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Abstract  Regression models for correlated binary outcomes are commonly fit using a Generalized Estimating 
Equations (GEE) methodology. GEE uses the Liang and Zeger sandwich estimator to produce unbiased standard 
error estimators for regression coefficients in large sample settings even when the covariance structure is 
misspecified. The sandwich estimator performs optimally in balanced designs when the number of participants is 
large, and there are few repeated measurements. The sandwich estimator is not without drawbacks; its asymptotic 
properties do not hold in small sample settings. In these situations, the sandwich estimator is biased downwards, 
underestimating the variances. In this project, a modified form for the sandwich estimator is proposed to correct this 
deficiency. The performance of this new sandwich estimator is compared to the traditional Liang and Zeger 
estimator as well as alternative forms proposed by Morel, Pan and Mancl and DeRouen. The performance of each 
estimator was assessed with 95% coverage probabilities for the regression coefficient estimators using simulated 
data under various combinations of sample sizes and outcome prevalence values with an Independence (IND), 
Autoregressive (AR) and Compound Symmetry (CS) correlation structure. This research is motivated by 
investigations involving rare-event outcomes in aviation data. 
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1. Introduction 
Regression models with binary outcome variables are 

prevalent in all research disciplines. If the data are 
independent, then the covariance between two measured 
values, which is a measure of linear dependence, is zero. 
If the data are dependent, Generalized Estimating 
Equations (GEE) can be used to account for the 
correlation, which is a function of the covariance among 
repeated or clustered measurements [1]. The GEE 
framework contains options for the working covariance 
structure based upon the assumed pattern of correlation 
within the data. One of the strengths of using GEE is that 
the sandwich or robust variance estimator produces 
unbiased standard errors in large sample sizes for the 
regression coefficients even when the covariance structure 
is misspecified. This is a tremendous advantage, but the 
sandwich estimator of variance is not without drawbacks. 

It is well known that the GEE methodology has issues 
with small sample sizes due to the asymptotic properties 
inherent in the covariance sandwich estimator [2,3]. 
Fitzmaurice et al. noted that in small or finite sample sizes, 

Wald tests using the Liang-Zeger sandwich estimator tend 
to produce p-values that are too small [3]. The sandwich 
estimator of variance is biased downward; that is, it 
underestimates the variability of parameter estimators in 
small sample sizes. Much research has been performed to 
improve the performance of GEE under these 
circumstances. This is evidenced in the works of Mancl 
and DeRouen as well as Pan [4,5]. Rare outcomes pose a 
problem as well. Even with a large sample size, a rare 
outcome can be viewed as a small sample problem. That is, 
the information concerning the event of interest is, by 
itself, a small sample. Adding records that do not have the 
outcome of interest gives no additional information to the 
model. If an event becomes rare enough, it becomes 
extremely difficult to collect enough information to 
construct an informative regression model. The problems 
GEE experiences with finite sample sizes can become 
exacerbated when coupled with a rare outcome.  

Rare events defined as binary outcomes, which have 
tens of thousands to hundreds of thousands of non-events 
(zeroes) compared to the outcome of interest (ones), can 
be a challenge in observational studies or clinical trials. 
Logistic regression methods for independent data have 
binary or ordinal outcomes but can produce predicted 
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probabilities that grossly underestimate the true probability of 
a rare event [6]. At present, very few methods are 
available for modeling and analyzing longitudinal rare 
event data. The methods currently available are models 
based upon the Poisson distribution and are appropriate 
when the dependent variable involves count data. In the 
rare event situations, with dependent data, the variance 
matrix for the regression coefficients of the standard 
logistic regression model is biased; the estimated 
variances are smaller than the true variances. Furthermore, 
Carroll and colleagues discovered that under rare event 
conditions the use of the sandwich estimator with the 
logistic regression model produced under coverage of 
Wald-type tests. In the case of logistic regression using the 
sandwich estimator, “an important part of sample size 
considerations is the number of events” [2]. In other words, 
decreasing sample sizes with rare outcomes can worsen 
the bias of the sandwich estimator.  

