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Abstract Given a set of data, one of the statistical issues is to see how well the data fit into postulated model. This
technique necessitates the corresponding table of the probability distribution for the proposed model. In this paper,
we examined, to what limit of p can normal approximate this sample without falling into type | error (i.e. a random
variable x having normal distribution when indeed it has exponential power distribution with estimated parameter p).
We also present the goodness-of-fit test for exponential power distribution using the conventional testing methods
which are discussed, one is Pearson’s ;(2 test and the other one is kolmogorov-Smirnov test. An example in poultry
feeds data and a simulation example are included, comparison with the fitting of the normal distribution is also
examined for further illustration.
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1. Introduction

For p > 0, consider the random variable Z with density

function
2
f(x)= 1 exp{—'x_!;| } (1)
20, p" pr[1+ 1] Pop
p

where —o0 < X <o00,—00 < <o, p>0 and op >0. 1) is

called exponential power distribution with shape
parameter p which regulates the tail region. Several
properties of this distribution have been studied by many
authors both as univariate and its multivariate extension.
Among them are Olosunde [7], Agro [1,2], Mineo and
Ruggieri [6] and others. Many authors have also found
this distribution useful as substitute to normal distribution
in applications; Lindsey [4] have applied it in repeated
measurements, also Olosunde [7] in fitting poultry feeds
data, just to mention few. The defined random variable
family exponential power distribution retains many
statistical properties of the normal and Laplace
distribution, that is, what differentiate exponential power
(EP(p)) from the normal and Laplace is the shape factor,
which makes the tail becomes thicker as p — . The

distribution can also be regarded as generalized normal(or
Laplace) because at p =2(or1), we have the normal(or
Laplace) distribution with parameters x# and o. The

distribution (1) because of its shape parameter performed
better when compare to its normal distribution subclass

especially in an experiment where small sample size is
feasible.

The moment can be obtained from the maximization of
the log-likelihood function [6]

ﬁ(x;y,o—p, p) =log L(X;,u,O'p, p)
=-n Iog{z pllpGpF(1+%j:| @)

Zin:1|xi _/”|p

p
pop

the derivative of (1.2) with respect to 4, o and p and
equating to zero gives the following equations:

n
aelx) Z—LZM — " sign(x ) =0 (3)
du opia
d/(x) n 1 p
__n P =0 4
Top 0p+0'8+12|)(| 4 (4)
d/(x)

= —Lz[ln p+y (1+1/ p)—1]
p

n P
+Z:i:1|)(—'/4 l+In0'p—|n|xi _'uqzo
pog  LP

dp
(5)

where y is the di-gamma function. The equation 1.3 and

1.5 can only be resolved using numerical approach, while
the explicit solution to 1.4 is:
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Therefore, the location, scale and shape parameters can
be estimated from the sample by maximizing the log-
likelihood function, using numerical approach because,
the maximizing expressions for location and shape
parameters are not in close form. Although statistical
properties about exponential power and its generalization
have been discussed extensively in the literature, but given
a data set Xq,..., X,,, there is a problem about how well

the underlying distribution can be represented by a
exponential power distribution. The Pearson ;52 and

Kolmogorov-Smirnov’s test and so many others are
important tools commonly used in statistical practice.
However, to carry this out these test effectively, we
require the associated probability distribution table. Just
like the normal distribution, the cumulative distribution
table of exponential power random variable, to the best of
our knowledge are not available in any literature. This
deficiency may be one of the hindrances to wide use of
exponential power distribution when compare to normal
distribution as exponential power distribution generalized
the normal distribution and it cdf is not in close form. In
what follows, we establish distribution table for the
random variable having (1) with different values of p the
shape parameter. In section 2 we describe how the table
was developed. Section 3 discuss the two procedures for
the goodness-of-fit test (Pearson and Kolmogorov-
Smirnov). Section 4 presents a simulation data set of
exponential power distribution, this is also included to
illustrate the use of the table. Importantly, the normal
distribution has been well known to be the limiting
distribution for many density functions. In this paper, we
examined, to what limit of p can normal approximate this
sample without falling into type | error (i.e. a random
variable x having normal distribution when indeed it has
exponential power distribution with estimated parameter p)
and finally an example of potential application to poultry
feeds data from Olosunde, [7] is also examined.

