

A Common Fixed Point Result in Ordered Complete Cone Metric Spaces

K. Prudhvi^{*}

Department of Mathematics, University College of Science, Saifabad, Osmania University, Hyderabad, Telangana State, India *Corresponding author: prudhvikasani@rocketmail.com

Abstract In this paper, we prove a common fixed point theorem for ordered contractions in ordered cone metric spaces without using the continuity. Our result generalizes some recent results existing in the references.

Keywords: fixed point, common fixed point, ordered cone metric space, normal cone, nonnormal cone

Cite This Article: K. Prudhvi, "A Common Fixed Point Result in Ordered Complete Cone Metric Spaces." *American Journal of Applied Mathematics and Statistics*, vol. 4, no. 2 (2016): 43-45. doi: 10.12691/ajams-4-2-3.

1. Introduction

In 2007, Huang and Zhang [5] introduced the concept of a cone metric space and proved some fixed point theorems in cone metric space. Later on, many authors have generalized and extended the fixed point theorems of Huang and Zhang [5]. Fixed point theorems in partially ordered set was studied by Ran and Reurings [9], Nieto and Lopez [8]. Subsequently, many authors (see, e. g., [1,2,6]) were investigated the fixed point results on ordered metric spaces. Altun and Durmaz [4], Altun, Damnjanovic and Djoric [3] obtained fixed point theorems in ordered cone metric spaces. Recently, Kadelburg, Pavlovic and Radenovic [7] proved some common fixed point theorems in ordered contractions and quasicontractions in ordered cone metric spaces. In this paper, we proved a common fixed point theorem in ordered cone metric spaces without using the continuity. Our result, generalizes the results of [7].

The following definitions are in [5].

Definition 1.1. [5] Let E be a real Banach space and P be a subset of E. The set P is called a cone if and only if:

(a). P is closed, non–empty and $P \neq \{0\}$;

(b). a, b $\in \mathbb{R}$, a,b ≥ 0 , x,y $\in P$ imply ax+by $\in P$;

(c). $x \in P$ and $-x \in P$ implies x = 0.

Definition 1.2.[5] Let P be a cone in a Banach space E, define partial ordering \leq with respect to P by $x \leq y$ if and only if y-x \in P. We shall write x \prec y to indicate $x \leq y$ but x \neq y while x \ll y will stand for y-x \in int P, where int P denotes the interior of the set P. This cone P is called an order cone.

Definition 1.3.[5] Let E be a Banach space and $P \subset E$ be an order cone. The order cone P is called normal if there exists L>0 such that for all x, $y \in E$,

$$0 \preceq x \preceq y \Longrightarrow \|x\| \le \|y\|.$$

The least positive number L satisfying the above inequality is called the normal constant of P.

Most of ordered Banach spaces used in applications posses a cone with the normal constant K = 1. **Definition 1.4.** [5] Let X be a nonempty set of E. Suppose that the map d: $X \times X \rightarrow E$ satisfies:

(d1). $0 \leq d(x, y)$ for all $x, y \in X$ and d(x, y) = 0 if and only if x = y;

(d2). d(x, y) = d(y, x) for all $x, y \in X$;

(d3). $d(x, y) \leq d(x, z) + d(z, y)$ for all $x, y, z \in X$.

Then d is called a cone metric on X and (X, d) is called a cone metric space.

Remark 1.5. [7] (1) If $u \leq v$ and $v \ll w$, then $u \ll w$.

(2) If $0 \leq u \ll c$ for each $c \in int P$, then u = 0.

(3) If $a \leq b + c$ for each $c \in int P$, then $a \leq b$.

(4) If $0 \leq x \leq y$ and $0 \leq a$, then $0 \leq ax \leq ay$.

(5) If $0 \leq x_n \leq y_n$, for each $n \in \mathbb{N}$, and

 $\lim_{n\to\infty} x_n = x$, $\lim_{n\to\infty} y_n = y$, then $0 \le x \le y$.

(6) If $0 \leq d(x_n, y_n) \leq b_n$ and $b_n \rightarrow 0$, then, $d(x_n, x) \ll c$ where x_n , x are respectively, a sequence and a given point in X.

(7) If E is a real Banach space with a cone P and if $a \leq \lambda a$ where $a \in P$ and $0 < \lambda < 1$, then a = 0.

(8) If $c \in int P$, $0 \leq a_n$ and $a_n \rightarrow 0$, then there exists n_0 such that for all $n > n_0$ we have $a_n \ll c$.

2. Main Result

In this section, we prove a common fixed point theorem in an ordered complete cone metric spaces.