The GEE methods are fairly robust and compensate for 
correlation among repeated measures or clustered data. 
However, in rare event and finite sample size settings, the 
variances and covariances generated by these models are 
underestimated and lead to erroneous inferences. Other 
investigators have proposed corrections for rare events 
and finite sample sizes with correlated data but there is no 
universally agreed upon solution for dealing with these 
circumstances. These solutions have resulted in alternative 
sandwich estimators that still have performance issues. 

We propose the use of an improved sandwich estimator 
that has the ability to produce unbiased estimates of 
variances and covariances in studies of correlated data 
with rare event and small sample sizes. Our approach will 
be to adjust the sandwich estimator to compensate for 
underestimation in these situations. In general, this 
adjustment is performed by taking an alternate sandwich 
estimator, developed by Pan, and improving its 
performance in small sample size and rare event settings 
by adding an appropriate inflation factor, while still 
preserving the asymptotic nature of the sandwich 
estimator. The performance of this improved sandwich 
estimator will be evaluated with simulated and real-world 
datasets. 

2. Generalized Estimating Equations and 
the Sandwich Covariance Estimator 

In general, if iY is a response variable and iX  is a 
covariate of interest for 1,..... ,Ki =    subjects, a regression 
model can be utilized to describe their relationship. In the 
case of longitudinal data, j is the index for the number of 
observations within a given subject. The number of 
repeated measurements on an individual will be 
represented as in with ijn being the measurement at the thj  

interval for the thi subject. Marginal models are based on 
quasi-likelihood and are similar in form to the Generalized 
Linear Model (GLM) in that a link function ( ),g is used to 
specify a mathematical relationship, involving regression 
coefficients ( )β , between a marginal mean response ( )ijµ , 

and one or more independent variables ( )ijX . 

 ( ) T
ij ij ijg Xµ η β= =  

Regarding the GEE methodology, if iμ is a vector of 

predicted means for the thi  individual and p is the number 

of regression coefficients, then i

h

∂
∂
μ
β

 where 1,...,h p=  

will be used to represent the partial derivatives of the 
vector of predicted means with respect to the vector of 
regression coefficients ( )β . Then iD is an in x p matrix of 
these partial derivatives and appears as follows: 
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The variance ( iv ) of the dependent variable ( iy ) in the 
quasi-likelihood method, just as it is in GLM, can be 
expressed as a function ( )h of the mean. Phi ( )φ is a scale 
parameter estimated from the data and is sometimes 
referred to as a nuisance parameter, as it is typically not of 
primary interest. 

 ( )i iv hφ µ=  

If iY is used to indicate the in x 1 vector of outcomes 
for individual ,i then let iv be the vector of variances for 
these effects. iA is a diagonal matrix that has taken on the 
values of the vector iv . Let α represent the correlation 
within the clustered measurements then ( )i αR is the 
working correlation matrix for these same quantities. In 
this study, it is assumed that there is a correlation structure 

( )i αR common to all subjects. If iA  is an i in n×  matrix 
with the variances of ijY on the diagonal, then let 

1/2 1/2( )i i i iα φ=V A R A indicate the working covariance 
matrix for these same measurements; iV depends on the 
correlation structure ( ).i αR  

In the GEE method, when the dependent variable 
comes from the exponential family, the following are the 
score equations for the regression coefficients ( ' )sβ : 
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1
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Liang and Zeger (1986) demonstrated that as the 
number of subjects or clusters (K) increased in size, that 
β̂  is a consistent estimator for .β  That is, as 

1/2 ˆ, ( )K K− > ∞  −β β is asymptotically multivariate 
Gaussian with zero mean and covariance matrix ( )LZV  
estimated as follows. 
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When estimates of β andα are inserted, LZV is referred to 
as the empirical-based,or robust sandwich, variance matrix. 

