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1. Introduction 
Many statistical problems independently of the methods 

of solving them have a common property: before you get a 
specific set of data as a potentially acceptable to study the 
situation examines the several probabilistic models. When 
the data is received, there is a pronounced in a form of 
knowledge about relative acceptability of these models. 
One way to "revision" on the relative acceptability of 
probabilistic models is the Bayesian approach, which is 
based on Bayes' theorem. 

The Bayesian approach has a number of advantages that 
make it attractive enough for widespread application. The 
main difference of this approach from other approaches is 
that before the data is received, the decision-maker or a 
statistician examines the degree of his confidence in the 
possible models and presents them in the form of 
probabilities. 

Once the data is received, the Bayes' theorem allows us 
to calculate a new set of probabilities, which are revised 
the degree of credibility of possible models taking into 
account the new information received through the data. 

As is known, the statistical datas are often absent in 
actual tasks Decision-Making support, which makes use 
of many traditional frequency approaches unlawful. 
Available information may only contain subjective 
assessments in the form of expert evaluations and 
judgments. Moreover, the situation in which it is decided, 
may be generally new at all and has never been previously 
analyzed. These characteristics complicate the tasks 
Decision-Making support process and may call into 
question any conclusions and opinions. In such a situation, 
the application of the Bayesian Approach [1] is very 
effective. 

2. Experimental Methods 
The Bayesian approach [2] is based on the statistical 

nature of the observations. It is known that in the decision 
statistic used as input simultaneously two types of 
information: a priori (before the existing statistical 
production) and is contained in the initial statistical data. 
In this case, a priori information given to him in the form 
of an a priori probability distribution of the analyzed 
unknown parameter θ , that describes the degree of 
confidence that this option will take some value, before 
the collection of baseline statistics. State the value of the 
unknown parameter of the system means to find its 
posteriori distribution. The idea of the Bayesian approach 
lies precisely in the transition from a priori distribution to 
the posterior distribution. 

Let 1 2, ,..., nA A A - full group of mutually exclusive 

events. 1
n
i iA= = Ω , i jA A∩ =∅, when i j≠ . Then the 

posterior probability is: 
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where ( )iP A - the a priori probability of the event 
, ( )i iA P B A - the conditional probability of an event B , 

provided that the event occurred iA , and the event B  has 
a non-zero probability ( ( ) 0P B > ). 

Initially, Bayesian classification is used to formalize the 
knowledge of experts in expert systems, Bayesian 
classification is now also used as a method of Data 
Mining. 

The Bayesian approach consists of the following steps: 
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1. Determination of the a priori distribution ( )p θ  of 
the desired multi-dimensional parameterθ ; 

2. Getting the source of statistical data 1 2, ,...., nx x x  to 
the laws of distribution ( ), 1, 2,...,if x i nθ =  at fixed 
parameterθ ; 

3. The calculation of the likelihood function 
1 2( , ,...., )nL x x x θ  defined by the relation 

 1 2 1 2( , ,...., ) ( ) ( )...... ( )n nL x x x f x f x f xθ θ θ θ=  (2) 

4. The calculation of the posteriori distribution 
1 2( , ,...., )np x x xθ , determined by the relation 

 1 2
1 2

1 2

( ) ( , ,...., )
( , ,...., )

( , ,...., ) ( )
n

n
n

p L x x x
p x x x

L x x x p d
θ θ

θ
θ θ θ

=
∫

  (3) 

5. Building a Bayesian point and interval estimates of 
parameters θ̂  using the mean or modal value of the 
distribution found from the formula (3). 

 1 2 1 2
ˆ ( , ,...., ) ( , ,...., )mean n nE x x x p x x x dθ θ θ θ θ= = ∫   (4) 

 mod 1 2
ˆ argmax ( , ,...., ).np x x x

θ
θ θ=   

2.1. Experimental Set Up  
In many decision-making tasks a priori probability 

information about the States of nature can be changed 
after the new expert assessments or as a result of 
observation relevant developments related to states and 
confirming or refuting a priori information. 

The dependence of the posterior probabilities of a priori 
shows how much information and values of the unknown 
parameters contained in the statistics. If the posterior 
probabilities are highly dependent on the a priori, it is 
likely the data contains little information. If the posterior 
probabilities are weakly dependent on the choice of a 
priori distribution, the data are informative. 

