n \rightarrow \infty} y_{n}=y$, then $0 \preceq \mathrm{x} \preceq \mathrm{y}$.
(6) If $0 \preceq d\left(x_{n}, y_{n}\right) \preceq \mathrm{b}_{\mathrm{n}}$ and $\mathrm{b}_{\mathrm{n}} \rightarrow 0$, then, $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}\right) \ll \mathrm{c}$ where $\mathrm{x}_{\mathrm{n}}, \mathrm{x}$ are respectively, a sequence and a given point in X .
(7) If E is a real Banach space with a cone P and if $\mathrm{a} \preceq$ λ a where $\mathrm{a} \in \mathrm{P}$ and $0<\lambda<1$, then $\mathrm{a}=0$.
(8) If $c \in$ int $P, 0 \preceq a_{n}$ and $a_{n} \rightarrow 0$, then there exists n_{0} such that for all $n>n_{0}$ we have $a_{n} \ll c$.

2. Main Result

In this section, we prove a common fixed point theorem in an ordered complete cone metric spaces.
Theorem 2.1. Let ($\mathrm{X}, \sqsubseteq, \mathrm{d}$) be an ordered complete cone metric cone space. Let (f, g) be weakly increasing pair of self-maps on X w. r. t. ㄷ. Suppose that the following conditions hold:
(i) there exists $\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}, \mathrm{t} \geq 0$ satisfying $\mathrm{p}+\mathrm{q}+\mathrm{r}+\mathrm{s}+\mathrm{t}$ <1 and $\mathrm{q}=\mathrm{r}$ or $\mathrm{s}=\mathrm{t}$, such that

$$
\begin{align*}
\mathrm{d}(\mathrm{fx}, \mathrm{gy}) \preceq & \mathrm{pd}(\mathrm{x}, \mathrm{y})+\mathrm{qd}(\mathrm{x}, \mathrm{fx})+\mathrm{rd}(\mathrm{y}, \mathrm{gy}) \tag{1}\\
& +\operatorname{sd}(\mathrm{x}, \mathrm{gy})+\mathrm{td}(\mathrm{y}, \mathrm{fx})
\end{align*}
$$

for all comparable $\mathrm{x}, \mathrm{y} \in \mathrm{X}$;
(ii) if a nondecreasing sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ converges to $\mathrm{x} \in \mathrm{X}$, then $\mathrm{x}_{\mathrm{n}} \sqsubseteq \mathrm{x}$ for all $\mathrm{n} \in \mathbb{N}$. Then, f and g have a common fixed point in X .
Proof. Let $x_{0} \in X$ be arbitrary and define a sequence $\left\{x_{n}\right\}$ by $x_{2 n+1}=f x_{2 n}$ and $x_{2 n+2}=g x_{2 n+1}$ for all $n \in N$. Since, (f, g) is weakly increasing, it can be easily shown that the sequence $\left\{x_{n}\right\}$ is nondecreasing w. r. t. ㄷ, that is, $\mathrm{x}_{0} \sqsubseteq \mathrm{x}_{1} \sqsubseteq \ldots \mathrm{x}_{\mathrm{n}} \sqsubseteq \mathrm{x}_{\mathrm{n}+1} \sqsubseteq \ldots$. In particular, $\mathrm{x}_{2 \mathrm{n}}$ and $\mathrm{x}_{2 \mathrm{n}+1}$ are comparable, by (1) we have

$$
\begin{aligned}
& \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}+2}\right)=\mathrm{d}\left(\mathrm{fx}_{2 \mathrm{n}}, \mathrm{gx}_{2 n+1}\right) \\
& \preceq \operatorname{pd}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}\right)+\mathrm{qd}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}\right) \\
& +\operatorname{rd}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}+2}\right)+\operatorname{sd}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+2}\right) \\
& +\operatorname{td}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}+1}\right) \\
& \preceq \operatorname{pd}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}\right)+\mathrm{qd}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}\right)+\operatorname{rd}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}+2}\right) \\
& +\mathrm{s}\left[\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}\right)+\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}+2}\right)\right] .
\end{aligned}
$$

It follows that
$(1-r-s) d\left(x_{2 n+1}, x_{2 n+2}\right) \preceq(p+q+s) d\left(x_{2 n}, x_{2 n+1}\right)$.
That is,

$$
\begin{equation*}
\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}+2}\right) \preceq \frac{\mathrm{p}+\mathrm{q}+\mathrm{s}}{1-\mathrm{r}-\mathrm{s}} \mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}\right) \tag{2}
\end{equation*}
$$