3. Summary of Small-Sample Covariance 
Estimators 

The Liang-Zeger sandwich estimator ( )LZV is used 
frequently in GEE since it produces valid standard errors 
asymptotically, even if the covariance structure is 
misspecified. The degree of bias of the sandwich estimator 
is an asymptotic property that is reduced as the sample 
size, or number of independent clusters, increases.  

The problems caused by rare outcomes relative to the 
use of GEE models were first noted by Gunsolley while 
exploring the performance of GEEs with binary outcomes 
using a compound symmetry covariance structure[7]. 

3.1. Pan Estimator 
Pan argued that the covariance calculated within the 

sandwich estimator is not an optimal estimator of 
( )iCov Y because it is based on data from the thi subject 

and is neither efficient nor consistent [5]. Pan proposed an 
improvement to the sandwich estimator by using a pooled, 
or averaged, covariance based upon all subjects. This 
enhancement depends on two assumptions to preserve the 
asymptotic nature of Pan’s estimator: 

Assumption 1. The marginal variance of ijy  needs to 
be modeled correctly. 

Assumption 2. There is a common correlation structure 
across all subjects. 
In reference to the sandwich estimator proposed by Liang 

and Zeger in equation (1), Pan proposedreplacing the 

Cov( iY ) with iW : 
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That is, ( )i iCov Y=W  and uR is a correlation matrix 
obtained without any parametric specification ( )α . 

Pan’s sandwich estimator ( PV ), in matrix notation, can 
then be written as: 
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Pan claimed this modified sandwich estimator has 
greater efficiency than that proposed by Liang and Zeger 

as the covariance is based upon all subjects. The results of 
his initial simulations using an exchangeable and 
independence covariance structure with both a binary and 
continuous outcome variable support this claim [5]. 

3.2. Mancl and DeRouen Estimator 
Mancl and DeRouen proposed replacing the covariance 

of Liang and Zeger’s (1986) sandwich estimator ( LZV ) 
with one corrected for bias. That is LZV  from equation (1) 
becomes the bias-corrected sandwich estimator ( MDV ) [4]: 
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where I is an i in xn identity matrix, NV is the “naïve” or 

model-based variance estimator and ˆ ˆ ˆT
i i N i i= -1H D V D V . 

Mancl and DeRouen justify this correction on the grounds 
that the true expected value is expressed 
as [ ( )] ( )( )( ) ( )T T

i i i i i i iE Cov ≈Y I - H Y -μ Y -μ I - H  rather 

than [ ( )] ( )( ) .T
i i i i iE Cov = − −Y Y μ Y μ  

3.3. Morel Estimator 
Morel originally explored the covariance matrix 

estimate in logistic regression in complex survey designs 
as a product of the application of a Taylor series 
expansion [8]. These results were later extended to the 
sandwich estimator used within the GEE framework [9]. 
They clearly delineated the source of the bias suffered by 
the sandwich estimator in small samplesizes. It was 
demonstrated that most software implementations of the 

sandwich estimator omit the term 1
1

N K
N p K

−
− −

 where 

1

K

j
j

N m
=

= ∑  and jm  represent the number of units in the 

thi  cluster 1, 2...... .i K= This term is part of the Taylor 
series estimation of the sandwich estimator. The omission 
of these terms is less serious when the sample size or 
number of clusters is large but becomes increasingly 
significant as the sample size is reduced. Morel (2003) 
proposed re-introducing these terms to adjust for bias in 
the sandwich estimator. He also recommended inflating 
the sandwich estimator by adding a scaled version of the 
sandwich estimator trace to itself. This concept is unalike 
those previously proposed in that it applies the adjustment 
to the entire sandwich estimator. Whereas most 
adjustments took place inside the calculation of the 
covariance of the sandwich estimator, this one was applied 
outside of the summation and not to the individual 
residuals. Morel’s version of the sandwich estimator, 
adjusted with the trace,is referred to as _M TV . 
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where: 
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Simulation results supported this modified approach 
because Type I error rates were nominal, even in small 
sample sizes, unlike the unmodified GEE and model-
based covariance estimators ( )NV . 
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A variant of Morel’s original estimator was included in 
this comparative study for evaluation purposes. It is 
identical to the estimator described in equation (4) but was 
inflated with the determinant rather than the trace. Morel 
had originally suggested evaluating the performance of the 
sandwich estimator inflated with the determinant but had 
never done so. This paper will be the first to evaluate the 
performance of this variant of the sandwich estimator. 