Thus, using the Bayesian approach except for the 
probability distribution of the considered random variable 
X  is assumed that some a priori distribution parameters 
θ , the distribution function of values X . Relying on 
statistical data, the a priori distribution of the parameters 
θ  is modified by multiplying the likelihood function and 
normalization. The result of the modification is the 
posterior distribution of the parametersθ . In other words, 
the parameters of the random variable themselves are 
random variables with some distribution. 

The most important and challenging at the same time is 
a matter of choosing a priori distribution parameters. One 
of the factors here is that the presence of even statistical 
informative "poor" a priori distribution will not 
significantly affect the posterior. Another important factor 
is the computational complexity, especially if the 
calculations of the posterior distribution produced in series 
as they become available statistical information. Therefore, 
the choice of the a priori distribution affects its belonging 
to so-called class coordinated distributions such 
distributions that are a priori and a posteriori the same 
distribution, but with different parameters. 

Priori distributions modeling no a priori information are 
called uninformative. The postulate Bayes-Laplace [3] 

says that when nothing is known about the pre-parameter 
θ  a priori distribution should be uniform, i.e., all manner 
of outcomes of a random variable θ  have equal 
probability. The main problem of the use of uniform 
distribution as a non-informative a priori distribution is 
that a uniform distribution is not invariant with respect to 
the function of the parameter. If we know nothing about 
the parameter θ , then we also do not know, for example, 
about the function 1/θ . However, if θ  has a uniform 
distribution, 1/θ  no longer has a uniform distribution, 
although according to the postulate Bayes - Laplace, 1/θ  
must have the uniform distribution. Moreover, the uniform 
distribution cannot be used as a priori, if the set parameter 
values are infinite. 

In the literature, there is enough considerable number of 
approaches for the selection of the no information priori 
distribution having its advantages and disadvantages. 
However, the most interesting is, the approach is 
completely different from most traditional. The essence of 
this approach is as follows. Define more than one prior 
distribution, but a whole class Μof distributions π , for 
which you can find lower and upper probability of the 
event A as a 

 { }( ) inf ( ) :P A P Aπ π= ∈ Μ  

 { }( ) sup ( ) : .P A P Aπ π= ∈ Μ  

Under certain conditions, the set is completely 
determined by the lower and upper probability distribution 
functions. It should be noted that the class should be seen 
"not as a class of suitable prior distributions, as well as a 
suitable class of prior distributions. This means that every 
single distribution of the class is not the best or "good" a 
priori distribution, since no single distribution can not 
satisfactorily simulate the absence of information. But the 
whole class as a whole, define the upper and the lower the 
probability distribution is an appropriate model for the 
lack of information. 

Definition. The family of a priori distributions 
{ }( ; )G p Dθ=  is called the conjugate with respect to the 

likelihood function ( )1 2, ,...., nL x x x θ , and if the 

posterior distribution 1 2( , ,...., )np x x xθ  as calculated by 
the formula (3), again belongs to the same family G . 

If the likelihood function ( )1 2, ,...., nL x x x θ  can be 
represented in a form 
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 
= ⋅ 

 

 (5) 

Where 1 1 2( , ,..., ),nT x x x 1,j m=  and 1 2( , ,..., )nx x xψ  - 
some of the functions of the observations 1 2, ,..., nx x x , do 
not depend on the parameters θ , then there is the family 

{ }( ; )G p Dθ=  a priori distributions conjugate to 

( )1 2, ,...., nL x x x θ . The functions 1 1 2( , ,..., ),nT x x x  

1,j m=  also called sufficient statistics. 
On the other hand, before any data or observations of 

parameters are often not known, i.e. the researcher does 
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not have any useful a priori information about the values 
of the estimated parameter. In such cases it is necessary to 
consider the following selection rules [4] priori distribution: 

If the estimated scalar parameter θ  can take values in a 
finite interval [ ]min max;θ θ  or a infinite interval from −∞  
to ∞ , then the a priori density function ( )p θ  should be 
considered constant at the appropriate interval; 

if the meaning of the estimated parameter follows that it 
can take any positive values, it should be considered 
constant on the real line density function distribution of 
the logarithm of the value of the parameter, i. e, 

(ln )p constθ = , when (0; )θ ∈ ∞ . 
This a priori distribution is denoted by ˆ ( )p θ . The fact 

that so defined on infinite direct or semi-direct a priori 
distributions violated known rules of normalization of the 
probability density function (because the ˆ ( ) 1p dθ θ ≠∫ , 