2. Exponential Power Distribution Table

The cumulative distribution function (cdf) for a
standardized random variable X having (1) with real p can
be expressed has

t 4

I ;exp ~Eloldx (D)
wzpl’pr[ulj P

p

Thus, for each specified p, we can calculate the
corresponding probability for each value of t. In the table
we present the corresponding probabilities for t ranging

from 0.00 until P(X <x)~1 to 3 decimal places, with

each increase in length by 0.01. We employed Simpson
rule in Numerical Computation in conjunction with R
program developed by lhaka and Gentleman [3]. We
prefer Simpson’s method compare to other methods
because its guarantees the accuracy level of the table. The

P(X <x)=

table is arranged as follows, if we wish to compute, say x
= 0.15, the table in the appendix can be used in the this
way:

P(Y <0.15)= 0.5586, when p=2.6
P(Y <0.15)= 05585, when p=3.4

from the table we can see that the probability distribution
of exponential power distribution depends on the shape
parameter, p, and as p increases the cdf changed. For

example the, P(Y <3.0)=0.9998 remain the same at the

accuracy of 107* for p ranging from 2.60 to 5.60, values
that normal gave a good approximations are left out.
Therefore, the tables were truncated at some points, when
the resulting values of P(X <x) repeat the previous
values for increase in shape parameter p. To check the
accuracy of the table in the appendix, from our program
we allowed p = 1 which of course gave the values for the
cdf of Laplace distribution otherwise known as double
exponential (not reproduce here). Also, when p = 2 we
have the values for the cdf of a random variable having a
standard normal probability distribution function (not
reproduce here, but available in many Statistical texts), we
carefully select our p for some values for illustration of its
usefulness and applications purposes in order to save
pages. The algorithm on R to further developed extensive
table can be made available upon request.

3. Goodness-of-Fit Tests for The

Exponential Power Distribution

In this section, we present the two commonly used
procedures for goodness-of-fit test but now with
exponential power distribution as the underlining

distribution of interest. One is Pearson's ;(2 test and the

other one is Kolmogorov - Smirnov test. These are two
well known tests in the literature to examine how well a
set of data fits into a postulated model provided that the
probability distribution of the postulated random variable
is available.

3.1. ;(2 Procedure for Exponential Power
Distribution
Given a set of data Xy,..., X,,, carrying out Pearson’s

;(2 test to ascertain if the data is well fit into exponential
power distribution EP(py) , the procedures are well
known in most statistical text.

The ;(2 test statistic with degree of freedoms K — 1 is
then defined as

(8

where N; is the number of outcomes that fall in the ith
interval and E; is the expected number in the ith interval.
The selection of K follows the general rule in the
application of Pearson’s ;(2 test.
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To illustrate this a simulation of 1000 samples from
exponential power with p = 4.4 and comparatio was done
with the normal distribution.
Example 2: (Simulation from
distribution)

exponential  power

Table 4.1. Pearson’s )(2 Test

Intervals n p; EP(4.4) normal
(~0,-1.75] 3 0.0033 33 40.1
(-1.75,-1.25] 55 0.0540 54.0 65.5
(-1.25,-0.75] 149 0.1524 152.4 121.0
(-0.75,-0.25] 193 0.1924 1924 1747
(-0.25,0.25] 197 0.1958 195.8 197.4
(0.25,0.75] 196 0.1924 1924 1747
(0.75,1.25] 151 0.1524 152.4 121.0
(1.25,1.75] 52 0.0540 54.0 65.5
(1.75,0] 4 0.0033 33 40.1

The Table 4.1 shows a simulation of 1000 samples from
exponential power distribution with p =4.4, where n is

the observed frequency in the ith interval. Np; and normal

are the expected frequency in the ith interval for
EPD(4.4) and normal distribution respectively. We

obtained y? value of 0.4207 for EP(4.40) with degree of

freedom 9, thus EP(4.40) is accepted as expected.
However, the goodness-of-fit for N(0,1) gives an observed

;(2 value of 89.72, which results in the rejection of N(0,1)

model for the same data set. See Table 4.2 for detail report.

3.2. Kolmogorov Test Procedure on the
Exponential Power Distribution

If we have a random sample Xq,..,X, from a
population with distribution function F(x), we desire to

see if a postulated exponential power distribution (with
specified pgy) can be used to fit the underlying population
of the data. The null hypothesis can be stated as follows

Ho:F(x)=Gg(x) forall x
against the alternative

Hy : F(x)# Gp (x) for at least one x.

0, X< X(l)

Fn(X)Z ,X(i)SXSX(i+1),k=1,...,n—1;

i

n
>

1, x> X(n)

where X ... Xy in the expression of F,(x) are the

n
ordered statistics of Xy,..,X,. Gp(x) at each sample

points of X; can be found from the exponential power
distribution table. In this case, the Kolmogorov-Smirnov
test statistic D(.,.) is the maximum distance between
empirical distribution function and postulated distribution
function at the sample points. At significant level of «,
the test endpoint d, for test statistic D can be found
from Miller [5]. The rule is that if the calculated D is
larger than d, the postulated exponential power
distribution function is too far away from the observed
distribution function. Thus Hg is rejected at o level of
significance, otherwise, H, is accepted at the same
significance level. To carry out this test, it is critical to
find the F,(x) s for the postulated exponential power

distribution. The table provide in this paper makes it
possible for the implementation of this test.

