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1. Introduction

In order to obtain solutions of nonlinear systems, the
asymptotic method of Krylov-Bogoliubov—Mitropolskii
(KBM) [1,2] is regarded as convenient and one of the
widely-used tools. For the systems with periodic solutions
with small nonlinearities, the method was first extended
by Krylov and Bogoliubov [2]. Later, it was amplified and
justified by Bogoliubov and Mitropolskii [1]. For
nonlinear systems affected by strong linear damping
forces, Popov [3] extended the method. However, due to
its physical significance, Popov’s method was
rediscovered by Mendelson [4]. Then, this method was
extended by Murty and Deekshatulu [5] for over—damped
nonlinear systems. Sattar [6] studied the second order
critically-damped nonlinear systems by using of the KBM
method. Murty [7] proposed a unified KBM method for
second order nonlinear systems which covers the
undamped, over-damped and damped oscillatory cases.
After that, Osiniskii [8] first developed the KBM method
to solve third-order nonlinear differential systems
imposing some restrictions, which makes the solution
over-simplified. Mulholland [9] removed these restrictions
and found desired solutions of third order nonlinear
systems. Sattar [10] examined solutions of three-
dimensional over-damped nonlinear systems. Shamsul [11]
propounded an asymptotic method for second order over-
damped and critically damped nonlinear systems. Later,
Shamsul [12] extended the method presented in [11] to

third-order over-damped nonlinear systems under some
special conditions. Akbar et al. [13] generalized the
method and showed that their method is easier than the
method of Murty et al. [14]. Recently Rahaman and
Rahman [15] have suggested analytical approximate
solutions of fifth order more critically damped systems in
the case of smaller triply repeated roots. Moreover,
Rahaman and Kawser [16] have also proposed asymptotic
solutions of fifth order critically damped nonlinear
systems with pair wise equal eigenvalues and another is
distinct. Further, Rahaman et al. [17] suggested an
asymptotic method of Krylov-Bogoliubov-Mitropolskii
for fifth order critically damped nonlinear systems. Again,
Rahaman and Kawser [18] expounded analytical
approximate solutions of fifth order more critically
damped nonlinear systems

In this paper, we seeks to investigate an asymptotic
solution of fifth order more critically damped nonlinear
system, based upon the KBM method. In this study, we
suggest that the perturbation results obtained by the
presented technique reveal good coincidence with
numerical results obtained by Mathematica 9.0.

2. The Method

Consider a fifth order non-linear differential system of the
form

X(V) + klx(iv) + k2X + k3X + k4X + kSX = (1)

—ef(x % %%, xM)



234 American Journal of Applied Mathematics and Statistics

where x™ and x(") stand for the fifth and fourth
derivatives respectively, and over dots are used for the
first, second and third derivatives of x with respect to t;
ki, ko, K3, kg, kg are constants, ¢ is a sufficiently small
parameter and f (X, X, X, X, x(i")) is the given nonlinear

function. As the unperturbed equation (1) is of fifth order,
so it has five real negative eigenvalues, where four
eigenvalues are equal and the other one is distinct.
Suppose the eigenvalues are -1, -4, -1, —Aand g

When & =0, the equation (1) becomes linear and the
solution of the corresponding linear equation is
X(t,0) = (ag + byt + cot2 + dots)e‘M +hye (2)

where ag, by, ¢y, dgandhy are constants of integration.
When & = 0, Murty [7] and Shamsul [19], we look for a

solution of equation (1) in an asymptotic expansion of the
form

X(t, &) = (a+bt+ct? + dt®)e M + he 4 3)

+eu(a,b,c,d, h,t)+...

where a, b, ¢, d and h are the functions of t and they

satisfy the first order differential equations
a=eA(ab,cdnht)+..
b=eBy(a,b,c,d,ht)+..
¢=eCy(a,b,c,d,ht)+... (4)
d =&Dy(a,b,c,d,ht)+...
h=eH,(a,b,c,d,ht)+..

