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Abstract  This paper presents to solve the Laplace’s equation by two methods i.e. the finite difference method 
(FDM) and the boundary element method (BEM). The body is ellipse and boundary conditions are mixed. In the 
BEM, the integration domain needs to be discretized into small elements. The boundary integral equation derived 
using Green’s theorem by applying Green’s identity for any point in the surface. The methods are applied to 
examine an example of square domain with mixed boundary condition. Both types of numerical models are 
computed and compared with analytical solution. The results obtained agree perfectly with those obtained from 
exact solution. 
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1. Introduction 
Many engineering problems in fluid dynamics, 

hydrodynamics, elasticity, hydro-acoustics electrostatics, 
electrodynamics and elasticity are mathematically 
formulated by partial differential equations (PDEs).  

There are many textbooks on BEM to solve the two-
dimensional potential problems in fluid dynamics 
(hydrodynamics and aerodynamics), acoustics, elasticity 
and structural analysis [1-13].  

Solving the Laplace’s equation is an important problem 
because it may be employed to many engineering 
problems. Exact solutions of this equation are available 
and the numerical results may be compared.  

Many articles about Laplace’s equation for different 
problems and various boundary conditions can be found in 
literature. Here, we present a few of them regarding to our 
problem. Qian et al solved a Cauchy problem for the 
Laplace equation in a rectangle [14]. Morales et al studied 
on the solutions of Laplace’s equation with simple 
boundary conditions, with consideration to their 
applications for capacitors with multiple symmetries [15]. 
Lesnic et al carried out an iterative boundary element 
method for solving the Cauchy problem for the laplace’s 
equation [16]. Ren et al studied on analytical evaluation of 
the BEM singular integrals for 3D Laplace and Stokes 
flow equations using coordinate transformation [17]. In 
their paper, by applying a coordinate transformation, the 
analytical formulas of the singular integrals for 3D 
Laplace and Stokes flow equations are obtained for 
arbitrary triangular boundary element with constant 
elements approximation. The Dirichlet problems of 
Laplace’s equation in elliptic domains with elliptic holes 

have studied by Li et al [18]. Lee et al. solved Neumann 
problems of Laplace’s equation in circular domains with 
circular holes by methods of field equations. The results 
show that two kinds of MFEs are effective for solving the 
Neumann problems and their numerical performances are 
excellent [19]. The latest work on this kind of equations is 
Yang’s paper using the Neumann problem of Laplace’s 
equation in semiconvex domains [20]. In the BEM, 
solving the integrals are very important and many 
numerical techniques employed by many researchers. Gao 
[21] and Ghassemi & Kohansal [22] evaluated singular 
integrals using emerging techniques. They employed the 
3D Laplace’s equation to the hydrofoil. Also, singular 
types of the integrals of order 1/r, 1/r2, 1/r3 using Gauss 
method evaluated by Jun et al [22]. 

The aim of this work is to determine potential in 
rectangular domain using BEM and FDM using mixed 
boundary conditions. Comparisons reveal that the methods 
are efficient and the results are in good agreement with 
exact solutions.  

The paper is arranged hereafter: In section 2, we solve 
Laplace’s equation in simple geometry by separation of 
variables. As a matter of illustration of the method, we 
obtain the potential quantity for this case. In section 3, we 
use BEM in order to obtain potential at each point of 
domain. On the other hand, we use FDM in Section 4 to 
determine the considerable value. Section 5 shows results 
of two numerical models, BEM and FDM. Also we 
compare the results with analytical data. Finally, Section 6 
contains the conclusions. 

2. Exact Solution 
The Laplace equation and its boundary conditions are 

defined as follows: 
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Separation of variables is any of several methods for 
solving ordinary and partial differential equations, in 
which algebra allows one to rewrite an equation so that 
each of two variables occurs on a different side of the 
equation. It works because it reduces a PDE to ODEs. All 
the steps of solution can be expressed as follows. In this 
method we attempt to determine solutions in the product 
form. Next we place this in Laplace’s equation. Then we 
claim it is necessary that both sides of the equation must 
equal to same constant known as the separation constant 
named Lambda. Now we should do this for any arbitrary 
constant due to boundary condition. However eventually 
we will discover that only certain values of Lambda are 
allowable. Now we obtained the Eigen functions of each 
variable. The original ( , )x yϕ  is obtained by multiplying 
together the variables. In summary, we obtained product 
solutions of the Laplace’s equation satisfying the specific 
homogenous boundary conditions only corresponding to 
λ<0. These solutions, ( ), ( ) ( ),x y X x Y yϕ =  have 

1( ) sinX x C xλ=  and ( ) 2 ,Y y C coshnh yλ=  where we 
determined from the boundary conditions the allowable 

values of the separation constant λ , 2(
2

.)n πλ π= +  Here 

n is a positive integer. 

