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Abstract  Given a set of data, one of the statistical issues is to see how well the data fit into postulated model. This 
technique necessitates the corresponding table of the probability distribution for the proposed model. In this paper, 
we examined, to what limit of p can normal approximate this sample without falling into type I error (i.e. a random 
variable x having normal distribution when indeed it has exponential power distribution with estimated parameter p). 
We also present the goodness-of-fit test for exponential power distribution using the conventional testing methods 
which are discussed, one is Pearson’s 2χ  test and the other one is kolmogorov-Smirnov test. An example in poultry 
feeds data and a simulation example are included, comparison with the fitting of the normal distribution is also 
examined for further illustration. 
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1. Introduction 
For p > 0, consider the random variable Z with density 
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where , , 0x pµ−∞ < < ∞ −∞ < < ∞ >  and 0.pσ >  (1) is 
called exponential power distribution with shape 
parameter p which regulates the tail region. Several 
properties of this distribution have been studied by many 
authors both as univariate and its multivariate extension. 
Among them are Olosunde [7], Agro [1,2], Mineo and 
Ruggieri [6] and others. Many authors have also found 
this distribution useful as substitute to normal distribution 
in applications; Lindsey [4] have applied it in repeated 
measurements, also Olosunde [7] in fitting poultry feeds 
data, just to mention few. The defined random variable 
family exponential power distribution retains many 
statistical properties of the normal and Laplace 
distribution, that is, what differentiate exponential power 
(EP(p)) from the normal and Laplace is the shape factor, 
which makes the tail becomes thicker as .p →∞  The 
distribution can also be regarded as generalized normal(or 
Laplace) because at ( )2 1 ,p or=  we have the normal(or 
Laplace) distribution with parameters µ  and .σ  The 
distribution (1) because of its shape parameter performed 
better when compare to its normal distribution subclass 

especially in an experiment where small sample size is 
feasible. 

The moment can be obtained from the maximization of 
the log-likelihood function [6] 
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the derivative of (1.2) with respect to ,µ σ  and p  and 
equating to zero gives the following equations: 
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where ψ  is the di-gamma function. The equation 1.3 and 
1.5 can only be resolved using numerical approach, while 
the explicit solution to 1.4 is: 
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Therefore, the location, scale and shape parameters can 
be estimated from the sample by maximizing the log-
likelihood function, using numerical approach because, 
the maximizing expressions for location and shape 
parameters are not in close form. Although statistical 
properties about exponential power and its generalization 
have been discussed extensively in the literature, but given 
a data set 1,..., ,nX X  there is a problem about how well 
the underlying distribution can be represented by a 
exponential power distribution. The Pearson 2χ  and 
Kolmogorov-Smirnov’s test and so many others are 
important tools commonly used in statistical practice. 
However, to carry this out these test effectively, we 
require the associated probability distribution table. Just 
like the normal distribution, the cumulative distribution 
table of exponential power random variable, to the best of 
our knowledge are not available in any literature. This 
deficiency may be one of the hindrances to wide use of 
exponential power distribution when compare to normal 
distribution as exponential power distribution generalized 
the normal distribution and it cdf is not in close form. In 
what follows, we establish distribution table for the 
random variable having (1) with different values of p the 
shape parameter. In section 2 we describe how the table 
was developed. Section 3 discuss the two procedures for 
the goodness-of-fit test (Pearson and Kolmogorov-
Smirnov). Section 4 presents a simulation data set of 
exponential power distribution, this is also included to 
illustrate the use of the table. Importantly, the normal 
distribution has been well known to be the limiting 
distribution for many density functions. In this paper, we 
examined, to what limit of p can normal approximate this 
sample without falling into type I error (i.e. a random 
variable x having normal distribution when indeed it has 
exponential power distribution with estimated parameter p) 
and finally an example of potential application to poultry 
feeds data from Olosunde, [7] is also examined. 

2. Exponential Power Distribution Table 
The cumulative distribution function (cdf) for a 

standardized random variable X having (1) with real p can 
be expressed has 

 ( )
1/

1 exp
12 1

p
t

p

x
P X x dx

p
p

p
−∞

  ≤ = − 
    Γ + 
 

∫  (7) 

Thus, for each specified p, we can calculate the 
corresponding probability for each value of t. In the table 
we present the corresponding probabilities for t ranging 
from 0.00 until ( ) 1P X x≤ ≈  to 3 decimal places, with 
each increase in length by 0.01. We employed Simpson 
rule in Numerical Computation in conjunction with R 
program developed by Ihaka and Gentleman [3]. We 
prefer Simpson’s method compare to other methods 
because its guarantees the accuracy level of the table. The 

table is arranged as follows, if we wish to compute, say x 
= 0.15, the table in the appendix can be used in the this 
way: 

 
( )
( )

0.15 = 0.5586, when =2.6

0.15 = 0.5585, when =3.4

P Y p

P Y p

≤

≤
 

from the table we can see that the probability distribution 
of exponential power distribution depends on the shape 
parameter, p, and as p increases the cdf changed. For 
example the, ( )3.0 0.9998P Y ≤ =  remain the same at the 

accuracy of 410−  for p ranging from 2.60 to 5.60, values 
that normal gave a good approximations are left out. 
Therefore, the tables were truncated at some points, when 
the resulting values of ( )P X x≤  repeat the previous 
values for increase in shape parameter p. To check the 
accuracy of the table in the appendix, from our program 
we allowed p = 1 which of course gave the values for the 
cdf of Laplace distribution otherwise known as double 
exponential (not reproduce here). Also, when p = 2 we 
have the values for the cdf of a random variable having a 
standard normal probability distribution function (not 
reproduce here, but available in many Statistical texts), we 
carefully select our p for some values for illustration of its 
usefulness and applications purposes in order to save 
pages. The algorithm on R to further developed extensive 
table can be made available upon request. 