Similarly, we obtain

$$
\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}+2}, \mathrm{x}_{2 \mathrm{n}+3}\right) \preceq \frac{\mathrm{p}+\mathrm{q}+\mathrm{t}}{1-\mathrm{q}-\mathrm{t}} \frac{\mathrm{p}+\mathrm{q}+\mathrm{s}}{1-\mathrm{r}-\mathrm{s}} \mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}\right)
$$

From (1) and (2), by induction, we obtain that

$$
\begin{aligned}
& \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}+2}\right) \preceq \frac{\mathrm{p}+\mathrm{q}+\mathrm{s}}{1-\mathrm{r}-\mathrm{s}} \mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}\right) \\
& \preceq \frac{\mathrm{p}+\mathrm{q}+\mathrm{s}}{1-\mathrm{r}-\mathrm{s}} \cdot \frac{\mathrm{p}+\mathrm{r}+\mathrm{s}}{1-\mathrm{q}-\mathrm{t}} \mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right) \\
& \preceq \frac{\mathrm{p}+\mathrm{q}+\mathrm{s}}{1-\mathrm{r}-\mathrm{s}} \cdot \frac{\mathrm{p}+\mathrm{r}+\mathrm{s}}{1-\mathrm{q}-\mathrm{t}} \cdot \frac{\mathrm{p}+\mathrm{r}+\mathrm{s}}{1-\mathrm{q}-\mathrm{t}} \mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}-2}, \mathrm{x}_{2 \mathrm{n}-1}\right) \\
& \preceq \ldots \preceq \frac{\mathrm{p}+\mathrm{q}+\mathrm{s}}{1-\mathrm{r}-\mathrm{s}} \cdot\left(\frac{\mathrm{p}+\mathrm{r}+\mathrm{s}}{1-\mathrm{q}-\mathrm{t}} \cdot \frac{\mathrm{p}+\mathrm{q}+\mathrm{s}}{1-\mathrm{r}-\mathrm{s}}\right)^{n} \mathrm{~d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}+2}, \mathrm{x}_{2 \mathrm{n}+3}\right) \preceq \frac{\mathrm{p}+\mathrm{q}+\mathrm{t}}{1-\mathrm{q}-\mathrm{t}} \mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}+2}\right) \\
& \preceq \ldots \preceq\left(\frac{\mathrm{p}+\mathrm{r}+\mathrm{s}}{1-\mathrm{q}-\mathrm{t}} \cdot \frac{\mathrm{p}+\mathrm{q}+\mathrm{s}}{1-\mathrm{r}-\mathrm{s}}\right)^{n+1} \mathrm{~d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right) .
\end{aligned}
$$

Let $\mathrm{M}=\frac{\mathrm{p}+\mathrm{q}+\mathrm{s}}{1-\mathrm{r}-\mathrm{s}}, \quad \mathrm{N}=\frac{\mathrm{p}+\mathrm{r}+\mathrm{s}}{1-\mathrm{q}-\mathrm{t}}$.
In the case $\mathrm{q}=\mathrm{r}$,

$$
\mathrm{MN}=\frac{\mathrm{p}+\mathrm{q}+\mathrm{s}}{1-\mathrm{r}-\mathrm{s}} \cdot \frac{\mathrm{p}+\mathrm{r}+\mathrm{s}}{1-\mathrm{q}-\mathrm{t}}<1 \times 1=1
$$

Now, for n < m we have

$$
\begin{aligned}
& \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{~m}+1}\right) \preceq \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}+2}\right)+\ldots+\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{~m}+1}\right) \\
& \preceq\left(\mathrm{M} \sum_{i=n}^{m-1}(\mathrm{MN})^{i}+\sum_{i=n+1}^{m 1}(\mathrm{MN})^{i}\right) \mathrm{d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \preceq\left(\frac{\mathrm{M}(\mathrm{MN})^{n}}{1-\mathrm{MN}}+\frac{(\mathrm{MN})^{n-1}}{1-\mathrm{MN}}\right) \mathrm{d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right), \\
& =(1+\mathrm{N}) \frac{\mathrm{M}(\mathrm{MN})^{n}}{1-\mathrm{MN}} \mathrm{~d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right) .
\end{aligned}
$$