4. Applications

Example 1: (Approximation of the Exponential Power
Distribution by The Normal Distribution)

Normal distribution has been well known to be the
limiting distribution for so many distribution in the
literature. In this section with explore to what value of the
parameter p will normal give an acceptable approximation
to data having exponential power distribution with
parameter p; . This will also examine the closeness

between exponential power and normal distributions,
using the Kolmogorov-Smirnov test of normality distance.

Let X ~N(0,1) and F(x) be the cdf also Ilet
Y ~EP(p) and G,(y) be the cdf. The Kolmogorov
distance between F(x) and G, (y) is defined as

where Gy (x) denotes the cdf of EF sup
0(x) (Po) D(F.Gp)= 2 |F-Gy| (10)
sup
D(Fn(x),Gp(x)): z |Fn(x)—Gp(x)| ©) The values of D(F,Gp) can be obtained from the
where Tables in the appendix. The values of D(F , Gp) from some
selected p =1.6—4.4. These are shown in the table below
Table 4.2. Kolmogorov distance between F and Gp
p 1.6 2.2 2.6 2.8 34 3.8 4.0 4.2 4.4
D ( F.G, ) 0.0146 0.0065 0.0197 0.0226 0.0268 0.0348 0.0415 0.0447 0.0478 0.0504

we observed from Table 4.2, that as p increases
D(F,Gp) also increases, this implies that approximation
by normal distribution becomes poorer with large
estimated p from experimental samples. Large D(F,Gp)

is noticeable in all p's when t = 1.6. Therefore, normal

assumption in such case of large p value may lead to error
in conclusion. It should be noted that the significance of

D(F,Gp) also depends on the sample size.




4 American Journal of Applied Mathematics and Statistics

Example 3: (Applications to Poultry feeds data) The data
was obtained from Olosunde [7], where parameters have
been estimated using maximum likelihood approach
numerically. The cholesterol level x; of 48 eggs of
chicken fed with organic copper-salt are measured in
mg/egg , where 5.20 is the estimated p value for
exponential power distribution and 131.457 and 37.232
are the population mean and standard deviation respectively.
Also for Normal we have 59.10 and 1.822 as the estimated
mean and standard deviation respectively. The ordered data
set x; are given in Table 4.3, z; and t; is the standardized

values for x; for EP(5.20) and normal respectively.

Z; =P(EP(5.20<7)) and T; =(P(N(0,1)) <t;) is the

normal counterpart. We define Dgp as the
max(|Z; =i/n|,|Z; =(i-1)/n|) for EP(5.20) and Dy
as max(|Ti —i/n|,|Ti —(i—l)/n|) for normal distribution.
From Table 4.3, using Kolmogorov-Smirnov test, we find
the corresponding |D|=0.061833 for EP(5.20) and

|D|=0.0779 for normal distribution. One can easily see

that the fit of exponential power cdf is uniformly better
than that of the standard normal cdf in this example. All
these have been made possible using the Table in the
appendix. Details are provided in Table 4.3.