Now differentiating (3) five times with respect to t,
substituting the wvalue of x and the derivatives

xM x5 % % in the original equation (1) utilizing

the relations presented in (4) and, finally, extracting the
coefficients of ¢, we obtain

e (D+ u—2) {(t3D3 +12t2D2

+36D +24) Dy +(t°D? + 8D

+12D)C; +(1D% +4D? By + DA (5)
+e D+ 21— u)*H +(D+2)*

(D+ z)uy =—1%a,b,c.d,h,t)

where f©@(a,b,c,d,ht)=f(x x %X x")
and x(t,0) = (ag + bt +ot? + dgt®)e ™ + hge 4 .

We have expanded the function £ in the Taylor’s

series (Sattar [20], Shamsul [19]) about the origin in
power of t. Therefore, we obtain

q=0 i,j=0

AR Z{tq > R, j(a,b,c,d,h)eM*W} ®)

Thus, using (6), the equation (5) becomes

e (D+u-2)|(1°D? +12°D?

+36tD +24) Dy + (tz D3 4 8tD?

+12D)C, +(1D +4D? B, + DA | @
+e_ﬂt(D+A—lu)4 H1+(D+i)4(D+y)ul

) _qmgo{tq i,;i;lo Fq.j(ab,c.d, h)e_(i'“jﬂ)t }

Following the KBM method, Murty and Deekshatulu
[21], Sattar [20], Shamsul [22], Shamsul and Sattar [23]
imposed the condition that u; does not contain the

fundamental terms of f(®). Therefore, equation (7) can
be separated for unknown functions A, By, C;, Dy, Hy
and uy in the following way:
e (D + —l){(t?’D?’ +122D?
+36tD +24) Dy +(t°D% +8tD
+12D)C; +(tD3 +4D%)B; + DBAL} ®)
+e D+ 21— p)* Hy =
3 00 A
-y {tq > Ry j(a,b,c,d,h)e_('“”‘)t}
=0 i,j=0
(D+A)* (D +u)uy =
0 s} ) i (9)
-> {tq > R, j(a,b,c,ol,h)e-('““’)‘}
q=4 i,j=0

Now equating the coefficients of the various power of
t from equation (8), we obtain

e (D +u—2){24Dy +12DC;
+4D%B +D°A [ +e M (D+2-p)*H,  (10)
=— Y Ry j(ab,c,d,hye (Arial
i,j=0

e (D +u—-2){36D D, +8D°C, + DBy}

— i F1,j(a.b,C,d,h)e*(i/“J'u)t (11

i,j=0

e (D+u-2){12D?D, + D3Cy}

3 i1+ (12)
==X Fz,j(a,b,C,d,h)e*('MJu)t
i,j:o
e (D+u-2)D°D;
-3 Fs,j(ab,c,d, hye (4+ it (13)
i,j=0
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Here, we have four equations (10), (11), (12) and (13)
for determining the unknown functions A;, By, C4, D; and
H,. Thus, to obtain the unknown functions Ay, By, Cq, D;
and Hy, we need to impose some conditions (Shamsul [26,
22, 24, 25]) between the eigenvalues. Different authors
have imposed different conditions according to the
behavior of the systems, such as Shamsul [25] imposed
the condition

ilﬂ’l +i2}.2 +...+inﬂ,n
Sl +ip+ i)Y+ +..+4)/n

In this study, we have investigated solutions for both
the cases A >> u and A << g . Therefore, we obtain the

value of D; from equation (13), and substituting the value
of D, in equation (12), we get the value of C;, and using
these values of C; and D, in equation (11), we find the
value of B;. Now we will be able to separate the equation
(10) for unknown functions A; and H; for both the
conditions A >> x and A << u; and solving them for A;

and H,. Since &, b, ¢ d and h are proportional to the

small parameter, so they are slowly varying functions of
time t, and for first approximate solution, we may consider
them as constants which are presented in the right side.
This assumption was first made by Murty and
Deekshatulu [21]. Thus, the solutions of the equation (4)
become

t
a=ag+z[ Aa,b,c,d,ht)dt
0

t
b=by+z[B(ab,c,d ht)dt
0

t
c=co+&[Cy(ab,c,d,ht)dt (14)
0

t
d =dg +&[Dy(ab,c,d,h, )t
0

t
h=hg+2[Hy(a,b,c,d,ht)dt
0
Equation (9) is a non-homogeneous linear ordinary
differential equation; therefore, it can be solved by the
well-known operator method. Substituting the values of
a,b,c,d,h and u; in the equations (3), we get the

complete solution of (1). Therefore, the determination of
the first approximate solution is complete.