3. Goodness-of-Fit Tests for The 
Exponential Power Distribution 

In this section, we present the two commonly used 
procedures for goodness-of-fit test but now with 
exponential power distribution as the underlining 
distribution of interest. One is 2'Pearson s χ  test and the 
other one is Kolmogorov - Smirnov test. These are two 
well known tests in the literature to examine how well a 
set of data fits into a postulated model provided that the 
probability distribution of the postulated random variable 
is available. 

3.1. 2χ  Procedure for Exponential Power 
Distribution 

Given a set of data 1,..., ,nX X  carrying out Pearson’s 
2χ  test to ascertain if the data is well fit into exponential 

power distribution ( )0EP p , the procedures are well 
known in most statistical text. 

The 2χ  test statistic with degree of freedoms K − 1 is 
then defined as 
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where iN  is the number of outcomes that fall in the ith 
interval and iE  is the expected number in the ith interval. 
The selection of K follows the general rule in the 
application of Pearson’s 2χ  test. 
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To illustrate this a simulation of 1000 samples from 
exponential power with p = 4.4 and comparatio was done 
with the normal distribution. 
Example 2: (Simulation from exponential power 
distribution) 

Table 4.1. Pearson’s 2χ  Test 

Intervals n ip  EP (4.4) normal 

(−∞,-1.75] 3 0.0033 3.3 40.1 
(-1.75,-1.25] 55 0.0540 54.0 65.5 
(-1.25,-0.75] 149 0.1524 152.4 121.0 
(-0.75,-0.25] 193 0.1924 192.4 174.7 
(-0.25,0.25] 197 0.1958 195.8 197.4 
(0.25,0.75] 196 0.1924 192.4 174.7 
(0.75,1.25] 151 0.1524 152.4 121.0 
(1.25,1.75] 52 0.0540 54.0 65.5 
(1.75,∞] 4 0.0033 3.3 40.1 

The Table 4.1 shows a simulation of 1000 samples from 
exponential power distribution with 4.4,p =  where n is 
the observed frequency in the ith interval. iNp  and normal 
are the expected frequency in the ith interval for 

( )4.4EPD  and normal distribution respectively. We 

obtained 2χ  value of 0.4207 for EP(4.40) with degree of 
freedom 9, thus EP(4.40) is accepted as expected. 
However, the goodness-of-fit for N(0,1) gives an observed 

2χ  value of 89.72, which results in the rejection of N(0,1) 
model for the same data set. See Table 4.2 for detail report. 

3.2. Kolmogorov Test Procedure on the 
Exponential Power Distribution 

If we have a random sample 1,..., nX X  from a 
population with distribution function ( ) ,F x  we desire to 
see if a postulated exponential power distribution (with 
specified 0p ) can be used to fit the underlying population 
of the data. The null hypothesis can be stated as follows 

 ( ) ( )0 0: for allH F x G x x=  

against the alternative 

 ( ) ( )1 0: for at least one .H F x G x x≠  

where ( )0G x  denotes the cdf of ( )0EF p   
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where ( ) ( )1 ,..., nX X  in the expression of ( )nF x  are the 

ordered statistics of 1,..., .nX X  ( )pG x  at each sample 

points of iX  can be found from the exponential power 
distribution table. In this case, the Kolmogorov-Smirnov 
test statistic ( ).,.D  is the maximum distance between 
empirical distribution function and postulated distribution 
function at the sample points. At significant level of α , 
the test endpoint dα  for test statistic D  can be found 
from Miller [5]. The rule is that if the calculated D  is 
larger than dα  the postulated exponential power 
distribution function is too far away from the observed 
distribution function. Thus 0H  is rejected at α  level of 
significance, otherwise, 0H  is accepted at the same 
significance level. To carry out this test, it is critical to 
find the ( )nF x ’s for the postulated exponential power 
distribution. The table provide in this paper makes it 
possible for the implementation of this test. 