Table 4.3. Kolomogorov Goodness-of-Fit Test

Xi Z t Z; IDEP| Ti IDN
60.73 -1.489196365 -1.899629351 0.0115 0.0115 0.5294 0.5294
66.03 -1.374792238 -1.757278685 0.0254 0.01627 0.5392 0.518367
71.33 -1.260388111 -1.614928019 0.0452 0.0173 0.5537 0.512033
76.63 -1.145983983 -1.472577353 0.0713 0.01203 0.5708 0.5083
81.86 -1.033090854 -1.33210679 0.1065 0.023167 0.5918 0.508467
81.93 -1.031579856 -1.330226687 0.1065 0.0185 0.5918 0.487633
81.93 -1.031579856 -1.330226687 0.1065 0.03933 0.5918 0.4668
87.16 -0.918686727 -1.189756124 0.1429 0.02377 0.617 0.471167
92.46 -0.8042826 -1.047405458 0.1829 0.016233 0.6469 0.480233
92.52 -0.802987459 -1.045793941 0.1864 0.02193 0.96492 0.77742
97.76 -0.689878473 -0.905054792 0.2284 0.020067 0.6814 0.473067
97.82 -0.688583332 -0.903443275 0.2284 0.0216 0.6841 0.454933
103.06 -0.575474345 -0.762704125 0.2707 0.0207 0.7236 0.4736
103.11 -0.574395061 -0.761361195 0.2747 0.01697 0.7236 0.452767
108.36 -0.461070218 -0.620353459 0.3182 0.026533 0.7676 0.475933
108.41 -0.459990934 -0.619010529 0.3182 0.01513 0.7709 0.4584
113.66 -0.346666091 -0.478002793 0.3613 0.027967 0.8156 0.482267
113.7 -0.345802664 -0.476928449 0.3613 0.0137 0.8156 0.461433
118.96 -0.232261964 -0.335652127 0.4088 0.0338 0.8669 0.4919
119 -0.231398536 -0.334577783 0.4088 0.012967 0.8707 0.474867
124.26 -0.117857837 -0.193301461 0.4563 0.039633 0.9247 0.508033
124.3 -0.116994409 -0.192227116 0.4524 0.0149 0.9247 0.4872
129.56 -0.003453709 -0.050950795 0.4998 0.041467 0.9801 0.521767
129.6 -0.002590282 -0.04987645 0.4996 0.020433 0.9801 0.500933
134.86 0.110950418 0.091399871 0.5437 0.0437 0.0359 0.48493
134.89 0.111597988 0.09220563 0.5437 0.022867 0.0359 0.50577
140.16 0.225354545 0.233750537 0.5912 0.049533 0.091 0.4715
140.19 0.226002115 0.234556296 0.5912 0.0287 0.091 0.49233
145.46 0.339758672 0.376101203 0.6347 0.051367 0.148 0.45617
145.48 0.340190386 0.376638376 0.6347 0.030533 0.148 0.477
150.76 0.454162799 0.518451869 0.6778 0.0528 0.1985 0.44733
150.78 0.454594513 0.518989042 0.6778 0.031967 0.1985 0.46817
156.06 0.568566926 0.660802535 0.7253 0.058633 0.2454 0.4421
156.08 0.56899864 0.661339708 0.7253 0.0378 0.2454 0.46293
161.36 0.682971054 0.803153202 0.7681 0.059767 0.2881 0.44107
161.37 0.68318691 0.803421788 0.7681 0.038933 0.2881 0.4619
166.66 0.797375181 0.945503868 0.8136 0.0636 0.3289 0.44193
166.67 0.797591038 0.945772454 0.8136 0.042767 0.3289 0.46277
171.96 0.911779308 1.087854534 0.8535 0.061833 0.3621 0.4504
171.97 0.911995165 1.08812312 0.8535 0.041 0.3621 0.47123
177.26 1.026183435 1.2302052 0.8935 0.060167 0.3907 0.46347
177.26 1.026183435 1.2302052 0.8935 0.039333 0.3907 0.4843
182.56 1.140587562 1.372555866 0.9259 0.0509 0.4147 0.48113
182.56 1.140587562 1.372555866 0.9259 0.030067 0.4147 0.50197
182.56 1.140587562 1.372555866 0.9259 0.0116 0.4147 0.5228
187.86 1.25499169 1.514906532 0.9528 0.0153 0.4345 0.52383
187.86 1.25499169 1.514906532 0.9528 0.02637 0.4345 0.54467
193.16 1.369395817 1.657257198 0.9746 0.0254 0.4515 0.5485
[2] Agro, G. (1995), Maximum Likelihood Estimation for the
Exponential Power Distribution. Communications in Statistics