 
Figure 1. Boundary condition 

Thus, product solutions of the Laplace’s equation are 
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So exact solution of equation is obtained as follows 
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3. Boundary Element Method (BEM) 
This is a numerical method for solving partial differential 

equations encountered in mathematical physics and 
engineering. As the implies method, governing differential 
equations changes to integral equations that are applied on 
the surface or boundary. These integrals are numerically 
integrated over the boundary. The boundary is divided 
into small elements, as well as other numerical methods 
ultimately a linear algebraic equation will be obtained 
which has only one answer. BEM is simply and 
geometrically applied for any complex shape. In addition, 
BEM can model areas with sharp changes in variables 
with accuracy better than the FDM because all 
approximations limited to the surface. The surface is 
divided into sections and elements. Shape functions are 
used to describe the variables and geometries for each 
element. These shape functions can be linear, quadratic 
and higher orders. In this way due to the complexity of 
integrating functions, the analytical integration is not 
recommended to calculate integrals and numerical 
integration and Gaussian square method is used instead of 
it. When the points are close to each other in the 
calculation of singular integrals or source point p matches 
the boundary point q, special relationships must be used. 
Because of the main solution contains orders of 1/r. The 
total integral is calculated by adding all the integrals on all 
elements our approach to solve this equation is that the use 
of fixed element according to the geometry and boundary 
conditions. Type of elements using the BEM is shown as 
follows. 

 
Figure 2. Constant element 

 
Figure 3. Definition sketch of boundary domain 

In the BEM for a body of the boundary and domain (as 
shown in Figure 3), the integral formulation may be 
expressed as 
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And G is the green’s function of the Laplace equation. 
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where r distance between the source point (p) and integral 
element (q). Discretization form of the equation can be 
represented as follows: 
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where Llj  and ljH  are influence coefficients and ljδ  is 

the Kronecker delta. 
For the Mixed boundary condition (some boundary 

Neumann and other Dirichlet) should be put in the Eq (7). 
The, Eq (7) is arranged to the matrix equation system form, 
[A]{x}={B}. Finally, it is solved and the unknown 
variables are obtained.  

Furthermore, in the BEM, we solve only for the 
boundary distribution of the unknown function or one of 
its derivatives. It is not necessary to compute the requisite 
function throughout the domain of solution. Once the 
unknown boundary distribution is available, the solution 
at any point may be produced by direct evaluation. Thus, 
the crux of the BEM is the reduction of the dimension of 
the solution space with respect to physical space by one 
unit. 

4. Finite Difference Method (FDM) 
FDM is one of the easiest and an oldest numerical 

method because of its simplicity is commonly used by 
engineers. However, due to the inability of this method in 
spatial discretization of non-rectangular and complex 
geometries, its usage is limited to relatively simple and 
rectangular geometry issues. In FDM Taylor series 
expansion and equations such as these are used. 
Derivatives and equations approximate and directly 
replace with various terms in the equations. Finite 
difference estimates are discrete model of continuous 
finite difference operators. They are used to provide a 
discrete model of a partial differential equation. Finite 
differences associated with the derivative of a function 
estimate at a point such as X0 obtained by using the 
function values in the vicinity of the point. These 
estimates have been usually formed of function values in a 
certain number of points that have been placed at the same 
distance apart. Estimates of finite difference can be 
divided to smaller categories of backward, forward and 
central. For this article according to the Laplace’s 
equation central three-point discretization for second order 
derivatives were used in the following equations: 
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where 0.25.x y h∆ = ∆ = =  
By substituting x in Laplace’s equation, discretized 

equation can be obtained as follows: 
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After discretization, boundary conditions must be 
applied. The boundary condition on Dirichlet and 
Neumann type is applied directly in the discrete equation. 
Boundary derivatives can be approximated with finite 
difference and placed it in the system of linear equations. 
One thing that is important is that truncation error finite 
difference estimations for boundary derivative should be 
equal to finite difference truncation error for differential 
equation, because of its high accuracy in validation. In 
Figure 4, geometry of equation by considering mesh 
generation with 32 elements has been shown. 

 
Figure 4. Domain discretization in FDM with mixed boundary 
conditions 

5. Numerical Results 
In the BEM a simple body with 24 elements is 

considered. The body is discretized into constant elements. 
The geometry of the 24 nodes of the elements on the body 
is shown in the Figure 5. 

Comparison of the numerical and analytical results are 
shown through Tables 1and 2 when the field point is 
located on the middle of each element. The approach of 
this paper is based on considering equal elements on 
boundary for BEM and FDM to compare these numerical 
methods with each other in same level of accuracy. The 
results are compared in terms of relative error, defined by 
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where numericalφ  and analyticalφ  are the approximate 

and exact values under consideration. 