ˆ ( )p dθ θ = ∞∫ , where the integration is over all possible 
values), does not deliver "technical inconveniences". As a 
priori distributions used uniform distribution 
ˆ (ln )p constθ =  and it allows the density distribution 

function ˆ ( )p θ  to minimize the entropy measure of 

information - ( ) ln ( )
a

a
H p p dθ θ θ

−

= ∫  for arbitrarily large 

values a . 
Given the normalization of the density function (3) we 

obtain: 

  1 2 1 2( , ,...., ) ~ ( ) ( , ,...., ).n np x x x p L x x xθ θ θ⋅  (6) 

Us determine the form a priori density ( )p θ  for the 
case (ln )p constθ = , when (0; )θ ∈ ∞ . 

Let { }( )F y P yθ θ= < - distribution function of the 
parameter. Then 

 { } { } ln( ) ln ln (ln )F y P y P y F yθ θθ θ= < = < =  

Accordingly, the density function of the parameter θ  is: 

 

ln

ln

( ) (ln ) (ln )( )
(ln )

1 1(ln ) ~ ,

F y F y yf y
y y y

f y
y y

θ θ
θ

θ

∂ ∂ ∂
= = ⋅

∂ ∂ ∂

= ⋅
 

since by the condition ln (ln ) (ln )f y p constθ θ= = . So 
that for (0; )θ ∈ ∞  we have: 

 1ˆ ( ) ~ .p θ
θ

 (7) 

From this we obtain formula for the calculation of the 
posterior distribution 

 1 2 1 2ˆ ˆ( , ,...., ) ~ ( ) ( , ,...., ),n np x x x p L x x xθ θ θ⋅  (8) 

where the likelihood function 1 2( , ,...., )nL x x x θ  has the 
form (5).  
Remark. Use as a priori laws of probability distributions 
associated with the observed general set of a family of sets 
of priori distributions { }( ; )p Dθ . However, the 

implementation of Bayesian approach is necessary to 
operate the specific priori distribution, which requires 
knowledge of the numerical values 0D  of the parameters 
D  on which our a priori probability distribution depends. 
In a broad sense, the a priori distribution parameters can 
be determined by the method of moments with known 
average values of the estimated parameters 

0 1 2( , ,..., )T
sE E E Eθ θ θ θ θ= =  and their standard 

deviations 1 1Dθ∆ = , 2 2Dθ∆ = , …, s sDθ∆ =  ...,. 

Let { }( ; )p Dθ  the family of priori distributions, 

conjugated with the likelihood function 1 2( , ,..., )nL x x x θ  
of observations available to us and let 0D  set parameter 
values D  for the analyzed case. Then, using a series of 
identical transformations the right side of the relation  

 1 2 0 1 2( , ,...., ) ~ ( ; ) ( , ,...., )n np x x x p D L x x xθ θ θ⋅  (9) 

is given to factors independent of θ  to the 
species 1( ; ( ,...., ))np D x xθ , where the last function 
belongs to the family ( ; )p Dθ , and each of the components 

1( ,..., )( 1, 2,...., )j nd x x j q=  of the vector of parameters 

1( ,...., )nD x x  is a function of 0D and { }1,...., nx x . 
Consistency of distributions is determined not only by 

the views of a priori distribution, but also the view of the 
likelihood function, i.e., type of distribution must be 
maintained when multiplying a priori distribution on the 
likelihood function with the normalization. Dirichlet 
distribution also applies to distributions. 

For a description of the Dirichlet distribution, consider 
the standard polynomial model. 

Let { }1,..., mω ωΩ =  the set of possible outcomes, and 
there is a set of N observations independently selected 
from Ω  the same probability of each outcome 

{ }j jP ω θ=  for all 1,...,j m= , where 0jθ ≥  and 

1
1

m

j
j
θ

=
=∑ . The probability that the outcome jω  of the 

N observations will occur jN time, determined from the 
well-known formula of polynomial distribution with 
parameters 1,..., mθ θ . However, the parameters 1,..., mθ θ  
themselves may be random variables and have a 
distribution or probability density ( )p θ . One of the most 
interesting distributions of the parameters 1,..., mθ θ  is a 
Dirichlet distribution, which is coordinated with a 
polynomial distribution in the sense that a priori and a 
posteriori distributions are Dirichlet distributions. 
A priori Dirichlet distribution ( , )s t  for a random vector of 
probabilities 1( ,..., )mθ θ θ= , where 1( ,..., )mt t t= , has the 
probability density function of the probability density of 
the proposed de Groot (De Groot) [5] 