References (Simulation and Computation), 24(2), 523-536.
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Table 1. APPENDIX: Cumulative Distribution Table for Exponential Power at p = 2.6
t 0.0 .01 .02 .03 .04 .05 .06 .07 .08 .09
0. .5001 .5040 .5079 5118 5157 .5196 5235 5274 5313 5352
.10 5391 .5430 .5469 .5508 5547 .5586 .5625 .5664 .5699 5738
.20 5777 5816 .5855 .5894 .5933 5972 .6011 .6050 .6089 6124
.30 6163 6202 6241 .6280 6319 .6354 .6393 6432 .6467 .6506
40 .6545 .6580 .6619 .6658 .6693 6732 .6767 .6806 .6841 .6880
.50 .6915 .6950 .6989 7024 .7059 .7098 7133 7168 71204 7239
.60 1274 .7309 7344 7379 7414 7449 7484 7515 7550 .7586
.70 7617 .7652 .7683 7718 7749 7784 7815 7847 7878 7913
.80 7944 7975 .8006 .8038 .8069 .8096 .8127 .8159 .8186 .8217
.90 .8244 .8275 .8303 .8334 .8361 .8388 .8416 .8443 .8470 .8498
1. .8525 .8552 .8576 .8603 .8626 .8654 8677 .8704 .8728 .8751
11 8774 .8798 .8821 .8845 .8868 .8891 .8915 .8934 .8958 .8977
1.2 .9000 .9020 .9043 .9063 .9082 .9102 9121 9141 .9160 .9180
1.3 .9195 9215 .9230 .9250 .9266 .9285 .9301 .9316 .9332 .9347
14 .9363 9379 9394 9410 .9425 9437 .9453 .9468 .9480 .9496
15 .9507 .9519 .9531 .9546 .9558 .9570 .9581 .9593 .9601 9612
1.6 .9624 .9636 .9644 .9655 .9663 .9675 .9683 .9694 .9702 9710
1.7 9718 9726 9737 .9745 .9753 9761 9764 9772 .9780 .9788
1.8 .9796 .9800 .9807 9811 .9819 .9827 .9831 .9835 .9842 .9846
19 .9854 .9858 .9862 .9866 .9870 .9878 .9881 .9885 .9889 .9893
2. .9897 .9901 .9905 .9909 .9909 .9913 .9917 .9920 .9924 .9924
2.1 .9928 .9932 .9936 .9936 .9940 .9940 .9944 .9948 .9948 .9952
2.2 .9952 .9955 .9955 .9959 .9959 .9959 .9963 .9963 .9967 .9967
2.3 .9967 9971 9971 9971 .9975 .9975 .9975 .9979 .9979 .9979
24 9979 .9983 .9983 .9983 .9983 .9983 .9987 .9987 .9987 .9987
25 .9987 .9987 .9991 .9991 .9991 .9991 .9991 .9991 .9991 .9991
2.6 .9991 .9994 .9994 .9994 .9994 .9994 .9994 .9994 .9994 .9994
2.7 .9994 .9994 .9994 .9994 .9994 .9998 .9998 .9998 .9998 .9998
2.8 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998
2.9 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998
3. .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998
31 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998
3.2 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998
3.3 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998
34 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998
Table 2. Cumulative Distribution Table for Exponential Power at p=3.0
t 0.0 .01 .02 .03 .04 .05 .06 .07 .08 .09
0. .5001 .5040 .5079 5118 5157 5195 5234 5273 5312 5351
.10 .5390 .5428 5467 .5506 .5545 .5584 .5623 .5661 .5700 5739
.20 5778 5817 .5856 .5894 .5933 5972 .6011 .6050 .6085 .6123
.30 6162 .6201 .6240 .6279 6318 .6356 .6395 .6430 .6469 .6508
.40 .6547 .6586 6621 .6659 .6698 6737 6772 6811 .6850 .6885
.50 .6923 .6958 .6997 7032 7071 .7106 7145 .7180 7218 7253
.60 7288 1327 7362 1397 7432 1467 .7506 7541 71576 7611
.70 7646 7677 7712 747 7782 7816 .7848 .7882 7914 7949
.80 .7980 .8015 .8046 .8077 8112 .8143 8174 .8205 .8236 .8267
.90 .8298 .8329 .8356 .8387 .8418 .8446 8477 .8504 .8531 .8562
1. .8589 .8616 .8644 .8671 .8698 .8725 .8752 .8776 .8803 .8826
11 .8853 .8877 .8904 .8927 .8950 .8974 .8997 .9020 .9044 .9063
1.2 .9086 9110 9129 9152 9172 9191 .9210 .9234 .9253 .9269
1.3 .9288 .9308 9327 .9342 .9362 9377 .9397 9412 .9428 .9443
14 .9459 9475 .9490 .9506 9521 .9533 .9548 .9564 9575 .9587
15 .9603 .9614 .9626 .9638 .9649 .9661 9673 .9684 .9692 .9704
1.6 9715 9723 9731 9742 .9750 .9758 9770 9777 .9785 9793
1.7 .9801 .9808 .9816 .9824 .9828 .9836 .9843 .9847 .9855 .9859
1.8 .9867 .9871 .9878 .9882 .9886 .9890 .9898 .9902 .9906 .9909
1.9 19913 9917 9921 9925 .9929 .9933 19933 .9937 .9940 .9944
2. .9944 .9948 .9952 .9952 .9956 .9960 .9960 .9964 .9964 .9968
21 .9968 .9972 .9972 .9972 .9975 .9975 .9975 .9979 .9979 .9979
2.2 .9983 .9983 .9983 .9987 .9987 .9987 .9987 .9987 .9991 .9991
2.3 .9991 .9991 .9991 .9991 .9995 .9995 .9995 .9995 .9995 .9995
24 .9995 .9995 .9999 19999 .9999 .9999 19999 .9999 19999 19999
25 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999
2.6 .9999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 3. Cumulative Distribution Table for Exponential Power at p = 3.4