Similarly, we obtain

$$
\begin{aligned}
& \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}\right) \preceq(1+\mathrm{M}) \frac{(\mathrm{MN})^{n}}{1-\mathrm{MN}} \mathrm{~d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right), \\
& \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{~m}}\right) \preceq(1+\mathrm{M}) \frac{(\mathrm{MN})^{n}}{1-\mathrm{MN}} \mathrm{~d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right),
\end{aligned}
$$

and $\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{~m}}\right) \preceq(1+\mathrm{N}) \frac{\mathrm{M}(\mathrm{MN})^{n}}{1-\mathrm{MN}} \mathrm{d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right)$.
Hence, for $\mathrm{n}<\mathrm{m}$

$$
\begin{aligned}
& \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{m}}\right) \preceq \max \left\{\begin{array}{l}
(1+\mathrm{N}) \frac{\mathrm{M}(\mathrm{MN})^{n}}{1-\mathrm{MN}}, \\
(1+\mathrm{M}) \frac{(\mathrm{MN})^{n}}{1-\mathrm{MN}}
\end{array}\right\} \mathrm{d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right) \\
& =\mathrm{b}_{\mathrm{n}} \mathrm{~d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right),
\end{aligned}
$$

where $\mathrm{b}_{\mathrm{n}} \rightarrow 0$, as $\mathrm{n} \rightarrow \infty$.
By using (8) and (1) of Remark 1.5 and only the assumption that the underlying cone is solid, we conclude that $\left\{x_{n}\right\}$ is a Cauchy sequence.

Since (X, d) is complete, there exists $u \in X$ such that x_{n} $\rightarrow \mathrm{u}$ (as $\mathrm{n} \rightarrow \infty$).

$$
\begin{aligned}
& \mathrm{d}\left(\mathrm{fu}, \mathrm{x}_{2 \mathrm{n}+2}\right)=\mathrm{d}\left(\mathrm{fu}, \mathrm{gx}_{2 \mathrm{n}+1}\right) \\
& \preceq \operatorname{pd}(\mathrm{u}, \mathrm{u})+\mathrm{qd}(\mathrm{u}, \mathrm{fu})+\operatorname{rd}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{gx}_{2 \mathrm{n}+1}\right) \\
& +\mathrm{sd}\left(\mathrm{u}, \mathrm{gx}_{2 \mathrm{n}+1}\right)+\operatorname{td}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{fu}\right) .
\end{aligned}
$$

Letting $n \rightarrow+\infty$

$$
\begin{align*}
(f u, u) \preceq & \text { pd }(u, u)+q d(u, f u)+r d(u, g u) \\
& +s d(u, g u)+\operatorname{td}(u, f u) \\
& \preceq(q+t) d(u, f u)+(r+s) d(u, g u) . \tag{3}\\
\Rightarrow & (1-q-t) d(f u, u) \preceq(r+s) d(u, g u) . \\
\Rightarrow & d(f u, u) \preceq\left(\frac{r+s}{1-q-t}\right) d(u, g u) .
\end{align*}
$$

Let c >> 0 be given. Choose a natural number N_{1} such that $d(u, g u) \ll\left(\frac{r+s}{1-q-t}\right)$ c. Then from (3) we get that $\mathrm{d}(\mathrm{fu}, \mathrm{u}) \ll \mathrm{c}$.

Since c is arbitrary, we get that

$$
\mathrm{d}(\mathrm{fu}, \mathrm{u}) \ll \frac{c}{m} \text { for each } \mathrm{m} \in \mathbb{N}
$$

Noting that $\frac{c}{m} \rightarrow 0$ as $\mathrm{m} \rightarrow \infty$, we conclude that $\frac{C}{m}-\mathrm{d}(\mathrm{fu}, \mathrm{u}) \rightarrow \mathrm{d}(\mathrm{fu}, \mathrm{u})$ as $\mathrm{m} \rightarrow \infty$.

Hence, P is closed, then $-\mathrm{d}(\mathrm{fu}, \mathrm{u}) \in \mathrm{P}$.
Thus $d(f u, u) \in P \cap(-P)$. Hence $d(f u, u)=0$.

Therefore, $\mathrm{fu}=\mathrm{u}$.
And

$$
\begin{aligned}
& \mathrm{d}\left(\mathrm{fx}_{2 \mathrm{n}+1}, \mathrm{gx}_{2 \mathrm{n}+2}\right) \preceq \operatorname{pd}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}+2}\right) \\
& +\mathrm{qd}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{fx}_{2 \mathrm{n}+1}\right)+\operatorname{rd}\left(\mathrm{x}_{2 \mathrm{n}+2}, \mathrm{gx}_{2 \mathrm{n}+2}\right) \\
& +\operatorname{sd}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{gx}_{2 \mathrm{n}+1}\right)+\operatorname{td}\left(\mathrm{x}_{2 \mathrm{n}+2}, \mathrm{fx}_{2 \mathrm{n}+1}\right) \\
& \preceq \operatorname{pd}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}+2}\right)+\mathrm{qd}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{fx}_{2 \mathrm{n}+1}\right) \\
& +\mathrm{rd}\left(\mathrm{x}_{2 \mathrm{n}+2}, \mathrm{gx}_{2 \mathrm{n}+2}\right)+\operatorname{sd}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{gx}_{2 \mathrm{n}+1}\right) \\
& +\operatorname{td}\left(\mathrm{x}_{2 \mathrm{n}+2}, \mathrm{fx}_{2 \mathrm{n}+1}\right) .
\end{aligned}
$$