4. Applications 
Example 1: (Approximation of the Exponential Power 

Distribution by The Normal Distribution) 
Normal distribution has been well known to be the 

limiting distribution for so many distribution in the 
literature. In this section with explore to what value of the 
parameter p will normal give an acceptable approximation 
to data having exponential power distribution with 
parameter ip . This will also examine the closeness 
between exponential power and normal distributions, 
using the Kolmogorov-Smirnov test of normality distance. 
Let ( )~ 0,1X N  and ( )F x  be the cdf, also let 

( )~Y EP p  and ( )pG y  be the cdf. The Kolmogorov 

distance between ( )F x  and ( )pG y  is defined as 

 ( ),
sup

p pD F G z F G= −  (10) 

The values of ( ), pD F G  can be obtained from the 

Tables in the appendix. The values of ( ), pD F G  from some 

selected 1.6 4.4.p = −  These are shown in the table below 

Table 4.2. Kolmogorov distance between F  and pG  

p  1.6 2.2 2.6 2.8 3.0 3.4 3.8 4.0 4.2 4.4 

( ), pD F G  0.0146 0.0065 0.0197 0.0226 0.0268 0.0348 0.0415 0.0447 0.0478 0.0504 

we observed from Table 4.2, that as p increases 

( ), pD F G  also increases, this implies that approximation 

by normal distribution becomes poorer with large 
estimated p from experimental samples. Large ( ), pD F G  

is noticeable in all 'p s  when t = 1.6. Therefore, normal 
assumption in such case of large p value may lead to error 
in conclusion. It should be noted that the significance of 

( ), pD F G  also depends on the sample size. 
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Example 3: (Applications to Poultry feeds data) The data 
was obtained from Olosunde [7], where parameters have 
been estimated using maximum likelihood approach 
numerically. The cholesterol level ix  of 48 eggs of 
chicken fed with organic copper-salt are measured in 

/mg egg , where 5.20 is the estimated p value for 
exponential power distribution and 131.457 and 37.232 
are the population mean and standard deviation respectively. 
Also for Normal we have 59.10 and 1.822 as the estimated 
mean and standard deviation respectively. The ordered data 
set ix  are given in Table 4.3, iz  and it  is the standardized 
values for ix for ( )5.20EP  and normal respectively. 

( )( )5.20i iZ P EP z= ≤  and ( )( )( )0,1i iT P N t= ≤  is the 

normal counterpart. We define EPD  as the 

( )( )max / , 1 /i iZ i n Z i n− − −  for ( )5.20EP  and ND  

as ( )( )max / , 1 /i iT i n T i n− − −  for normal distribution. 

From Table 4.3, using Kolmogorov-Smirnov test, we find 
the corresponding 0.061833D =  for ( )5.20EP  and 

0.0779D =  for normal distribution. One can easily see 
that the fit of exponential power cdf is uniformly better 
than that of the standard normal cdf in this example. All 
these have been made possible using the Table in the 
appendix. Details are provided in Table 4.3. 