Incorporating the changes proposed by Pan (2001) and 
Morel (2003), with some additional modifications, a new 
hybrid sandwich estimator ( )RV will be constructed. 
Building on a fusion of these concepts, we believe a 
modified GEE estimator can be constructed that delivers 
accurate probabilities, nominal Type I error rates, and 
confidence intervals with proper coverage. The 
performance of this hybrid sandwich estimator is 
compared to the estimators of Liang and Zeger (1986), 
Mancl and DeRouen (2001), Morel(2003), and Pan (2001). 
A summary of the sandwich estimators is given in Table 1. 

Table 1. Summary of sandwich estimators 
Sandwich Estimators 

Authors: Liang & Zeger Approach: Standard Sandwich 
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4. A New Hybrid Sandwich Estimator 
A new hybrid sandwich estimator was created by 

inflating Pan’s estimator with a scaled version of the 
determinant. The determinant is a physical representation 
of the area or volume of the variances and covariances of 
the sandwich estimator [10]. In terms of the volume, the 
determinant of the sandwich estimator can be expressed as: 

 ( )
2( )det

( 1) p
VolumeSandwich

N
=

−
 

Our recommended solution will use an averaged or 
pooled covariance, just as Pan (2001) did, and scale these 
values using the corrections originally proposed by Morel 
(2003). 

An advantage of this strategy is that as long as the 
model-based estimate of variance is a positive definite 
matrix, the hybrid sandwich estimator will also be positive 
definite. Referencing Pan’s version of the sandwich 
estimator from equation (2) the improvements will change 
the final version of the Rogers hybrid sandwich estimator 

RV  to generally appear as: 
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5. Asymptotic Properties 
The asymptotic properties of the hybrid estimator 

follow directly from the properties of Pan’s estimator. As 
the number of clusters increases, the Pan and Rogers 
estimators become more similar. To assure the asymptotic 

validity of his estimator, Pan needed the two assumptions, 
listed in section 3.1,to hold true [5]. 

Our estimator is similar to Pan’s but with an additional 
inflation factor; as the number of subjects increases they 
converge to the same values. This can be demonstrated 
with the following limit; 

Limit 1. As the number of subjects goes to infinity 
K → ∞  the following will hold true: 
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If assumption 2 does not hold, as Pan recommended, 
subjects can be classified into groups such that the 

iY have the same correlation matrix. Therefore, as the 
sample size increases and the marginal variance of iY is 
modeled correctly we expect the values of the Pan and 
Rogers sandwich estimators to be more similar. If 
assumptions 1 and 2 hold then with a large enough sample 
size we expect the differences in 1/2 ˆ( )K −β β to be 
asymptotically multivariate Gaussian with zero mean and 
covariance matrix ( )V under the Pan and Rogers 
methodologies as well. In addition to these similarities, if 
the sample size and prevalence are both increased, we 
expect to see a convergence of similar values and 
performance in coverage probabilities from all of the 
sandwich estimators. 

6. Simulation Studies 
Due to the asymptotic nature of the sandwich estimators, 

simulations were conducted to assess their performance 
under varying small sample and rare event conditions. The 
sandwich estimators compared included the traditional 
Liang-Zeger ( )LZV , Mancl and DeRouen ( )MDV , 
Pan ( )PV , Morel _( )M TV , a version of Morel inflated by 

the determinant rather than the trace, and the Rogers ( )RV  
sandwich estimators. A model with one continuous 
covariate was used for simulation study. The number of 
clusters, prevalence, and correlation of the outcome 
variable were varied. 