Letting $\mathrm{n} \rightarrow+\infty$

$$
\begin{aligned}
\mathrm{d}(\mathrm{fu}, \mathrm{gu}) & \preceq \mathrm{pd}(\mathrm{u}, \mathrm{u})+\mathrm{qd}(\mathrm{u}, \mathrm{fu})+\mathrm{rd}(\mathrm{u}, \mathrm{gu}) \\
& +\mathrm{sd}(\mathrm{u}, \mathrm{gu})+\mathrm{td}(\mathrm{u}, \mathrm{fu}) \\
\Rightarrow \mathrm{d}(\mathrm{fu}, \mathrm{gu}) & \preceq \mathrm{pd}(\mathrm{u}, \mathrm{u})+\mathrm{qd}(\mathrm{u}, \mathrm{u})+\mathrm{rd}(\mathrm{fu}, \mathrm{gu}) \\
& +\mathrm{sd}(\mathrm{fu}, \mathrm{gu})+\mathrm{td}(\mathrm{u}, \mathrm{u}), \\
\Rightarrow \mathrm{d}(\mathrm{fu}, \mathrm{gu}) & \preceq(\mathrm{r}+\mathrm{s}) \mathrm{d}(\mathrm{fu}, \mathrm{gu}), \\
\Rightarrow & (1-(\mathrm{r}+\mathrm{s})) \mathrm{d}(\mathrm{fu}, \mathrm{gu}) \preceq 0, \\
\Rightarrow & (1-(\mathrm{r}+\mathrm{s})) \mathrm{d}(\mathrm{fu}, \mathrm{gu}) \preceq 0, \\
\Rightarrow & \mathrm{~d}(\mathrm{fu}, \mathrm{gu}) \preceq 0 .
\end{aligned}
$$

That is, $\mathrm{fu}=\mathrm{gu}$.
Now we show that $f u=g u=u$. By (1), we have

$$
\begin{aligned}
& \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{gu}\right)=\mathrm{d}\left(\mathrm{fx}_{2 \mathrm{n}}, \mathrm{gu}\right) \\
& \preceq \operatorname{pd}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{u}\right)+\mathrm{qd}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{fx}_{2 \mathrm{n}}\right)+\mathrm{rd}(\mathrm{u}, \mathrm{gu}) \\
& +\operatorname{sd}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{gu}\right)+\operatorname{td}\left(\mathrm{u}, \mathrm{fx}_{2 \mathrm{n}}\right) .
\end{aligned}
$$

Letting $n \rightarrow+\infty$

$$
\begin{aligned}
& \mathrm{d}(\mathrm{u}, \mathrm{gu}) \preceq \mathrm{pd}(\mathrm{u}, \mathrm{u})+\mathrm{qd}(\mathrm{u}, \mathrm{fu})+\mathrm{rd}(\mathrm{u}, \mathrm{gu}) \\
&+\mathrm{sd}(\mathrm{u}, \mathrm{gu})+\mathrm{td}(\mathrm{u}, \mathrm{u}) \\
& \preceq \mathrm{pd}(\mathrm{u}, \mathrm{u})+\mathrm{qd}(\mathrm{u}, \mathrm{u})+\mathrm{rd}(\mathrm{u}, \mathrm{gu}) \\
&+\mathrm{sd}(\mathrm{u}, \mathrm{gu})+\mathrm{td}(\mathrm{u}, \mathrm{u}) \\
& \preceq(\mathrm{r}+\mathrm{s}) \mathrm{d}(\mathrm{u}, \mathrm{gu}) \\
& \Rightarrow(1-\mathrm{r}-\mathrm{s}) \mathrm{d}(\mathrm{u}, \mathrm{gu}) \preceq 0 \\
& \Rightarrow \mathrm{~d}(\mathrm{u}, \mathrm{gu}) \preceq 0 \\
& \Rightarrow \mathrm{~d}(\mathrm{u}, \mathrm{gu})=0 . \text { That is, } \mathrm{u}=\mathrm{gu} .
\end{aligned}
$$

Therefore, $\mathrm{fu}=\mathrm{gu}=\mathrm{u}$ and u is a common fixed point of f and g .