 
Figure 5. Boundary discretization in BEM with mixed boundary 
conditions 

In order to estimate the accuracy of methods for 
evaluating potential in internal nodes that appearing in (1), 
the rectangle inside the domain should be considered, 
(Figure 6). Side 1 tends to points with x=0.25 and variable 
y, 2 are points with x=0.75, 3 are points with y=0.25 and 
variable x, and side 4 hint points with y=1.75. 
Comparisons of the numerical and analytical calculations 
for the potential in each side of rectangle are shown 
through Figure 7-Figure10. 

Table 1. Comparison of the analytical and BEM 
X Y Analytical BEM Error 

0.25 0.25 0.0112781 0.0113764 0.008721 
0.5 0.25 0.0085924 0.0086596 0.007822 

0.75 0.25 -0.004671 -0.004716 0.009628 
0.25 0.5 0.0338658 0.0343182 0.013358 
0.75 0.5 -0.014026 -0.014186 0.011427 
0.25 0.75 0.1098239 0.1113335 0.013746 
0.75 0.75 -0.045469 -0.046458 0.021746 
0.25 1 0.3615147 0.3644784 0.008198 
0.75 1 -0.149425 -0.150789 0.009128 
0.25 1.25 1.2108812 1.2192763 0.006933 
0.75 1.25 -0.496783 -0.501246 0.008983 
0.25 1.5 4.2015926 4.2311046 0.007024 
0.75 1.5 -1.672814 -1.683895 0.006624 
0.25 1.75 15.463874 15.479106 0.000985 
0.5 1.75 6.2387692 6.2587208 0.003198 

0.75 1.75 -5.606956 -5.612703 0.001025 
The relative error is given in the Table 1 that is less 

than 1e-03 except for the (0.75, 0.75) point in BEM. As 
shown in the Table 2, the maximum error is about 0.22 
where the field point is on the (0.25, 0.25) point. Similar 
trends are obtained when the field points are located far 
from upper side of the domain, relative error gradually 

increases. It is shown that when the solutions have more 
error the results of the final calculation on the elements 
may not obtained precisely. 

Table 2 Comparison of the analytical and FDM 
X Y Analytical FDM Error 

0.25 0.25 0.0112781 0.013859 0.228854 
0.5 0.25 0.0085924 0.010377 0.207730 

0.75 0.25 -0.004671 -0.00571 0.222964 
0.25 0.5 0.0338658 0.037424 0.195071 
0.75 0.5 -0.014026 -0.01683 0.200083 
0.25 0.75 0.1098239 0.127812 0.163791 
0.75 0.75 -0.045469 -0.05108 0.123387 
0.25 1 0.3615147 0.407026 0.125892 
0.75 1 -0.149425 -0.16474 0.102490 
0.25 1.25 1.2108812 1.320844 0.090812 
0.75 1.25 -0.496783 -0.54058 0.088160 
0.25 1.5 4.2015926 4.479637 0.066176 
0.75 1.5 -1.672814 -1.83504 0.096979 
0.25 1.75 15.463874 16.24554 0.050548 
0.5 1.75 6.2387692 6.448822 0.033669 

0.75 1.75 -5.606956 -5.86620 0.046237 

 
Figure 6. Internal nodes 

 
Figure 7. Comparison of the numerical and analytical calculations for 
the potential distribution side 1 
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Figure 8. Comparison of the numerical and analytical calculations for 
the potential distribution side 2 

 
Figure 9. Comparison of the numerical and analytical calculations for 
the potential distribution side 3 

 
Figure 10. Comparison of the numerical and analytical calculations for 
the potential distribution side 4 

6. Conclusions 
In this paper, a two dimensional numerical model using 

the BEM was introduced to predict the potential 
characteristics of various point of domain. In addition, the 
FDM applied to compare with. The numerical results of 
the potential distributions were compared against exact 
data and shown to be a good agreement. As a result of the 
present work, the following conclusions can be written: 
• A comparison of the potential distributions for 

the various points of geometry shows satisfactory 
results compared with those exact and numerical 
data. 

• Potential distribution exerted on domain can be 
successfully predicted through the methods 
presented in this paper. 

• For linear and elliptic problems the BEM is 
vastly superior in both efficiency and accuracy. 

• Alternative methods require discretizing the 
whole of the solution domain, and this 
considerably raises the cost of the computation. 

• Problems that can be solved on a laptop computer 
using the BEM may require the use of a 
supercomputer by FDM for the same level of 
accuracy. 

Greater understanding of the other quantities like 
velocity, pressure and flow distribution in various 
geometries is required. This is a research areas that the 
authors intend to pursue in more detail in the future 
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