3. Example

As an example of the above technique, we have
considered the Duffing type equation of fifth order
nonlinear differential system:

X 1k xM) 4% + kgX+ kg X+ ksx = —exS (15)
Comparing equation (13) and equation (1), we obtain

f(x % %%, xMy =x3

Therefore,

£0) = {a3 +3a°bt + 3ab?t? + 3a%ct? + b33 +
gabct® +3a°dt® +3b%ct? +3ac’t* +
Babdt? +3bc2t® +3bc?t® +3b2dt° +
gacdt® +ct® + 6bcdt® +3ad%t® +
3c2dt” +30bd2t” +3cd %8 +d3 t9} e (16)
+ (3ah2 +3bh?t +3ch?t? +3dh? 3 )e—(“zﬂ)t
+ (3a2h +6abht +3b%ht? + 6acht? +
+6bcht + 6adht® + 3c?ht* + 6bdnt* +
+6cdht® +3d2ht° )e-Wﬂ')t +h3g 3t

For equation (15), the equation (9) to equation (13)
respectively become

(D+ /1)4 (D+ )y = —{Bbzct"' +3ac’t? +
6abdt* +3bc?t® +3b2dt® + 6acdt® + c3t®
+6bcdt® +3ad?%t® +3c2dt” +3bd %t + a7
3cd2t8 +d3 t9} e 34 —{3c2ht4 +6bdht?

+6cdht® +3d2ht® }e*(”“’)‘

e (D + u—12){24D, +12DC, 4D?B,
+D A f+e (D +2- ) Hy =

(18)
- {a3e_3ﬁ +3a2he~ (24t 4 3952

e—(/1+2,u)t " h3 e—3yt}

e *(D+u—2){36D D, +8D%C, + D*B,}

= {Bazbe‘g’1t +6abhe (440t | gpn2e (A+2u)

e (D +u-2) {12D2D1 + D3C1} - _3{(a2b +a20) 20)

g3, 3(b2h + 2ach)e‘(2“”)t +3chZ e~ (A+2m)t }

e (D+ - 2)D°D, = —3{(b3 +6abe +3a%d )¢

+6(bch+adh)e (2474t 4 3dh2 g~(A+ 20t } 2V
The solution of the equation (21), therefore, is
(b3 +6abc +3a’d )e‘z’th
AT 823(32-u)
(22)

24(bch +adh)e~ (740t
8A(A+u)

3dh2e 244
+
8u° (A+n)

Putting the value of D; from equation (22) into
equation (20), we obtain
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e M (D+u-2)D3C, = —3{(a2b+azc)
6(b3+6abc+3a2d) 3(b3+6abc+3a2d)
A - 3l+u

e_m} _{M+3(b2h . 2ach) (23)

+

A

+72(bc+ad)h}e_(2/1+#)t
A+

_{3Ch2 . 9(2/1+/’)e—(/1+2u)t}
H(A+p)
Therefore, the solution of the equation (23) is
(94 + u)(bch+adh)
222 (2+p)"*
3(b%h -+ 2ach|

Cl __ e—(ﬂ+,u)t

+ 3
24(2+ 1)

3(ab® +a’c) 3(72-2u)(b” +6abc+3a%d)
- +
82%(32 - p)
2 2
o 22t _ 33Ch +9(u+3ﬂ)d2 o2t
8u”(A+u)  8u*(A+u)

Putting the value of C;and D, from equation (24) and
(22) into equation (19), we obtain