 
1

1

1 1
( ) ( ) ( ) .

m m st j
j j

j j
p Г s Г stθ θ

−
−

= =

 
 = ⋅
 
 
∏ ∏  

Here the parameter is the average value (expectation) 
the probability iθ ; the parameter 0s >  determines the 
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effect of a priori distribution on the posterior probabilities; 
the vector t  belongs to the inner area unit simplex of 
dimension m , which we denote (1, )S m ; ( )Г ⋅ - the 
gamma function, satisfying conditions ( 1) ( )Г x x Г x+ =  
and (1) 1Г = . Necessary to note that the variables of the 
Dirichlet distribution are probabilities 1,..., mθ θ , satisfying 
the condition (1, )S mθ ∈ . This means that not only the 
random events are considered, but their probabilities. 

After receiving the observation vector 1( ,..., )mn n n= , 
where jn - the number of observations outcome jω , 
multiplying a priori density on the likelihood function 

( , )L n θ , we obtain the posterior density: 

 ( )p nθ  ∼ 1

1
( ) ( )

m n stj j
j

j
p L nθ θ θ

+ −

=
⋅ =∏  

which can be considered as the density of the Dirichlet 
distribution *( , )N s t+ , where 

 * * * *
1( ,..., ), .j j

m j
n st

t t t t
N s
+

= =
+

 

In other words, the Dirichlet distribution belongs to the 
coordinated class of distributions and under the 
recalculation a priori parameters t  are converted into *t . 
This is a very important feature, through which the Dirichlet 
distribution is widespread in the Bayesian analysis. 

3. Results and Discussion 

3.1. Results 
Example 1.  
a) A random variable with unknown parameter θ  value 
has an exponential distribution. Check the conditions of 
existence of the conjugate priori distribution, to determine 
its accessories thereof Class of distributions and the 
specific values of the parameters of the distribution.  
It is known that 

 0,( )
0 0.

xe for xf x
for x

θθθ
− ≥= 

<
 

From equation (2) have: 

 ( ) 1
1 2

1
, ,...., ( ) .

n
xin

n i
n i

i
L x x x f x e

θ

θ θ θ

 
 −
 = 

=

∑
= =∏  (10) 

Therefore, 

 ( ) 11 2, ,...., 0,
0 0.

n
xi

n in i

i

L x x x e for x
for x

θ
θ θ

 
 −
 = 


∑

=  ≥


<

 

Here 1;m = 1 2
1

( , ,..., )
n

n i
i

T x x x x
=

= ∑ - sufficient statistic 

that confirms the existence of a priori, conjugated with 
( )1 2, ,...., nL x x x θ  the distribution of the parameterθ . 

Now will update the belonging of this distribution to a 
certain class of distributions. 
Taking into account (7), from (8) we obtain:  

 
1 2 1 2

1 1

ˆ ˆ( , ,...., ) ~ ( ) ( , ,...., )

~

n n
n

xi
n i

p x x x p L x x x

e
θ

θ θ θ

θ

 
 − ⋅
 − = 

⋅

∑
⋅

 (11) 

The right side of relation (11) states that the family of 
conjugate priori distributions parameter θ  exponentially 
distributed the general total belongs to the class of gamma 
distribution with the density  

 1( ) , 0
( )

p е
Г

α
α βθβθ θ θ

α
− −= ⋅ >  

and distribution of parameters nα =  and 
1

n

i
i

xβ
=

= ∑ , 

respectively. 
It is known that the mean value ( Eθ ) and variance 

( Dθ ) of gamma - distributions are expressed by the 
parameters of the distribution α  and β  by the formulas: 

 2, .E Dα αθ θ
β β

= =  

Substituting into these relations instead Eθ and Dθ  
respectively given values 0θ  and 2∆ , we obtain as the 
solutions of a system from the two equations (and relative 
to α  and β ): 

 
2
0 0
2 2, .

θ θ
α β= =

∆ ∆
 

In the example above, we define a posteriori 
distribution, taking into account (10) and the density of 
gamma distribution: 

 1 1 1
1 2( , ,...., ) ~ .

n
xi

n i
np x x x e e

θ
α βθθ θ θ

 
 − ⋅
 − − − = 
∑

⋅ ⋅  

From here, it is seen that the a posteriori distribution of 
the parameter θ  again obeys the law gamma - distribution, 
but with the following parameters: 

 
1

, .
n

i
i

n xα α β β
=

= + = +∑

  

b) The random variable (the number of successes in s  
series of Bernoulli trials) ( )sθξ  has a binomial distribution, 
where θ - unknown probability of success in one such test, 
and s - the total number of tests in this series of Bernoulli. 
Check conditions for the existence of the conjugate prior 
distribution; determine its belonging in the class of 
distributions and specific parameters of the distribution. 