Table 4.3. Kolomogorov Goodness-of-Fit Test 

ix  iz  it  iZ  |DEP | iT  |DN | 
60.73 -1.489196365 -1.899629351 0.0115 0.0115 0.5294 0.5294 
66.03 -1.374792238 -1.757278685 0.0254 0.01627 0.5392 0.518367 
71.33 -1.260388111 -1.614928019 0.0452 0.0173 0.5537 0.512033 
76.63 -1.145983983 -1.472577353 0.0713 0.01203 0.5708 0.5083 
81.86 -1.033090854 -1.33210679 0.1065 0.023167 0.5918 0.508467 
81.93 -1.031579856 -1.330226687 0.1065 0.0185 0.5918 0.487633 
81.93 -1.031579856 -1.330226687 0.1065 0.03933 0.5918 0.4668 
87.16 -0.918686727 -1.189756124 0.1429 0.02377 0.617 0.471167 
92.46 -0.8042826 -1.047405458 0.1829 0.016233 0.6469 0.480233 
92.52 -0.802987459 -1.045793941 0.1864 0.02193 0.96492 0.77742 
97.76 -0.689878473 -0.905054792 0.2284 0.020067 0.6814 0.473067 
97.82 -0.688583332 -0.903443275 0.2284 0.0216 0.6841 0.454933 
103.06 -0.575474345 -0.762704125 0.2707 0.0207 0.7236 0.4736 
103.11 -0.574395061 -0.761361195 0.2747 0.01697 0.7236 0.452767 
108.36 -0.461070218 -0.620353459 0.3182 0.026533 0.7676 0.475933 
108.41 -0.459990934 -0.619010529 0.3182 0.01513 0.7709 0.4584 
113.66 -0.346666091 -0.478002793 0.3613 0.027967 0.8156 0.482267 
113.7 -0.345802664 -0.476928449 0.3613 0.0137 0.8156 0.461433 
118.96 -0.232261964 -0.335652127 0.4088 0.0338 0.8669 0.4919 
119 -0.231398536 -0.334577783 0.4088 0.012967 0.8707 0.474867 
124.26 -0.117857837 -0.193301461 0.4563 0.039633 0.9247 0.508033 
124.3 -0.116994409 -0.192227116 0.4524 0.0149 0.9247 0.4872 
129.56 -0.003453709 -0.050950795 0.4998 0.041467 0.9801 0.521767 
129.6 -0.002590282 -0.04987645 0.4996 0.020433 0.9801 0.500933 
134.86 0.110950418 0.091399871 0.5437 0.0437 0.0359 0.48493 
134.89 0.111597988 0.09220563 0.5437 0.022867 0.0359 0.50577 
140.16 0.225354545 0.233750537 0.5912 0.049533 0.091 0.4715 
140.19 0.226002115 0.234556296 0.5912 0.0287 0.091 0.49233 
145.46 0.339758672 0.376101203 0.6347 0.051367 0.148 0.45617 
145.48 0.340190386 0.376638376 0.6347 0.030533 0.148 0.477 
150.76 0.454162799 0.518451869 0.6778 0.0528 0.1985 0.44733 
150.78 0.454594513 0.518989042 0.6778 0.031967 0.1985 0.46817 
156.06 0.568566926 0.660802535 0.7253 0.058633 0.2454 0.4421 
156.08 0.56899864 0.661339708 0.7253 0.0378 0.2454 0.46293 
161.36 0.682971054 0.803153202 0.7681 0.059767 0.2881 0.44107 
161.37 0.68318691 0.803421788 0.7681 0.038933 0.2881 0.4619 
166.66 0.797375181 0.945503868 0.8136 0.0636 0.3289 0.44193 
166.67 0.797591038 0.945772454 0.8136 0.042767 0.3289 0.46277 
171.96 0.911779308 1.087854534 0.8535 0.061833 0.3621 0.4504 
171.97 0.911995165 1.08812312 0.8535 0.041 0.3621 0.47123 
177.26 1.026183435 1.2302052 0.8935 0.060167 0.3907 0.46347 
177.26 1.026183435 1.2302052 0.8935 0.039333 0.3907 0.4843 
182.56 1.140587562 1.372555866 0.9259 0.0509 0.4147 0.48113 
182.56 1.140587562 1.372555866 0.9259 0.030067 0.4147 0.50197 
182.56 1.140587562 1.372555866 0.9259 0.0116 0.4147 0.5228 
187.86 1.25499169 1.514906532 0.9528 0.0153 0.4345 0.52383 
187.86 1.25499169 1.514906532 0.9528 0.02637 0.4345 0.54467 
193.16 1.369395817 1.657257198 0.9746 0.0254 0.4515 0.5485 
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Table 1. APPENDIX: Cumulative Distribution Table for Exponential Power at p = 2.6 
t 0.0 .01 .02 .03 .04 .05 .06 .07 .08 .09 
0. .5001 .5040 .5079 .5118 .5157 .5196 .5235 .5274 .5313 .5352 
.10 .5391 .5430 .5469 .5508 .5547 .5586 .5625 .5664 .5699 .5738 
.20 .5777 .5816 .5855 .5894 .5933 .5972 .6011 .6050 .6089 .6124 
.30 .6163 .6202 .6241 .6280 .6319 .6354 .6393 .6432 .6467 .6506 
.40 .6545 .6580 .6619 .6658 .6693 .6732 .6767 .6806 .6841 .6880 
.50 .6915 .6950 .6989 .7024 .7059 .7098 .7133 .7168 .7204 .7239 
.60 .7274 .7309 .7344 .7379 .7414 .7449 .7484 .7515 .7550 .7586 
.70 .7617 .7652 .7683 .7718 .7749 .7784 .7815 .7847 .7878 .7913 
.80 .7944 .7975 .8006 .8038 .8069 .8096 .8127 .8159 .8186 .8217 
.90 .8244 .8275 .8303 .8334 .8361 .8388 .8416 .8443 .8470 .8498 
1. .8525 .8552 .8576 .8603 .8626 .8654 .8677 .8704 .8728 .8751 
1.1 .8774 .8798 .8821 .8845 .8868 .8891 .8915 .8934 .8958 .8977 
1.2 .9000 .9020 .9043 .9063 .9082 .9102 .9121 .9141 .9160 .9180 
1.3 .9195 .9215 .9230 .9250 .9266 .9285 .9301 .9316 .9332 .9347 
1.4 .9363 .9379 .9394 .9410 .9425 .9437 .9453 .9468 .9480 .9496 
1.5 .9507 .9519 .9531 .9546 .9558 .9570 .9581 .9593 .9601 .9612 
1.6 .9624 .9636 .9644 .9655 .9663 .9675 .9683 .9694 .9702 .9710 
1.7 .9718 .9726 .9737 .9745 .9753 .9761 .9764 .9772 .9780 .9788 
1.8 .9796 .9800 .9807 .9811 .9819 .9827 .9831 .9835 .9842 .9846 
1.9 .9854 .9858 .9862 .9866 .9870 .9878 .9881 .9885 .9889 .9893 
2. .9897 .9901 .9905 .9909 .9909 .9913 .9917 .9920 .9924 .9924 
2.1 .9928 .9932 .9936 .9936 .9940 .9940 .9944 .9948 .9948 .9952 
2.2 .9952 .9955 .9955 .9959 .9959 .9959 .9963 .9963 .9967 .9967 
2.3 .9967 .9971 .9971 .9971 .9975 .9975 .9975 .9979 .9979 .9979 
2.4 .9979 .9983 .9983 .9983 .9983 .9983 .9987 .9987 .9987 .9987 
2.5 .9987 .9987 .9991 .9991 .9991 .9991 .9991 .9991 .9991 .9991 
2.6 .9991 .9994 .9994 .9994 .9994 .9994 .9994 .9994 .9994 .9994 
2.7 .9994 .9994 .9994 .9994 .9994 .9998 .9998 .9998 .9998 .9998 
2.8 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 
2.9 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 
3. .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 
3.1 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 
3.2 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 
3.3 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 
3.4 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 