81% (34— )

e (D+u-1)D%B,
6(72-2u1)(ab” +a’c|

- +3a’b+3
A(34- )
2 2 3 2
(59/1 342 +5u )(b +6abc +3a d) o
22 (34—’
(b2h+2ach)
g9
TGeg) SOA*H)
9(4912 +104u + 12 )bch
5 + 6abh
22 (A+p)
20423 222+ 4pP A+ 1P
+9ﬂadh( 5 5 ) e*(Zﬂﬁu)t
22 (24 ) (u-32)
2
[sarzpyen®
#(A+p)
2 2 2
9(51 +14u+11u )dh o (25)
H (2t )’

(24)

Thus, the solution of the equation (25) is

3a%b

3(74 —2,u)(ab2 + azc)
+
823 (34— u)

42* (34 - p)?

(b3 +6abc +3a’d )
+3(5942 —344u+51%) g M

82° (34— )

_{ 3abh  3(94+p)
A(A+u) 242 (A+u)

3(4912 +104u + 12 )(bch +adh)

y (bzh + 2ach)
(26)

+ e_(i"';u)t —

223 (A+u)
9dh? (5,12 +14/1,u+11,u2) a2
+
8u°(A+u) 813 (A+u)

* 2
4/14 (/1 + ,u)

Now applying the conditions A >> g in equation (18),
we obtain the following equations for unknown functions
A and Hy:
15(b® + 6abc +3ad)

23

(D+ﬂ—/1)A_L=—{

2 2
15(ab +a °)+6(b3+6abc+3a2d)
A? 32— u)°
12(b% +6abc+3a%d) 3 15(b®+6abc +3a’d)
+ 5 +a’ + 5
(34— 1) 22(BA-p)
2 2
6a2b+12(ab +a C)+ 3a’b +6ab2+azc o2t
A ABi-u)  3h-u (@a-p)
2
| 720(bch + 2dh) J3abh s 300°ht 22ach)
(A+u) A 22
180(bch+adh) 9(bch+adh) 36(bch + adh)
+ 2 Y
A(A+ 1) 21 A2+ )
. 60(bh + 2ach) . 12(b%h + 2ach)
(A+ u)? AA+ )
3 2
, 24abh }e—(’“ﬂ)‘ _3(2-u)*(22+3u)bh
(A+u) u(A+p)

+

31— ) (542 +1440 +114/2 )ch2
W (A+ )’

N 523+204%u  |9(4 - u)*dh? o2
2947 +164° ) 12 (A+p)?

+3ah? (A - p)® -

@7

And
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2728 +5425,-2823,°
=322 u* 6000 — 18
(32— ) (+ )’

Solution of the equations (27) and (28) are

(D+A—p)H, :—h3e‘2/‘t( (28)

. a’ . 3(594% —344u+5u°)
813(31 - 1) 81331 -u)®
3(194,13 169424 + 50442 — 5y3)
81531 -u)*

_ 2
(b3 + 6abc + 3ad) +M et
817 (34— )

(ab2 + azc) +

3(4942 +104u + ,uz)(bzh+2ach)

423 (A+u)
3a’h , 3092+ u)abh
204+ 0)° 22200+ p)*

3 2
Lof 2094° +592%u ]| (bch+ adh)6 ot
P+ i )42t (A4 p)

3(5/12 +14/1,u+11,u2)0h2
8u° (1 +u)°
9(5&3 +2042 1+ 29742 +16,u3)dh2
* 6 7 (29)
8u (/1+,u)
2 2
3an?  3(22+3u)bh }e_zm

8u°(A+p) 8t (A+u)
Hl _ _h3e—2,ut
(27,16 +542° 1 -2823 1% -32% 4% + 6405 — 118 ) (30)
3
(34— 1) (A+4)

Now applying the condition A << u in equation (18),
we obtain the following equations for unknown functions
A and Hy:

3(593,2 —34/7,,u+5,u2)

(D+u-2)A =-
22 (u—-32)°
3(19413 169224+ 50742 —5u3)
(ab® +a’c) + . (31)
23 (32— )
_ 2
(b +6abc +3a°d) +a° L30A=203%b | o
2GA— 1)

And

3(494% +104u + 1) (b%h +ach)
222 (A+ p)?