Now, we consider the case when condition (ii) is satisfied. For the sequence $\left\{x_{n}\right\}$ we have $x_{n} \rightarrow u \in X$ (as
$\mathrm{n} \rightarrow \infty)$ and $\mathrm{x}_{\mathrm{n}} \sqsubseteq \mathrm{u}(\mathrm{n} \in \mathbb{N})$. By the construction, $\mathrm{fx}_{\mathrm{n}} \rightarrow \mathrm{u}$ and $\mathrm{gx}_{\mathrm{n}} \rightarrow \mathrm{u}($ as $\mathrm{n} \rightarrow \infty)$.
Let us prove that u is a common fixed point of f and g. Putting $x=u$ and $y=x_{n}$ in (1)(since they are comparable) we get that

$$
\begin{aligned}
\mathrm{d}\left(\mathrm{fu}, \mathrm{gx}_{\mathrm{n}}\right) \preceq & \text { pd }\left(\mathrm{u}, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{qd}(\mathrm{u}, \mathrm{fu})+\mathrm{rd}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{gx}_{\mathrm{n}}\right) \\
& +\operatorname{sd}\left(\mathrm{u}, \mathrm{gx} \mathrm{x}_{\mathrm{n}}\right)+\mathrm{td}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{fu}\right) .
\end{aligned}
$$

For the first and fourth term of the right hand side we have $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{u}\right) \ll \mathrm{c}$ and $\mathrm{d}\left(\mathrm{u}, \mathrm{gx} \mathrm{n}_{\mathrm{n}}\right) \ll \mathrm{c}$ (for $\mathrm{c} \in$ int P arbitrary and $\left.\mathrm{n} \geq \mathrm{n}_{0}\right)$. For the second term $\mathrm{d}(\mathrm{u}, \mathrm{f} \mathrm{u}) \leqslant \mathrm{d}\left(\mathrm{u}, \mathrm{x}_{\mathrm{n}}\right)+$ $d\left(x_{n}, g x_{n}\right)+d\left(g x_{n}, f u\right)($ again the first term n the right can be neglected) and for the fifth term $d\left(x_{n}, f u\right) \preccurlyeq d\left(x_{n}, g x_{n}\right)$ $+\mathrm{d}\left(\mathrm{gx}_{\mathrm{n}}, \mathrm{fu}\right)$. It follows that

$$
(1-q-t) d\left(f u, g x_{n}\right) \preceq(q+r+t) d\left(x_{n}, g x_{n}\right) .
$$

But $\mathrm{x}_{\mathrm{n}} \rightarrow \mathrm{u}$ and $\mathrm{gx}_{\mathrm{n}} \rightarrow \mathrm{u} \Rightarrow \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{gx}_{\mathrm{n}}\right) \ll \mathrm{c}$, which means that $\mathrm{d}\left(\mathrm{fu}, \mathrm{gx}_{\mathrm{n}}\right) \ll \mathrm{c}$, that is, $\mathrm{gX}_{\mathrm{n}} \rightarrow \mathrm{fu}$. It follows that, $\mathrm{fu}=\mathrm{u}$ and in a symmetric way (by using that u 드), $\mathrm{gu}=\mathrm{u}$. Remark 2.2. If we choose f and g are continuous mappings in the above Theorem 2.1, then we get the Theorem 2.1 of [7].

References

[1] M. Abbas and G. Jungck, Common fixed point results for non commuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl. 341(2008) 416-420.
[2] M. Abbas , B.E. Rhoades, Fixed and periodic point results in cone metric spaces, Appl. Math. Lett. 21(2008)511-515.
[3] I. Altun, B. Damnjanovic, D. Djoric, Fixed point and common fixed point theorems on ordered cone metric spaces, Appl. Math. Lett. (2009).
[4] I. Altun, B. Durmaz, Some fixed point theorems on ordered cone matric spaces, Rend. Circ. Mat. Palermo 58(2009) 319-325.
[5] L.G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332(2)(2007) 1468-1476.
[6] D. IIic, V. Rakocevic, Quasi-contraction on a cone metric space, Appl. Math. Lett.22(2009)728-731.
[7] Z. Kadelburg , M. Pavlovic and S. Radenovic, Common fixed point theorems for ordered contractions and quasicontractions in ordered cone metric spaces, Comp. and Math. with Appl. 59(2010) 3148-3159.
[8] J.J. Nietro, R.R. Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22(2005)223-239.
[9] A.C.M. Ran, M.C.B. Reurings, A fixed point theorem in partially ordered sets and some application to matrix equations, Proc. Amer. Math. Soc. 132