 

Table 2. Cumulative Distribution Table for Exponential Power at p = 3.0 
 

t 0.0 .01 .02 .03 .04 .05 .06 .07 .08 .09 
0. .5001 .5040 .5079 .5118 .5157 .5195 .5234 .5273 .5312 .5351 

.10 .5390 .5428 .5467 .5506 .5545 .5584 .5623 .5661 .5700 .5739 

.20 .5778 .5817 .5856 .5894 .5933 .5972 .6011 .6050 .6085 .6123 

.30 .6162 .6201 .6240 .6279 .6318 .6356 .6395 .6430 .6469 .6508 

.40 .6547 .6586 .6621 .6659 .6698 .6737 .6772 .6811 .6850 .6885 

.50 .6923 .6958 .6997 .7032 .7071 .7106 .7145 .7180 .7218 .7253 

.60 .7288 .7327 .7362 .7397 .7432 .7467 .7506 .7541 .7576 .7611 

.70 .7646 .7677 .7712 .7747 .7782 .7816 .7848 .7882 .7914 .7949 

.80 .7980 .8015 .8046 .8077 .8112 .8143 .8174 .8205 .8236 .8267 

.90 .8298 .8329 .8356 .8387 .8418 .8446 .8477 .8504 .8531 .8562 
1. .8589 .8616 .8644 .8671 .8698 .8725 .8752 .8776 .8803 .8826 

1.1 .8853 .8877 .8904 .8927 .8950 .8974 .8997 .9020 .9044 .9063 
1.2 .9086 .9110 .9129 .9152 .9172 .9191 .9210 .9234 .9253 .9269 
1.3 .9288 .9308 .9327 .9342 .9362 .9377 .9397 .9412 .9428 .9443 
1.4 .9459 .9475 .9490 .9506 .9521 .9533 .9548 .9564 .9575 .9587 
1.5 .9603 .9614 .9626 .9638 .9649 .9661 .9673 .9684 .9692 .9704 
1.6 .9715 .9723 .9731 .9742 .9750 .9758 .9770 .9777 .9785 .9793 
1.7 .9801 .9808 .9816 .9824 .9828 .9836 .9843 .9847 .9855 .9859 
1.8 .9867 .9871 .9878 .9882 .9886 .9890 .9898 .9902 .9906 .9909 
1.9 .9913 .9917 .9921 .9925 .9929 .9933 .9933 .9937 .9940 .9944 
2. .9944 .9948 .9952 .9952 .9956 .9960 .9960 .9964 .9964 .9968 

2.1 .9968 .9972 .9972 .9972 .9975 .9975 .9975 .9979 .9979 .9979 
2.2 .9983 .9983 .9983 .9987 .9987 .9987 .9987 .9987 .9991 .9991 
2.3 .9991 .9991 .9991 .9991 .9995 .9995 .9995 .9995 .9995 .9995 
2.4 .9995 .9995 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 
2.5 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 
2.6 .9999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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Table 3. Cumulative Distribution Table for Exponential Power at p = 3.4 
 

t 0.0 .01 .02 .03 .04 .05 .06 .07 .08 .09 
0. .5003 .5041 .5080 .5119 .5158 .5197 .5236 .5274 .5313 .5352 
.10 .5391 .5430 .5469 .5508 .5546 .5585 .5624 .5663 .5702 .5741 
.20 .5779 .5818 .5857 .5896 .5931 .5970 .6009 .6047 .6086 .6125 
.30 .6164 .6203 .6242 .6280 .6319 .6358 .6397 .6436 .6475 .6513 
.40 .6548 .6587 .6626 .6665 .6704 .6743 .6778 .6816 .6855 .6894 
.50 .6929 .6968 .7007 .7046 .7081 .7119 .7154 .7193 .7232 .7267 
.60 .7306 .7341 .7380 .7415 .7450 .7488 .7523 .7558 .7597 .7632 
.70 .7667 .7702 .7737 .7772 .7807 .7842 .7877 .7912 .7947 .7982 
.80 .8017 .8048 .8083 .8114 .8149 .8180 .8215 .8246 .8277 .8312 
.90 .8343 .8374 .8405 .8436 .8467 .8498 .8529 .8556 .8588 .8615 
1. .8646 .8673 .8704 .8731 .8758 .8786 .8813 .8840 .8867 .8894 
1.1 .8922 .8945 .8972 .8995 .9023 .9046 .9069 .9092 .9116 .9139 
1.2 .9162 .9186 .9205 .9228 .9248 .9271 .9291 .9310 .9329 .9349 
1.3 .9368 .9388 .9407 .9423 .9442 .9458 .9477 .9492 .9508 .9524 
1.4 .9539 .9555 .9570 .9586 .9601 .9613 .9628 .9640 .9652 .9667 
1.5 .9679 .9691 .9702 .9714 .9726 .9733 .9745 .9757 .9764 .9776 
1.6 .9784 .9792 .9803 .9811 .9819 .9827 .9834 .9842 .9846 .9854 
1.7 .9861 .9869 .9873 .9881 .9885 .9893 .9896 .9900 .9908 .9912 
1.8 .9916 .9920 .9924 .9928 .9931 .9935 .9939 .9943 .9947 .9947 
1.9 .9951 .9955 .9959 .9959 .9962 .9966 .9966 .9970 .9970 .9974 
2. .9974 .9974 .9978 .9978 .9982 .9982 .9982 .9986 .9986 .9986 
2.1 .9990 .9990 .9990 .9990 .9990 .9994 .9994 .9994 .9994 .9994 
2.2 .9994 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 
2.3 .9997 .9997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
2.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
2.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 