The single covariate model was fit on a series of 
simulated datasets with outcomes of differing prevalence 
values (0.01, 0.05, 0.10, 0.30, 0.50). The simulations were 
run with data sizesof500, 100, 50, 30,and 20 subjects. The 
various estimators’ performance was also compared when 
the simulated within-cluster correlation structure was 
either exchangeable or autoregressive, with correlation set at 
0.005 or 0.05, and when observations within clusters were 
simulated to be independent. All simulations involve 
balanced designs with four observations per subject. These 
correlation values were selected based on the relationship 
between the prevalence of the outcome and the correlation 
among longitudinal measures. That is, the probability of 
the outcome restricts the range of possible correlation 
values[3]. Due to this relationship between the prevalence 
and correlation, it was not practical to simulate all 
combinations of prevalence values and correlations. 

Simulated correlated binary data were generated with 
the binary SimCLF R-code library, which is based on the 
work by Qaqish [11]. The correlations were kept low due 
to the simulation difficulties in generating large numbers 
of valid outcome vectors with the binary SimCLF library 
in small sample size and low outcome prevalence 
conditions. That is to say, as the sample size and outcome 
prevalence decreased, the binarySimCLF produced a large 
number of vectors which failed its own validity check.In 
all simulations, the covariance structure was correctly 
specified. The total number of configurations, as well as 
the number of simulations is summarized in Table 2. 
Eachsimulation configuration was run 1,000 times, 
reporting the average of the sandwich estimator 
undergoing testing. 

Table 2. Simulation design settings for each of the six estimators. 
Total Number of Simulations 

Correlation Structure Prevalence Cluster Sizes Correlation Number of Simulations 
Autoregressive (AR-1) 0.01, 0.05, 0.10, 0.30, 0.50 20, 30, 50, 100, 500 0.005 25 
Autoregressive (AR-1) 0.10, 0.30, 0.50 20, 30, 50, 100 0.05 12 
Compound Symmetric 0.01, 0.05, 0.10, 0.30, 0.50 20, 30, 50, 100, 500 0.005 25 
Compound Symmetric 0.10, 0.30, 0.50 20, 30, 50, 100 0.05 12 

Independent 0.01, 0.05, 0.10, 0.30, 0.50 20, 30, 50, 100, 500 0 25 
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The true values for the intercept ( )0β  and regression 

coefficient ( )1β  were both set to one for all tests. This 
model consisted of a single, normally distributed covariate 
( )1X with a variance of one centered at a mean 
appropriate to the simulated prevalence ( )xπ of the 
outcome. The relationship between the outcome 
prevalence and continuous covariate is given by: 
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0 1 1

0 1 1
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X
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β β

β β
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The standard deviation and average estimated standard 
error of the estimated regression coefficients of the betas 
( )0 1,β β were calculated and recorded. The performance 
of each sandwich estimator was assessed primarily by the 
95% coverage probabilities for the regression coefficients. 

6.1. Demonstration of Bias as a Poor 
Performance Measure 

A measure of performance usually used in evaluating a 
new statistic is the bias; the difference between the 
estimator’s true variance and its mean estimated variance. 
Estimators with a positive bias have underestimated the 
true variance, while those with a negative bias have 
overestimated the true variance. 

Coverage probabilities, which are related to confidence 
intervals, are an alternative way of assessing performance. 
These confidence intervals are centered around the 
estimated regression coefficients ˆ( )β , which are the same 
for each covariance estimation method in this simulation 

study. Therefore, the coverage probability in this study is 
only a function of the estimated variance.  

The simulation environment was designed to reproduce 
coverage probabilities analogous to a 95% confidence 
interval. After completion of the simulations, the 
distributions of the variance estimates created by each 
sandwich estimator in small samples were skewed. For all 
covariance structures, as the simulated prevalence and 
sample size diminish, the distribution of the variances for 
each sandwich estimator becomes steeper on the lower 
end and right-skewed, both to a different degree. The 
implication is that the distribution of the variances is no 
longer symmetric, and the mean is no longer in the center 
of the distribution under these extreme conditions. These 
differences are so great that measures of bias are not 
adequate performance indicators and therefore, coverage 
probabilities will be reported as the performance measure.  