Theorem 2.1. Let (X, \sqsubseteq, d) be an ordered complete cone metric cone space. Let (f, g) be weakly increasing pair of self-maps on X w. r. t. \sqsubseteq . Suppose that the following conditions hold:

(i) there exists p, q, r, s, $t \ge 0$ satisfying p + q + r + s + t < 1 and q = r or s = t, such that

$$d(fx, gy) \leq pd(x, y) + qd(x, fx) + rd(y, gy) + sd(x, gy) + td(y, fx)$$
(1)

for all comparable x, $y \in X$;

(ii) if a nondecreasing sequence $\{x_n\}$ converges to $x \in X$, then $x_n \sqsubseteq x$ for all $n \in \mathbb{N}$. Then, f and g have a common fixed point in X.

Proof. Let $x_0 \in X$ be arbitrary and define a sequence $\{x_n\}$ by $x_{2n+1} = fx_{2n}$ and $x_{2n+2} = gx_{2n+1}$ for all $n \in N$. Since, (f, g) is weakly increasing , it can be easily shown that the sequence $\{x_n\}$ is nondecreasing w. r. t. \sqsubseteq , that is, $x_0 \sqsubseteq x_1 \sqsubseteq \ldots \sqsubseteq x_n \sqsubseteq x_{n+1} \sqsubseteq \ldots$ In particular, x_{2n} and x_{2n+1} are comparable, by (1) we have

$$\begin{aligned} d(x_{2n+1}, x_{2n+2}) &= d(fx_{2n}, gx_{2n+1}) \\ &\preceq pd(x_{2n}, x_{2n+1}) + qd(x_{2n}, x_{2n+1}) \\ &+ rd(x_{2n+1}, x_{2n+2}) + sd(x_{2n}, x_{2n+2}) \\ &+ td(x_{2n+1}, x_{2n+1}) \\ &\preceq pd(x_{2n}, x_{2n+1}) + qd(x_{2n}, x_{2n+1}) + rd(x_{2n+1}, x_{2n+2}) \\ &+ s[d(x_{2n}, x_{2n+1}) + d(x_{2n+1}, x_{2n+2})]. \end{aligned}$$

It follows that

$$(1-r-s)d(x_{2n+1},x_{2n+2}) \leq (p+q+s)d(x_{2n},x_{2n+1}).$$

That is,

$$d(x_{2n+1}, x_{2n+2}) \leq \frac{p+q+s}{1-r-s} d(x_{2n}, x_{2n+1}).$$
 (2)

Similarly, we obtain

$$d(x_{2n+2},x_{2n+3}) \leq \frac{p+q+t}{1-q-t} \frac{p+q+s}{1-r-s} d(x_{2n},x_{2n+1})$$

From (1) and (2), by induction, we obtain that

$$\begin{aligned} d(x_{2n+1}, x_{2n+2}) &\preceq \frac{p+q+s}{1-r-s} d(x_{2n}, x_{2n+1}) \\ &\preceq \frac{p+q+s}{1-r-s} \cdot \frac{p+r+s}{1-q-t} d(x_{2n-1}, x_{2n}) \\ &\preceq \frac{p+q+s}{1-r-s} \cdot \frac{p+r+s}{1-q-t} \cdot \frac{p+r+s}{1-q-t} d(x_{2n-2}, x_{2n-1}) \\ &\preceq \dots \leq \frac{p+q+s}{1-r-s} \cdot \left(\frac{p+r+s}{1-q-t} \cdot \frac{p+q+s}{1-r-s}\right)^n d(x_0, x_1), \end{aligned}$$

and

$$d(x_{2n+2}, x_{2n+3}) \leq \frac{p+q+t}{1-q-t} d(x_{2n+1}, x_{2n+2})$$

$$\leq \dots \leq \left(\frac{p+r+s}{1-q-t}, \frac{p+q+s}{1-r-s}\right)^{n+1} d(x_0, x_1).$$