t 0.0 .01 .02 .03 .04 .05 .06 .07 .08 .09
0. .5003 .5041 .5080 5119 5158 5197 .5236 5274 5313 .5352
.10 5391 .5430 .5469 .5508 .5546 .5585 .5624 .5663 5702 5741
.20 5779 .5818 5857 .5896 5931 .5970 .6009 .6047 .6086 6125
.30 .6164 .6203 .6242 .6280 .6319 .6358 .6397 .6436 .6475 .6513
40 .6548 .6587 .6626 .6665 6704 6743 6778 .6816 .6855 .6894
.50 .6929 .6968 .7007 .7046 .7081 7119 7154 7193 7232 7267
.60 .7306 7341 .7380 7415 .7450 .7488 7523 .7558 7597 7632
.70 .7667 7702 7737 7772 .7807 .7842 7877 7912 7947 .7982
.80 .8017 .8048 .8083 8114 .8149 .8180 .8215 .8246 8277 8312
.90 .8343 .8374 .8405 .8436 .8467 .8498 .8529 .8556 .8588 .8615
1. .8646 .8673 .8704 8731 .8758 .8786 .8813 .8840 .8867 .8894
11 8922 .8945 8972 .8995 .9023 .9046 .9069 .9092 9116 9139
1.2 9162 .9186 .9205 .9228 .9248 9271 .9291 .9310 .9329 .9349
1.3 .9368 .9388 .9407 .9423 .9442 .9458 9477 .9492 .9508 .9524
14 .9539 .9555 .9570 .9586 .9601 .9613 .9628 .9640 .9652 .9667
15 .9679 .9691 .9702 9714 9726 9733 .9745 9757 .9764 9776
1.6 .9784 9792 .9803 .9811 .9819 .9827 .9834 .9842 .9846 .9854
17 .9861 .9869 .9873 .9881 .9885 .9893 .9896 .9900 .9908 .9912
1.8 .9916 .9920 .9924 .9928 9931 .9935 .9939 .9943 .9947 .9947
1.9 .9951 .9955 .9959 .9959 .9962 .9966 .9966 .9970 .9970 9974
2. .9974 .9974 .9978 .9978 .9982 .9982 .9982 .9986 .9986 .9986
21 .9990 .9990 .9990 .9990 .9990 .9994 .9994 .9994 .9994 .9994
2.2 .9994 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997
23 .9997 .9997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
24 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 4. Cumulative Distribution Table for Exponential Powerat p=3.8

t 0.0 .01 .02 .03 .04 .05 .06 .07 .08 .09
0. 4999 .5038 .5076 5115 5154 .5193 5232 5271 .5310 .5349
.10 .5388 5427 .5466 .5505 .5544 .5583 5621 .5660 .5699 5738
.20 5777 .5816 .5855 .5894 .5933 5972 .6011 .6050 .6089 .6128
.30 .6167 .6205 .6244 .6283 6322 .6361 .6400 .6439 .6478 .6517
40 .6552 .6591 .6630 .6669 .6708 6747 6785 .6824 .6863 .6898
.50 .6937 .6976 .7015 .7054 .7089 7128 7167 .7206 7241 .7280
.60 7315 .7354 .7393 7428 7467 .7502 7541 .7576 7615 .7650
.70 .7685 7724 7759 7794 .7837 .7868 .7903 .7938 7973 .8008
.80 .8043 .8078 8113 .8148 8179 8214 .8249 .8280 .8315 .8347
.90 .8382 .8413 .8444 .8479 .8510 .8541 .8572 .8604 .8635 .8662
1. .8693 8724 .8751 .8783 .8810 .8841 .8868 .8896 .8923 .8950
11 .8977 .9005 .9028 .9055 .9082 .9106 9129 .9156 .9180 .9203
1.2 .9226 .9250 .9269 .9293 .9316 .9335 .9355 .9378 .9398 9417
1.3 .9437 .9456 9472 .9491 .9511 .9526 .9542 .9561 9577 .9592
14 .9608 .9623 .9635 .9651 .9666 .9678 .9690 .9705 9717 .9729
15 .9740 .9752 .9760 9771 .9783 .9830 .9803 .9810 .9818 .9830
1.6 .9838 .9845 .9853 .9861 .9865 .9873 .9880 .9884 .9892 .9896
1.7 .9904 .9908 .9915 .9919 .9923 .9927 .9931 .9935 .9939 .9943
1.8 .9947 .9951 .9954 .9954 .9958 .9962 .9962 .9966 .9970 .9970
1.9 .9974 .9974 .9974 .9978 .9978 .9982 .9982 .9982 .9986 .9986
2. .9986 .9986 .9989 .9989 .9989 .9989 .9989 .9993 .9993 .9993
21 .9993 .9993 .9993 .9993 .9993 .9997 .9997 .9997 .9997 .9997
2.2 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997
2.3 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997
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Table 5. Cumulative Distribution Table for Exponential Power at p=4.0