6.2. Coverage Probabilities 
The coverage probability results are only shown for the 

autoregressive covariance structures as the results were 
similar among the three types of correlation. Coverage 
probabilities were similar between 1β  and the intercept 

0( )β therefore, figures are only shown for the 1β regression 
coefficient. A composite figure is used for outcome 
prevalence values of 5% through 50% under a .005 
correlation. A single graph is dedicated to the 1% 
prevalence level to highlight the differences that occur 
under these extreme conditions. When the correlation 
increases to .05,a composite figure is again used to display 
prevalence values of 10%, 30%, and 50%. Coverage 
probabilities are displayed in Figure1 through 3 for the 
autoregressive covariance structure. 

 
Figure 1. Coverage probabilities when estimating the regression coefficient 1β under a simulated autoregressive covariance structure for 0.05 through 
0.5 prevalence values with 0.005 correlation 
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The coverage probability of our estimator for the 
regression coefficient (Figure 1) is very competitive with 
that of Pan’s. These two estimators outperform the remaining 
estimators at 20 and 30 subjects under a 5% prevalence. 

At 10%, 30%, and 50% prevalence values, the performance 
of the estimators begin to cluster and converge with 
increasing sample size, while the Liang-Zeger estimator 
lags behind the rest at fewer than 50 subjects. 

 
Figure 2. Coverage probabilities when estimating the regression coefficient 1β under a simulated autoregressive covariance structure for 0.01 
prevalence with 0.005 correlation 

The Rogers and Pan estimators are very close in their 
performance in terms of coverage probabilities under a 1% 
outcome prevalence, with the Rogers estimator slightly 
edging out Pan on the smaller sample sizes (Figure 2). The 

remaining estimators performance is poor at 20 and 30 
subjects but steadily improves as the sample size increases. 
At simulated sample sizes of 500 subjects, the estimators 
have converged to roughly the same coverage probabilities. 

 
Figure 3. Coverage probabilities when estimating the regression coefficient 1β under a simulated autoregressive covariance structure for 0.1 through 
0.5 prevalence values with 0.05 correlation 
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When the simulated correlation is .05, a similar trend 
can be seen for the regression coefficient (Figure 3). As 
the sample size and prevalence decrease, the estimators 
begin to diverge from one another in their performance. 
Typically, the Liang-Zeger estimator lags behind the 
others as it underestimates the variance, which decreases 
its coverage probability. At an outcome prevalence of 
10%, our proposed estimator performs better than the 
other estimators. It is interesting to note that when a 
simulated outcome prevalence is as low as 10% is coupled 
with a sample size of 100, all the sandwich estimators 
underestimate the true variance. As the outcome prevalence 
increases to 50%, our estimator slightly overestimates the 
variance at sample sizes of 50 subjects or fewer. 

7. Practical Application 
In this section, we demonstrate the application of our 

sandwich estimator in a practical setting. The two datasets 
used are random samples of size 500 and 30 airmen, 
sampled independently, from the Federal Aviation 
Administration’s Decision Support Systems (DSS) and 
constructed as a longitudinal dataset, as described by 
Peterman [12]. Airmen undergo a flight physical from an 
Aviation Medical Examiner (AME) and must meet certain 
physical requirements to hold a Class I, II, or III medical 
certificate. The random samples taken from the DSS were 
restricted to airmen who took a Class I, II, or III flight 
physical in each of the four years over 2002-2005. 

The outcome of interest, expressed as a binary variable, 
concerns the occurrence of an Accident and Incident Data 

System (AIDS) event, which can include anything from a 
major aircraft accident to a minor incident with only slight 
damage. The covariate of interest, a continuous variable, 
indicates the number of flight hours over the last six 
months self-reported by the airmen at the time of their last 
medical exam. The results should give us insight as to 
whether the number of accumulated flight hours over the 
last six months is associated with the occurrence of an 
AIDS event. The question of interest is represented in 
equation (6), where Y represents a binary outcome, with a 
one and zero indicating the occurrence or lack of an AIDS 
event, respectively.  