Table 4. Cumulative Distribution Table for Exponential Power at p = 3.8 
 

t 0.0 .01 .02 .03 .04 .05 .06 .07 .08 .09 
0. .4999 .5038 .5076 .5115 .5154 .5193 .5232 .5271 .5310 .5349 

.10 .5388 .5427 .5466 .5505 .5544 .5583 .5621 .5660 .5699 .5738 

.20 .5777 .5816 .5855 .5894 .5933 .5972 .6011 .6050 .6089 .6128 

.30 .6167 .6205 .6244 .6283 .6322 .6361 .6400 .6439 .6478 .6517 

.40 .6552 .6591 .6630 .6669 .6708 .6747 .6785 .6824 .6863 .6898 

.50 .6937 .6976 .7015 .7054 .7089 .7128 .7167 .7206 .7241 .7280 

.60 .7315 .7354 .7393 .7428 .7467 .7502 .7541 .7576 .7615 .7650 

.70 .7685 .7724 .7759 .7794 .7837 .7868 .7903 .7938 .7973 .8008 

.80 .8043 .8078 .8113 .8148 .8179 .8214 .8249 .8280 .8315 .8347 

.90 .8382 .8413 .8444 .8479 .8510 .8541 .8572 .8604 .8635 .8662 
1. .8693 .8724 .8751 .8783 .8810 .8841 .8868 .8896 .8923 .8950 

1.1 .8977 .9005 .9028 .9055 .9082 .9106 .9129 .9156 .9180 .9203 
1.2 .9226 .9250 .9269 .9293 .9316 .9335 .9355 .9378 .9398 .9417 
1.3 .9437 .9456 .9472 .9491 .9511 .9526 .9542 .9561 .9577 .9592 
1.4 .9608 .9623 .9635 .9651 .9666 .9678 .9690 .9705 .9717 .9729 
1.5 .9740 .9752 .9760 .9771 .9783 .9830 .9803 .9810 .9818 .9830 
1.6 .9838 .9845 .9853 .9861 .9865 .9873 .9880 .9884 .9892 .9896 
1.7 .9904 .9908 .9915 .9919 .9923 .9927 .9931 .9935 .9939 .9943 
1.8 .9947 .9951 .9954 .9954 .9958 .9962 .9962 .9966 .9970 .9970 
1.9 .9974 .9974 .9974 .9978 .9978 .9982 .9982 .9982 .9986 .9986 
2. .9986 .9986 .9989 .9989 .9989 .9989 .9989 .9993 .9993 .9993 

2.1 .9993 .9993 .9993 .9993 .9993 .9997 .9997 .9997 .9997 .9997 
2.2 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 
2.3 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 
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Table 5. Cumulative Distribution Table for Exponential Power at p = 4.0 
 

t 0.0 .01 .02 .03 .04 .05 .06 .07 .08 .09 
0. .5001 .5040 .5079 .5118 .5157 .5196 .5235 .5274 .5313 .5352 
.10 .5391 .5430 .5469 .5508 .5547 .5586 .5625 .5664 .5703 .5742 
.20 .5781 .5820 .5859 .5898 .5937 .5976 .6015 .6054 .6093 .6132 
.30 .6171 .6210 .6249 .6288 .6327 .6366 .6405 .6444 .6480 .6519 
.40 .6558 .6597 .6636 .6675 .6714 .6753 .6792 .6831 .6870 .6905 
.50 .6944 .6983 .7022 .7061 .7100 .7135 .7174 .7213 .7252 .7287 
.60 .7326 .7365 .7400 .7439 .7478 .7513 .7552 .7587 .7626 .7662 
.70 .7701 .7736 .7771 .7810 .7845 .7880 .7915 .7954 .7989 .8024 
.80 .8059 .8095 .8130 .8165 .8200 .8231 .8266 .8301 .8336 .8368 
.90 .8403 .8434 .8465 .8500 .8531 .8563 .8594 .8625 .8656 .8688 
1. .8719 .8750 .8781 .8808 .8840 .8867 .8894 .8925 .8953 .8980 
1.1 .9007 .9035 .9062 .9085 .9113 .9136 .9163 .9187 .9210 .9234 
1.2 .9257 .9280 .9304 .9327 .9347 .9370 .9390 .9413 .9433 .9452 
1.3 .9472 .9491 .9507 .9526 .9542 .9561 .9577 .9593 .9608 .9624 
1.4 .9639 .9655 .9671 .9682 .9698 .9710 .9721 .9737 .9749 .9760 
1.5 .9768 .9780 .9792 .9799 .9811 .9819 .9831 .9838 .9846 .9854 
1.6 .9862 .9870 .9877 .9885 .9889 .9897 .9901 .9909 .9912 .9920 
1.7 .9924 .9928 .9932 .9936 .9940 .9944 .9948 .9951 .9955 .9959 
1.8 .9963 .9963 .9967 .9971 .9971 .9975 .9975 .9979 .9979 .9983 
1.9 .9983 .9983 .9987 .9987 .9987 .9990 .9990 .9990 .9990 .9994 
2. .9994 .9994 .9994 .9994 .9994 .9994 .9998 .9998 .9998 .9998 
2.1 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 
2.2 .9998 .9998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
2.3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 