t 0.0 .01 .02 .03 .04 .05 .06 .07 .08 .09
0. .5001 .5040 .5079 5118 5157 .5196 .5235 5274 5313 .5352
.10 5391 .5430 .5469 .5508 5547 .5586 .5625 .5664 .5703 5742
.20 5781 .5820 .5859 .5898 .5937 .5976 .6015 .6054 .6093 .6132
.30 6171 .6210 .6249 .6288 6327 .6366 .6405 .6444 .6480 .6519
40 .6558 .6597 .6636 .6675 6714 .6753 .6792 .6831 .6870 .6905
.50 .6944 .6983 .7022 .7061 .7100 7135 7174 7213 7252 7287
.60 7326 .7365 .7400 7439 7478 7513 .7552 7587 7626 7662
.70 7701 7736 T771 .7810 .7845 .7880 7915 .7954 .7989 .8024
.80 .8059 .8095 .8130 .8165 .8200 .8231 .8266 .8301 .8336 .8368
.90 .8403 .8434 .8465 .8500 .8531 .8563 .8594 .8625 .8656 .8688
1. 8719 .8750 8781 .8808 .8840 .8867 .8894 .8925 .8953 .8980
11 .9007 .9035 .9062 .9085 9113 .9136 9163 .9187 .9210 .9234
1.2 .9257 .9280 .9304 .9327 .9347 .9370 .9390 .9413 .9433 .9452
13 9472 .9491 .9507 .9526 .9542 .9561 .9577 .9593 .9608 .9624
14 .9639 .9655 9671 .9682 .9698 9710 9721 9737 .9749 .9760
15 .9768 .9780 9792 .9799 9811 .9819 .9831 .9838 .9846 .9854
1.6 .9862 .9870 .9877 .9885 .9889 .9897 .9901 .9909 9912 .9920
1.7 .9924 .9928 .9932 .9936 .9940 .9944 .9948 .9951 .9955 .9959
1.8 .9963 .9963 .9967 9971 9971 .9975 .9975 .9979 .9979 .9983
1.9 .9983 .9983 .9987 .9987 .9987 .9990 .9990 .9990 .9990 .9994
2. .9994 .9994 .9994 .9994 .9994 .9994 .9998 .9998 .9998 .9998
21 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998
2.2 .9998 .9998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Table 6. Cumulative Distribution Table for Exponential Power at p =4.4
t 0.0 .01 .02 .03 .04 .05 .06 .07 .08 .09
0. 4999 .5039 .5078 5117 5156 5195 5234 5274 5313 .5352
.10 5391 .5430 .5470 .5509 .5548 .5587 5626 .5665 5705 5744
.20 5783 5822 .5861 .5901 .5940 5979 .6018 .6057 .6096 .6136
.30 6175 6214 .6253 .6292 .6331 .6371 .6410 .6449 .6488 .6527
40 .6567 .6606 .6645 .6684 6723 6762 .6802 .6841 .6876 .6915
.50 .6954 .6994 .7033 7072 7111 .7150 7186 7225 7264 .7303
.60 7342 7378 7417 7456 7491 .7530 7570 .7605 7644 .7683
.70 7718 7758 7793 7832 7867 .7903 7942 7977 .8012 .8051
.80 .8087 .8122 .8157 .8193 .8228 .8263 .8298 .8334 .8369 .8404
.90 .8435 8471 .8506 .8537 .8569 .8604 .8635 .8667 .8702 .8733
1. .8765 .8796 .8823 .8855 .8886 .8913 .8945 .8972 .9004 .9031
11 .9058 .9086 9113 9141 .9168 .9192 .9219 .9243 .9266 .9293
1.2 9317 9341 .9360 .9384 .9407 .9427 .9450 .9470 .9489 .9509
1.3 .9529 .9548 .9568 .9583 .9603 .9619 .9634 .9650 .9666 .9681
14 .9697 .9709 9724 .9736 .9752 .9764 9775 .9787 .9799 .9807
15 .9819 .9830 .9838 .9846 .9858 .9866 .9873 .9881 .9889 .9893
1.6 .9901 .9909 .9913 .9920 .9924 .9928 .9936 .9940 .9944 .9948
1.7 .9952 .9956 .9960 .9963 .9963 .9967 9971 .9971 .9975 .9975
1.8 .9979 .9979 .9983 .9983 .9987 .9987 .9987 .9991 .9991 .9991
1.9 .9991 .9995 .9995 .9995 .9995 .9995 .9995 .9995 .9999 .9999
2. .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999
21 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999
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Table 7. Cumulative Distribution Table for Exponential Power at p=4.8