 
( )
( ) 0 1

Pr 1
ln [ ]

Pr 0
ij

ij
ij
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Y
β β

 =  = + 
=  

 (6) 

The outcome’s prevalence, slightly under 0.5%, is 
lower than those investigated in our simulation study 
which was 1% or higher. Among all years for the sample 
of 500 pilots, the median flight time was 26.62 hours 
(inter quartile range: 24.43-29.16 hours). In the sample 
size of 500 subjects, one subject reporteda flight time of 
20,750 hours. This outlier was omitted and imputed as the 
average of the three previously reported flight hours for 
the previous six months (300 hours).  

An autoregressive correlation structure reflects correlation 
decay with increasing intervals of time between measurements. 
Use of an autoregressive structure was reasonable, given 
the design of the study. The analytical results for the 500 
and 30 subjects are displayed in Table 3 and Table 4, 
respectively. 

Table 3. Estimated regression coefficients, odds ratios (OR), 95% confidence intervals (CI) and sandwich estimators from analysis of AIDS 
events in self-reported 100 flight hour changes for last six months for 500 airmen 

Estimated Regression Coefficients Under an Autoregressive Correlation Structure 

Method 1̂β  

1̂( )SE β  OR 95% CI for OR Z-Score p-Value 

Liang-Zeger 0.0094 0.2163 1.0094 0.6607, 1.5422 0.0433 0.9655 
Mancl & DeRouen 0.0094 0.2172 1.0094 0.6594, 1.5452 0.0432 0.9655 

Morel - Trace 0.0094 0.2167 1.0094 0.6601, 1.5435 0.0433 0.9655 
Pan 0.0094 0.2029 1.0094 0.6782, 1.5024 0.0462 0.9632 

Morel-Determinant 0.0094 0.2167 1.0094 0.6602, 1.5434 0.0433 0.9655 
Rogers 0.0094 0.2033 1.0094 0.6776, 1.5037 0.0461 0.9632 

Table 4. Estimated regression coefficients, odds ratios (OR), 95% confidence intervals (CI) and sandwich estimators from analysis of AIDS 
events in self-reported 100 flight hour changes for last six months for 300 airmen 

Estimated Regression Coefficients Under an Autoregressive Correlation Structure 

Method 1̂β  

1̂( )SE β  OR 95% CI for OR Z-Score p-Value 

Liang-Zeger 0.1541 0.0599 1.1666 1.0374, 1.3120 2.5728 0.0101 
Mancl & DeRouen 0.1541 0.9010 1.1666 0.1995, 6.8221 0.1711 0.8641 

Morel - Trace 0.1541 0.0767 1.1666 1.0038, 1.3559 2.0099 0.0444 
Pan 0.1541 0.3319 1.1666 0.6087, 2.2360 0.4644 0.6424 

Morel-Determinant 0.1541 0.0767 1.1666 1.0038, 1.3559 2.0099 0.0444 
Rogers 0.1541 0.3379 1.1666 0.6016, 2.2625 0.4561 0.6484 

In our analysis of 500 subjects, the differences among 
the variances of the sandwich estimators for the covariate 
of interest 1( )β from equation (6) are very small. This is 
not surprising as the simulation results reported that the 
sandwich estimator’s coverage probabilities converge to 
the same values in large sample sizes, even with outcome 
prevalence values as low as 1%. When we analyze the 
sample of 30 subjects, the variability of the sandwich 
estimators’ variance is even larger, as reflected in their 

values differing from one another by several magnitudes 
of 10. When performing statistical hypothesis testing in a 
situation where the outcome is of low prevalence and the 
sample size is small, the choice of sandwich estimator 
affects the outcome of hypothesis testing concerning the 
regression coefficients. The estimated odds ratio for a100-
hour increase of flight time 1̂( )β in the sample of 30 
subjectsis 1.1664. The associated 95% confidence 
intervals for the Liang-Zeger and Rogers sandwich 
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estimators are (1.0374, 1.3120) and (0.6016, 2.2625), 
respectively. For the purposes of this question, the use of 
the Liang-Zeger or Rogers sandwich estimator impacted 
the statistical significance of the covariate of interest.  