It is known that 

 { }( ) ( ) (1 ) ,

0,1, 2,...., .

x x s x
sf x P s x C

x s
θθ ξ θ θ θ −= = = −

=
 

There are observed such series. According to the 
formula (2) we have: 
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( )1 2
1

1

1 1

1

, ,...., ( )

(1 )

(1 ) ,

n

n i
i

n
x x s xi i is

i
n n

x ns x ni i
xi i is

i

L x x x f x

C

C

θ θ

θ θ

θ θ

=

−

=

−
= =

=

=

= −

∑ ∑
= −

∏

∏

∏

 (12) 

where ix  the number of successes in i -th series. There 

1;m = 1 2
1

( , ,..., )
n

n i
i

T x x x x
=

= ∑ - sufficient statistic that 

confirms the existence of a priori, coupled with 
( )1 2, ,...., nL x x x θ  the distribution parameter θ . Now, we 

will specify the distribution of belonging to a particular 
class of distributions. 

Define ˆ ( ) 1p θ =  for (0;1)θ ∈ , then 

 
1 2 1 2

1 1

ˆ ˆ( , ,...., ) ~ ( ) ( , ,...., )

~ (1 ) .

n n
n n

x ns xi i
i i

p x x x p L x x xθ θ θ

θ θ
− ⋅

= =

⋅

∑ ∑
⋅ −

 (13) 

The right side of relations (11) is (up to a normalizing 
factor, independent of θ ) the density of the beta 
distribution 

 1 1( )( ) (1 )
( ) ( )

a bГ a bp
Г a Г b

θ θ θ− −+
= ⋅ −

⋅
 (14) 

with parameters 
1

1
n

i
i

a x
=

= +∑  and 
1

1
n

i
i

b ns x
=

= − +∑  

respectively, where ( )Г z - the known Euler gamma 
function (see. Example 1 a)). 

Consequently, the family of conjugate prior 
distributions parameter θ  (the probability of "success") 
observed the binomial distribution of the total population 
belongs to the class of beta - distribution (14). 

It is known that the average value ( Eθ ) and variance 
( Dθ ) beta distribution parameters and expressed in terms 
a and b of this distribution by the formulas:  

  2
0 2, .

( ) ( 1)
a abE D

a b a b a b
θ θ θ= = = = ∆

+ + + +
 

Using these expressions we obtain as the solutions of 
the system of two equations relatively a  and b : 

 
2 2
0 0 0 0 0

0 02 2
0

(1 ) (1 ) 1
, .a b

θ θ θ θ θ
θ θ

θ

 − − −
= − = −  ∆ ∆ 

 

We define the posterior distribution, taking into account 
(10) and the expression of gamma density - distribution: 

 1 1 1
1 2( , ,...., ) ~ .

n
xi

n i
np x x x e e

θ
α βθθ θ θ

 
 − ⋅
 − − − = 
∑

⋅ ⋅  

From here, it is seen that the posterior distribution of 
parameter θ again obeys the gamma - distribution, but 
with the following parameters: 

 
1

, .
n

i
i

n xα α β β
=

= + = +∑

  

v) The random variable with unknown value of the 
parameter θ  has a uniform distribution on the segment 
[ ]0;θ . Check the conditions of existence of the conjugate 
priori distribution, to determine its accessories thereof 
Class of distributions and the specific values of the 
parameters of the distribution.  

It is known that 

 
[ ]

1 0 0,
( )

0 0; .

for x
f x

for x
θ θ

θ

 ≤ ≤= 
 ∉

 

From equation (2) have:  

 ( )1 2 max
1

1, ,...., , for ( ) max .
n

n i
i n

L x x x x n xθ θ
θ ≤ ≤

 = = ≤ 
 

(15) 

Therefore, within the overall view (6) we have: 
1;m = 1 2 max( , ,..., ) ( )nT x x x x n=  - sufficient statistic that 

confirms the existence of a priori, conjugated with 
( )1 2, ,...., nL x x x θ  the distribution of the parameter θ . 