Let $M = \frac{p+q+s}{1-r-s}$, $N = \frac{p+r+s}{1-q-t}$. In the case q = r,

$$MN = \frac{p+q+s}{1-r-s} \cdot \frac{p+r+s}{1-q-t} < 1 \times 1 = 1$$

Now, for n < m we have

$$d(\mathbf{x}_{2n+1}, \mathbf{x}_{2m+1}) \leq d(\mathbf{x}_{2n+1}, \mathbf{x}_{2n+2}) + \dots + d(\mathbf{x}_{2n}, \mathbf{x}_{2m+1})$$

$$\leq \left(\mathbf{M} \sum_{i=n}^{m-1} (\mathbf{M} \mathbf{N})^{i} + \sum_{i=n+1}^{m1} (\mathbf{M} \mathbf{N})^{i} \right) d(\mathbf{x}_{0}, \mathbf{x}_{1}),$$

$$\leq \left(\frac{\mathbf{M}(\mathbf{MN})^n}{1-\mathbf{MN}} + \frac{(\mathbf{MN})^{n-1}}{1-\mathbf{MN}}\right) \mathbf{d}(\mathbf{x}_0, \mathbf{x}_1),$$
$$= (1+\mathbf{N})\frac{\mathbf{M}(\mathbf{MN})^n}{1-\mathbf{MN}} \mathbf{d}(\mathbf{x}_0, \mathbf{x}_1).$$

Similarly, we obtain

$$d(x_{2n}, x_{2n+1}) \leq (1+M) \frac{(MN)^n}{1-MN} d(x_0, x_1),$$

$$d(x_{2n}, x_{2m}) \leq (1+M) \frac{(MN)^n}{1-MN} d(x_0, x_1),$$

and
$$d(x_{2n+1}, x_{2m}) \leq (1+N) \frac{M(MN)^n}{1-MN} d(x_0, x_1)$$

Hence, for n < m

$$\begin{split} & d(x_n, x_m) \preceq \max \begin{cases} (1+N) \frac{M(MN)^n}{1-MN}, \\ & \\ (1+M) \frac{(MN)^n}{1-MN} \end{cases} \\ d(x_0, x_1) \end{cases} \\ & = b_n d(x_0, x_1), \end{split}$$

where $b_n \rightarrow 0$, as $n \rightarrow \infty$.

By using (8) and (1) of Remark 1.5 and only the assumption that the underlying cone is solid, we conclude that $\{x_n\}$ is a Cauchy sequence.

Since (X, d) is complete, there exists $u \in X$ such that $x_n \rightarrow u$ (as $n \rightarrow \infty$).

$$\begin{split} &d(fu, x_{2n+2}) = d(fu, gx_{2n+1}) \\ &\preceq pd(u, u) + qd(u, fu) + rd(x_{2n+1}, gx_{2n+1}) \\ &+ sd(u, gx_{2n+1}) + td(x_{2n+1}, fu). \end{split}$$

Letting $n \rightarrow +\infty$

$$(fu, u) \leq pd(u, u) + qd(u, fu) + rd(u, gu)$$

+ sd(u, gu) + td(u, fu)
$$\leq (q+t)d(u, fu) + (r+s)d(u, gu). \qquad (3)$$

$$\Rightarrow (1-q-t)d(fu, u) \leq (r+s)d(u, gu).$$

$$\Rightarrow d(fu, u) \leq \left(\frac{r+s}{1-q-t}\right)d(u, gu).$$

Let c >> 0 be given. Choose a natural number N_1 such that $d(u, gu) << \left(\frac{r+s}{1-q-t}\right)c$. Then from (3) we get that d(fu, u) << c.

Since c is arbitrary, we get that

$$d(fu, u) \ll \frac{c}{m}$$
 for each $m \in \mathbb{N}$

Noting that $\frac{c}{m} \to 0$ as $m \to \infty$, we conclude that

$$\frac{c}{m} - d(fu, u) \to d(fu, u) \text{ as } m \to \infty.$$

Hence, P is closed, then - $d(fu, u) \in P$. Thus $d(fu, u) \in P \cap (-P)$. Hence d(fu, u) = 0. Therefore, fu = u. And

$$\begin{split} &d(fx_{2n+1},gx_{2n+2}) \preceq pd(x_{2n+1},x_{2n+2}) \\ &+qd(x_{2n+1},fx_{2n+1}) + rd(x_{2n+2},gx_{2n+2}) \\ &+sd(x_{2n+1},gx_{2n+1}) + td(x_{2n+2},fx_{2n+1}) \\ &\preceq pd(x_{2n+1},x_{2n+2}) + qd(x_{2n+1},fx_{2n+1}) \\ &+rd(x_{2n+2},gx_{2n+2}) + sd(x_{2n+1},gx_{2n+1}) \\ &+td(x_{2n+2},fx_{2n+1}). \end{split}$$