8. Conclusion 
This research explored a novel way of building a hybrid 

sandwich estimator that would achieve superior performance 
over that of the standard Liang-Zeger sandwich estimator 
in settings with low outcome prevalence and reduced 
sample sizes. The performance of this estimator was also 
compared with other sandwich estimators adjusted for 
improved performance in small sample sizes. As the 
outcome prevalence dropped below 30% and the sample 
size below that of 50 subjects, the choice of estimators 
matters, and one should consider using an alternative to 
the Liang-Zeger estimator. In our limited simulation 
settings, the Rogers sandwich estimator outperformed the 
Liang-Zeger and typically outperformed all other estimators 
as the prevalence and sample size both dropped. The 
Rogers estimator is an extension of the Pan estimator, which 
also performed very well in these simulations. The 
performance of the Rogers estimator is dependent on the 
determinant calculated in the inflation factor. It is possible 
that the performance of the Rogers estimator may be 
inferior in comparison to the Pan estimator under different 
correlation settings. The performance of the Mancl and 
DeRouen sandwich estimator deteriorated to coverage 
probabilities only slightly better than that of the Liang-
Zeger in prevalence values of 1% and 5% in sample sizes 
of 20 and 30 subjects. The Morel sandwich estimators, at 
the 1% outcome prevalence level, performed better than 
that of Mancl and DeRouen but not as well as the Pan or 
Rogers’ estimators. Overall, it is wise to select any of these 
other estimators, if available, over the Liang-Zeger in a 
situation involving low sample size or low outcome prevalence. 

The true or simulated covariance structure had little 
bearing on the estimators’ performance. Mirrored 
performances were observed by all of the sandwich 
estimators among the three different covariance structures. 
This result was also observed by Mancl and DeRouen [4]. 
It is likely that the simulated covariance structure played 
no role in the estimators’ performance due to the low 
correlation values used in the simulations. The 
correlations were kept low due to the simulation 
difficulties in generating large numbers of valid outcome 
vectors with the binary SimCLF library in small sample 
size and low outcome prevalence conditions. It is possible 
that the performance of the sandwich estimators may 
differ under simulation conditions using greater 
correlation values than were used in this project. 

A similar performance was observed in our simulations 
to that of Pan’s, in terms of coverage probabilities, for the 
Liang-Zeger and Pan sandwich estimators under both the 
independence and compound symmetry structures [5]. The 
results of Gunsolley et al.’s 1995 simulation study 
exploring the performance of the Liang-Zeger sandwich 
estimator were similar to ours: as the outcome prevalence 
or sample size increased, the performance of the Liang-
Zeger improved, as well in terms of Type I error rates [7].  

In summary, the performance of the Liang-Zeger 
sandwich estimator suffers as the sample sizes dropped 

below 50 subjects, and the outcome prevalence values 
were less than 30%. This drop off in performance is 
further exacerbated at the lower outcome prevalence 
values and smaller sample sizes. Under these extreme 
conditions, the Rogers and Pan estimators would be good 
choices for variance estimators followed by any of the two 
estimators proposed by Morel. The Mancl and DeRouen 
estimator outperformed the Liang-Zeger estimator under 
all outcome prevalence values as the sample size dropped 
below 50 subjects. With outcome prevalence values of 
30% or higher and sample sizes less than 50 subjects, the 
Liang-Zeger estimator still consistently underestimated 
the coefficient variances even in these nominal conditions. 

Future work will be conducted to evaluate the 
performances of the various sandwich estimators with 
higher correlations in moderate sample sizes. We will also 
include different numbers and types of covariates in the 
assessment of sandwich estimator performances. 
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