Now will update the belonging of this distribution to a 
certain class of distributions. 

Taking into account (7), from (8) we obtain:  

 
1 2 1 2

1

max

ˆ ˆ( , ,...., ) ~ ( ) ( , ,...., )

1~ ( ) .

n n
n

p x x x p L x x x

for x n

θ θ θ

θ
θ

−

⋅

  ≤ 
 

 (16) 

The right side of the relations (16) is the density 
distribution of the Pareto of the form 

 
min

min1

min

( )
0

forp
for

α

α
αθ

θ θθ θ
θ θ

+


≥= 

 <

 (17) 

with parameters nα = and some parameter shift 
 min max ( ).x nθ ≥  

Consequently, the family of conjugate prior 
distributions on the segment [ ]0;θ of parameter θ  
uniformly distributed random variable belongs to the 
Pareto distribution of the form (17). 

We define a priori distribution, taking into account (15) 
and the expression density Pareto distribution (17) as a 
priori distribution 

 min( ; ) ( ; ; )p Dθ ρ θ α θ=  

we have: 

 min
1 2 1

1( , ,...., ) ~n np x x x
α

α
αθ

θ
θ θ+

⋅  

for { }min 1 2max ; , ,..., nx x xθ θ≤ . 
It follows that the a priori distribution of the parameter 

θ  is described, as well as a priori, by Pareto law (17), but 
with the following parameters: 

 { }min min min 1 2, max ; , ,..., .nn x x xα α θ θ θ= + = = 

  
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Example 2. A result of inspection 10 firms it was found 
that 6 firms have an average reliability, 3 firm - high 
reliability and 1 firm - low reliability. A priori reliability 
probabilities equal 0.5 , 0.3 , 0.2  respectively. Find a 
posteriori expectations of probability reliability of firms. 
In this example, there are three events ( 3m = ): firms have 
an average reliability (the first event - 1ω ), high reliability 
(the second event - 2ω ), low reliability (the third event - 

3ω ). The probabilities of these events are random 
variables and mathematical expectations of probability 
reliability of firm ( 1 2 3, ,t t t ) for the Dirichlet a priori 
distribution equal: 1 0.5t = , 2 0.3t = , 3 0.2t = .  
Considering that, 1 6n = , 2 3n = , 3 1n = , 10N =  and 
took 1s = , the posterior probability of reliability 
expectations of firms are equal: 

 *
1

6 1 0.5 0.591,
10 1

t + ⋅
= =

+
 

 *
2

3 1 0.3 0.3,
10 1

t + ⋅
= =

+
 

 *
3

1 1 0.2 0.109.
10 1

t + ⋅
= =

+
 

Thus, after receiving the new statistical information 
probability of the reliability of firms are random, but with 
new mathematical expectations obtained above. In this 
information confirmed the a priori idea of the probability 
of firms of high reliability and changed the idea of the 
probabilities of low and medium of firms reliability. On 
one hand, if we take 0s = , then the a posteriori 
information be fully determined only by the available 
additional information as analysis 10 firms. The data of 
conversion in this case do not depend on the choice of a 
priori probabilities. On the other hand, if the parameter s  
takes large values, the resulting statistics practically ceases 
to affect the posterior probabilities and the search for 
additional information loses its meaning. 

Bayesian models have several advantages compared 
with the frequency models. One such advantage is that 
Bayesian models can in principle give some results, even 
if not at the sample data. This is due to the use of the a 

priori probability distribution, which in the absence of 
statistical data does not change, and calculated by Bayes' 
theorem the posteriori distribution coincides with the a 
priori. 

4. Conclusions 
In deciding Bayesian models allow to carry out 

additional experiments to clarify the states of nature. In 
practice, this refinement is mainly by collecting additional 
information, and by performing these experiments. 
Additional information about the profit and timely 
settlement with the budget allows us to refine the a priori 
probabilities of states of nature (for reliability). 

At the same time, the design of experiments to 
determine whether it is expedient from the viewpoint of 
the cost of its implementation. To do this, you need to 
compare the expected additional income or benefits that 
be obtained by using additional information acquired as a 
result of the experiment, and the expected cost of the 
experiment. So, for example, with an analysis of the 
reliability the firm for information about the profit may 
demand an audit on which to spend certain means. The 
number of alternative courses of action in such problems 
increases as an opportunity to not only select one of the 
available alternatives, but also determine the feasibility of 
carrying out experiments or activities for additional 
information. 
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