Table 6. Cumulative Distribution Table for Exponential Power at p = 4.4 
 

t 0.0 .01 .02 .03 .04 .05 .06 .07 .08 .09 
0. .4999 .5039 .5078 .5117 .5156 .5195 .5234 .5274 .5313 .5352 
.10 .5391 .5430 .5470 .5509 .5548 .5587 .5626 .5665 .5705 .5744 
.20 .5783 .5822 .5861 .5901 .5940 .5979 .6018 .6057 .6096 .6136 
.30 .6175 .6214 .6253 .6292 .6331 .6371 .6410 .6449 .6488 .6527 
.40 .6567 .6606 .6645 .6684 .6723 .6762 .6802 .6841 .6876 .6915 
.50 .6954 .6994 .7033 .7072 .7111 .7150 .7186 .7225 .7264 .7303 
.60 .7342 .7378 .7417 .7456 .7491 .7530 .7570 .7605 .7644 .7683 
.70 .7718 .7758 .7793 .7832 .7867 .7903 .7942 .7977 .8012 .8051 
.80 .8087 .8122 .8157 .8193 .8228 .8263 .8298 .8334 .8369 .8404 
.90 .8435 .8471 .8506 .8537 .8569 .8604 .8635 .8667 .8702 .8733 
1. .8765 .8796 .8823 .8855 .8886 .8913 .8945 .8972 .9004 .9031 
1.1 .9058 .9086 .9113 .9141 .9168 .9192 .9219 .9243 .9266 .9293 
1.2 .9317 .9341 .9360 .9384 .9407 .9427 .9450 .9470 .9489 .9509 
1.3 .9529 .9548 .9568 .9583 .9603 .9619 .9634 .9650 .9666 .9681 
1.4 .9697 .9709 .9724 .9736 .9752 .9764 .9775 .9787 .9799 .9807 
1.5 .9819 .9830 .9838 .9846 .9858 .9866 .9873 .9881 .9889 .9893 
1.6 .9901 .9909 .9913 .9920 .9924 .9928 .9936 .9940 .9944 .9948 
1.7 .9952 .9956 .9960 .9963 .9963 .9967 .9971 .9971 .9975 .9975 
1.8 .9979 .9979 .9983 .9983 .9987 .9987 .9987 .9991 .9991 .9991 
1.9 .9991 .9995 .9995 .9995 .9995 .9995 .9995 .9995 .9999 .9999 
2. .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 
2.1 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 
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Table 7. Cumulative Distribution Table for Exponential Power at p = 4.8 
 

t 0.0 .01 .02 .03 .04 .05 .06 .07 .08 .09 
0. .5001 .5041 .5080 .5119 .5159 .5198 .5238 .5277 .5316 .5356 
.10 .5395 .5434 .5474 .5513 .5553 .5592 .5631 .5671 .5710 .5749 
.20 .5789 .5828 .5868 .5907 .5946 .5986 .6025 .6065 .6104 .6143 
.30 .6183 .6222 .6261 .6301 .6340 .6380 .6419 .6458 .6498 .6537 
.40 .6576 .6616 .6655 .6695 .6734 .6773 .6813 .6852 .6892 .6931 
.50 .6966 .7006 .7045 .7084 .7124 .7163 .7203 .7242 .7281 .7317 
.60 .7356 .7396 .7435 .7474 .7510 .7549 .7589 .7628 .7663 .7703 
.70 .7742 .7778 .7817 .7852 .7892 .7927 .7967 .8002 .8041 .8077 
.80 .8112 .8152 .8187 .8223 .8258 .8293 .8333 .8368 .8400 .8435 
.90 .8471 .8506 .8542 .8573 .8608 .8644 .8675 .8707 .8742 .8774 
1. .8805 .8837 .8868 .8900 .8931 .8963 .8990 .9022 .9050 .9081 
1.1 .9109 .9136 .9164 .9191 .9219 .9246 .9270 .9298 .9321 .9345 
1.2 .9369 .9392 .9416 .9439 .9463 .9483 .9506 .9526 .9546 .9565 
1.3 .9585 .9601 .9621 .9640 .9656 .9672 .9687 .9703 .9719 .9735 
1.4 .9747 .9762 .9774 .9786 .9798 .9810 .9821 .9833 .9841 .9853 
1.5 .9861 .9873 .9880 .9888 .9896 .9904 .9908 .9916 .9924 .9928 
1.6 .9936 .9940 .9943 .9947 .9951 .9955 .9959 .9963 .9967 .9971 
1.7 .9975 .9975 .9979 .9983 .9983 .9987 .9987 .9987 .9991 .9991 
1.8 .9991 .9995 .9995 .9995 .9995 .9999 .9999 .9999 .9999 .9999 
1.9 .9999 .9999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
2. 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 