t 0.0 .01 .02 .03 .04 .05 .06 .07 .08 .09
0. .5001 .5041 .5080 5119 5159 .5198 .5238 5277 .5316 .5356
.10 .5395 5434 5474 .5513 5553 .5592 .5631 5671 5710 5749
.20 5789 .5828 .5868 .5907 .5946 .5986 .6025 .6065 .6104 .6143
.30 .6183 .6222 .6261 .6301 .6340 .6380 .6419 .6458 .6498 .6537
40 .6576 .6616 .6655 .6695 6734 6773 .6813 .6852 .6892 .6931
.50 .6966 .7006 .7045 .7084 7124 7163 .7203 7242 7281 7317
.60 .7356 .7396 .7435 7474 .7510 .7549 .7589 .7628 .7663 7703
.70 7742 7778 7817 .7852 .7892 7927 7967 .8002 .8041 .8077
.80 .8112 .8152 .8187 .8223 .8258 .8293 .8333 .8368 .8400 .8435
.90 8471 .8506 .8542 .8573 .8608 .8644 .8675 8707 8742 8774
1. .8805 .8837 .8868 .8900 .8931 .8963 .8990 .9022 .9050 .9081
11 .9109 .9136 .9164 9191 .9219 .9246 .9270 .9298 9321 .9345
1.2 .9369 .9392 .9416 .9439 .9463 .9483 .9506 .9526 .9546 .9565
13 .9585 .9601 .9621 .9640 .9656 9672 .9687 .9703 9719 .9735
14 9747 9762 9774 .9786 .9798 .9810 .9821 .9833 .9841 .9853
15 .9861 .9873 .9880 .9888 .9896 .9904 .9908 .9916 .9924 .9928
1.6 .9936 .9940 .9943 .9947 .9951 .9955 .9959 .9963 .9967 9971
17 .9975 .9975 .9979 .9983 .9983 .9987 .9987 .9987 .9991 .9991
1.8 .9991 .9995 .9995 .9995 .9995 .9999 .9999 .9999 .9999 .9999
1.9 .9999 .9999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2. 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Table 8. Cumulative Distribution Table for Exponential Power at p=5.2
t 0.0 .01 .02 .03 .04 .05 .06 .07 .08 .09
0. .5002 .5041 .5081 5120 .5160 5199 5239 5279 5318 .5358
.10 5397 5437 5476 .5516 .5556 .5595 .5635 5674 5714 5753
.20 5793 .5833 5872 5912 5951 .5991 .6030 .6070 .6110 .6149
.30 .6189 .6228 .6268 .6307 .6347 .6387 .6426 .6466 .6501 .6541
40 .6580 .6620 .6660 .6699 6739 6778 .6818 .6857 .6897 .6937
.50 .6976 .7016 .7055 .7095 7134 7174 7214 7253 7293 7328
.60 .7368 .7408 7447 7487 .7526 .7562 .7601 7641 .7681 7716
.70 7756 7795 .7835 .7870 .7910 .7946 .7985 .8025 .8060 .8096
.80 .8136 8171 .8211 .8246 .8282 .8322 .8357 .8393 .8428 .8464
.90 .8500 .8535 8571 .8603 .8638 .8674 .8705 8741 8773 .8808
1. .8840 8872 .8903 .8935 .8967 .8998 .9030 .9062 .9089 9121
11 .9149 9176 .9204 .9232 .9259 .9287 .9315 .9339 .9366 .9390
1.2 9414 .9437 .9461 .9485 .9505 .9528 .9548 .9568 .9592 .9608
13 .9627 .9647 .9663 .9683 .9699 9714 .9730 .9746 .9758 9774
14 .9786 .9801 .9813 .9825 .9833 .9845 .9857 .9865 .9877 .9885
15 .9892 .9900 .9908 .9916 .9920 .9928 .9932 .9940 .9944 .9948
1.6 .9952 .9956 .9960 .9964 .9968 .9972 .9976 .9976 .9980 .9980
1.7 .9984 .9984 .9987 .9987 .9987 .9991 .9991 .9991 .9995 .9995
Table 9. Cumulative Distribution Table for Exponential Power at p=5.6

t 0.0 .01 .02 .03 .04 .05 .06 .07 .08 .09
0. .5002 5041 .5081 5121 5161 5201 .5240 .5280 .5320 .5360
.10 .5400 .5439 5479 .5519 .5559 .5598 .5638 5678 5718 5758
.20 5797 5837 5877 5917 5957 .5996 .6036 .6076 .6116 .6156
.30 .6195 .6235 .6275 .6315 .6354 .6394 .6434 6474 .6514 .6553
40 .6593 .6633 .6673 6713 6752 6792 .6832 .6872 .6912 .6951
.50 .6991 .7031 7071 7110 .7150 .7186 7226 .7266 .7305 .7345
.60 .7385 7425 .7465 .7504 .7544 .7580 7620 .7660 .7699 7739
.70 7775 .7815 .7855 .7894 .7930 7970 .8010 .8046 .8085 .8121
.80 .8161 .8197 .8237 .8272 8312 .8348 .8384 .8420 .8459 .8495
.90 .8531 .8567 .8603 .8638 8674 .8706 8742 8778 .8810 .8845
1. 8877 .8913 .8945 .8977 .9008 .9040 .9072 .9104 9132 .9164
11 9191 9219 .9251 .9279 .9307 .9335 .9359 .9386 .9410 .9438
1.2 .9462 .9486 .9510 .9530 .9554 .9573 .9597 9617 .9637 .9657
1.3 .9673 .9693 .9709 9725 9741 9757 9772 .9788 .9800 .9812
14 .9828 .9840 .9852 .9860 .9872 .9880 .9892 .9900 .9908 .9916
15 .9924 .9928 .9936 .9940 .9948 .9951 .9955 .9963 .9967 .9967
1.6 9971 .9975 .9979 .9983 .9983 .9987 .9987 .9991 .9991 .9991
1.7 .9995 .9995 .9995 .9999 .9999 .9999 .9999 .9999 .9999 .9999
1.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000