Letting $n \rightarrow +\infty$

$$\begin{split} d(fu,gu) &\preceq pd(u,u) + qd(u,fu) + rd(u,gu) \\ &\quad + sd(u,gu) + td(u,fu) \\ &\Rightarrow d(fu,gu) \leq pd(u,u) + qd(u,u) + rd(fu,gu) \\ &\quad + sd(fu,gu) + td(u,u), \\ &\Rightarrow d(fu,gu) \leq (r+s)d(fu,gu), \\ &\Rightarrow (1-(r+s))d(fu,gu) \leq 0, \\ &\Rightarrow (1-(r+s))d(fu,gu) \leq 0, \\ &\Rightarrow d(fu,gu) \leq 0. \end{split}$$

That is, fu = gu. Now we show that fu = gu = u. By (1), we have

$$\begin{aligned} &d(x_{2n+1},gu) = d(fx_{2n},gu) \\ &\preceq pd(x_{2n},u) + qd(x_{2n},fx_{2n}) + rd(u,gu) \\ &+ sd(x_{2n},gu) + td(u,fx_{2n}). \end{aligned}$$

Letting $n \rightarrow +\infty$

$$d(u,gu) \leq pd(u,u) + qd(u,fu) + rd(u,gu)$$
$$+ sd(u,gu) + td(u,u)$$
$$\leq pd(u,u) + qd(u,u) + rd(u,gu)$$
$$+ sd(u,gu) + td(u,u)$$
$$\leq (r+s)d(u,gu)$$
$$\Rightarrow (1-r-s)d(u,gu) \leq 0$$
$$\Rightarrow d(u,gu) \leq 0$$
$$\Rightarrow d(u,gu) = 0. \text{ That is, } u = gu.$$

Therefore, fu = gu = u and u is a common fixed point of f and g.

Now, we consider the case when condition (ii) is satisfied. For the sequence $\{x_n\}$ we have $x_n \rightarrow u \in X(as)$

 $n \rightarrow \infty$) and $x_n \sqsubseteq u(n \in \mathbb{N})$. By the construction, $fx_n \rightarrow u$ and $gx_n \rightarrow u(as n \rightarrow \infty)$.

Let us prove that u is a common fixed point of f and g. Putting x = u and $y = x_n$ in (1)(since they are comparable) we get that

$$d(fu,gx_n) \leq pd(u,x_n) + qd(u,fu) + rd(x_n,gx_n) + sd(u,gx_n) + td(x_n,fu).$$

For the first and fourth term of the right hand side we have $d(x_n, u) \ll c$ and $d(u, gx_n) \ll c($ for $c \in int P$ arbitrary and $n \ge n_0$). For the second term $d(u, f, u) \preccurlyeq d(u, x_n) + d(x_n, gx_n) + d(gx_n, fu)(again the first term n the right can be neglected) and for the fifth term <math>d(x_n, f, u) \preccurlyeq d(x_n, gx_n) + d(gx_n, fu)$. It follows that

$$(1-q-t)d(fu,gx_n) \leq (q+r+t)d(x_n,gx_n).$$

But $x_n \rightarrow u$ and $gx_n \rightarrow u \Rightarrow d(x_n, gx_n) \ll c$, which means that $d(fu, gx_n) \ll c$, that is, $gx_n \rightarrow fu$. It follows that, fu = u and in a symmetric way (by using that $u \sqsubseteq u$), gu = u. **Remark 2.2.** If we choose f and g are continuous mappings in the above Theorem 2.1, then we get the Theorem 2.1 of [7].

References

- M. Abbas and G. Jungck, Common fixed point results for non commuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl. 341(2008) 416-420.
- [2] M. Abbas , B.E. Rhoades, Fixed and periodic point results in cone metric spaces, Appl. Math. Lett. 21(2008)511-515.
- [3] I. Altun, B. Damnjanovic, D. Djoric, Fixed point and common fixed point theorems on ordered cone metric spaces, Appl. Math. Lett. (2009).
- [4] I. Altun, B. Durmaz, Some fixed point theorems on ordered cone matric spaces, Rend. Circ. Mat. Palermo 58(2009) 319-325.
- [5] L.G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332(2)(2007) 1468-1476.
- [6] D. Ilic, V. Rakocevic, Quasi-contraction on a cone metric space, Appl. Math. Lett.22(2009)728-731.
- [7] Z. Kadelburg , M. Pavlovic and S. Radenovic, Common fixed point theorems for ordered contractions and quasicontractions in ordered cone metric spaces, Comp. and Math. with Appl. 59(2010) 3148-3159.
- [8] J.J. Nietro, R.R. Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22(2005)223-239.
- [9] A.C.M. Ran, M.C.B. Reurings, A fixed point theorem in partially ordered sets and some application to matrix equations, Proc. Amer. Math. Soc. 132