Table 8. Cumulative Distribution Table for Exponential Power at p = 5.2 
 

t 0.0 .01 .02 .03 .04 .05 .06 .07 .08 .09 
0. .5002 .5041 .5081 .5120 .5160 .5199 .5239 .5279 .5318 .5358 
.10 .5397 .5437 .5476 .5516 .5556 .5595 .5635 .5674 .5714 .5753 
.20 .5793 .5833 .5872 .5912 .5951 .5991 .6030 .6070 .6110 .6149 
.30 .6189 .6228 .6268 .6307 .6347 .6387 .6426 .6466 .6501 .6541 
.40 .6580 .6620 .6660 .6699 .6739 .6778 .6818 .6857 .6897 .6937 
.50 .6976 .7016 .7055 .7095 .7134 .7174 .7214 .7253 .7293 .7328 
.60 .7368 .7408 .7447 .7487 .7526 .7562 .7601 .7641 .7681 .7716 
.70 .7756 .7795 .7835 .7870 .7910 .7946 .7985 .8025 .8060 .8096 
.80 .8136 .8171 .8211 .8246 .8282 .8322 .8357 .8393 .8428 .8464 
.90 .8500 .8535 .8571 .8603 .8638 .8674 .8705 .8741 .8773 .8808 
1. .8840 .8872 .8903 .8935 .8967 .8998 .9030 .9062 .9089 .9121 
1.1 .9149 .9176 .9204 .9232 .9259 .9287 .9315 .9339 .9366 .9390 
1.2 .9414 .9437 .9461 .9485 .9505 .9528 .9548 .9568 .9592 .9608 
1.3 .9627 .9647 .9663 .9683 .9699 .9714 .9730 .9746 .9758 .9774 
1.4 .9786 .9801 .9813 .9825 .9833 .9845 .9857 .9865 .9877 .9885 
1.5 .9892 .9900 .9908 .9916 .9920 .9928 .9932 .9940 .9944 .9948 
1.6 .9952 .9956 .9960 .9964 .9968 .9972 .9976 .9976 .9980 .9980 
1.7 .9984 .9984 .9987 .9987 .9987 .9991 .9991 .9991 .9995 .9995 

 

Table 9. Cumulative Distribution Table for Exponential Power at p = 5.6 
 

t 0.0 .01 .02 .03 .04 .05 .06 .07 .08 .09 
0. .5002 .5041 .5081 .5121 .5161 .5201 .5240 .5280 .5320 .5360 
.10 .5400 .5439 .5479 .5519 .5559 .5598 .5638 .5678 .5718 .5758 
.20 .5797 .5837 .5877 .5917 .5957 .5996 .6036 .6076 .6116 .6156 
.30 .6195 .6235 .6275 .6315 .6354 .6394 .6434 .6474 .6514 .6553 
.40 .6593 .6633 .6673 .6713 .6752 .6792 .6832 .6872 .6912 .6951 
.50 .6991 .7031 .7071 .7110 .7150 .7186 .7226 .7266 .7305 .7345 
.60 .7385 .7425 .7465 .7504 .7544 .7580 .7620 .7660 .7699 .7739 
.70 .7775 .7815 .7855 .7894 .7930 .7970 .8010 .8046 .8085 .8121 
.80 .8161 .8197 .8237 .8272 .8312 .8348 .8384 .8420 .8459 .8495 
.90 .8531 .8567 .8603 .8638 .8674 .8706 .8742 .8778 .8810 .8845 
1. .8877 .8913 .8945 .8977 .9008 .9040 .9072 .9104 .9132 .9164 
1.1 .9191 .9219 .9251 .9279 .9307 .9335 .9359 .9386 .9410 .9438 
1.2 .9462 .9486 .9510 .9530 .9554 .9573 .9597 .9617 .9637 .9657 
1.3 .9673 .9693 .9709 .9725 .9741 .9757 .9772 .9788 .9800 .9812 
1.4 .9828 .9840 .9852 .9860 .9872 .9880 .9892 .9900 .9908 .9916 
1.5 .9924 .9928 .9936 .9940 .9948 .9951 .9955 .9963 .9967 .9967 
1.6 .9971 .9975 .9979 .9983 .9983 .9987 .9987 .9991 .9991 .9991 
1.7 .9995 .9995 .9995 .9999 .9999 .9999 .9999 .9999 .9999 .9999 
1.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 