9(bch + adh)(209/13 15922 +1144% + /ﬁ)
2231+ w)®
3(94 + p)abh }e_m ) {3(21 +3u)b%h

(D+/1—#)H1=—{

+

+3a%h+
A+ p) p(A+p)

9(513 +2042 1+ 29744 +16,u3)d2h
+ 3 3 +3a°h
#(A+u)
3(512 +142u +11,uz)ch2

w2 (A+ )’

(32)

e_(j""/u)t

[27,15 +5425 - 28&3/13J
3 2ut -34%u" +64u° —
(82— u)* (A+ )’

Thus, the solution of the equations (31) and (32) are

. as +3(59/12 — 347 +5u%)
81331 - 1) 81331 -n)®
3(194/13 169424+ 50442 —5,u3)
81531 - w)*

2
(b3 + 6abe + 3a2d) + M o 2M
844 (34— 1)

2 (33)

(ab2 +a“c)+

L3 {(49,12 +102u+ %) (b2h + 2ach)
=3

2 224+ )
3(bch +adh)(209/13 +5922 410047 + ;ﬁ)

+
2B+
2a%h , 292+ pmabh | oz
A+t 2+ p)°

52% +202% ih?
_i{ (24+3) o +29402 +16,4°
1 (24 1) u (A+p)’

an? (542 +142u+11% |ch?

e_(ﬂ"'/u)t

u w8 (2+ )
2728 +5452° 11— 282313
_h3a-2ut [—342!‘4 +64u° - 4t° ]
(32w (2=3u)" (A+ )’ (34)

Finally, the solution of the equation (17) for uy is
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U = {3(b20 +ac? +2abd)(r + Kt + Kt? + 1,t3 + it

g + It + gt2 ]

+3(bc? +b?d + 2acd)
+r9t + r10t4 + I’llts

2 3
o+ Mot + G417 + et
+(c3 +6bed +3ad2)(12 188748 5 J

+I’16t4 + I’17t5 + r18t6

2 2 rlg + r20t + I’21t2 + r22t3

+3(c“d +bd*) . s s ;
+r23t + r24t + r25t + r26t

2 3 4
I57 + gt + gt ™ + Iat™ + 4t
+3cd 2| '27 528 269 :;0 :;1
+I’32t + r33t + I’34t + I’35'[

2 3 4
43 36 + I37t + F3gl™ + I39t™ + Iyt 3t
5 6 7 8 o |(®
+I’41'[ + I’42t + r43t + r44t + r45t
+{3(c?h + 2bdh) (r46 + g7t rgt? +ryetd + r50t4)

+ 60dh(r51 + gt + r53t2 + r54t3 + r55t4 + r56t5)

2 3
2, | T57 +T5gl+T5gt™ + 1ot | _(57. )t
+3d h[ e (35)

+r61t4 + r62t5 + r63t6
where

r 3 [4387/14 ~513223 14+ 22902 yz]
1 b

322832 - 1)° | - 460243 + 354

) 3 1942° -1692° 1
2= 7. 71 '
427 (u-32)* | 45042 513

3

:8/16(3/1—;1)3
4 Z%
42%(u-32)
5= o5 : 4
484%-162% 1

r (5942 —344u+51),

(TA+2p),

i 15 111914° —164724% 11— 985043 12
6= 0., .8
322°%(u-32)° | 2980223 + 45521* — 28,5

7 =501y =22, f =53, 0 = T, iy = 15,

2650048 —470904° 1 +
3536514 12 —143202° 4% + |,
329042 * — 40644° + 2148

45

No=—"0 =
1621931 - u)’

3 1 3
3 =% 4 =317,05 =56 =2,

6
7 = grlov fig =M1,

5930517 —1236354% 4 +
~ 315 1119104° 12 —5684514 113
1678 (- 32)8 | 4174652344 —32412%,/°
+3364.° —154"

M9

7 7 7
fa =7hp, M =5 113:122 =7 14: 23 = fis,

7 7
M4 :grlevrzs —Er17'r26 =g,

(203144518 - 486500017 1
B 315 +51585401° 1% —31548402° 12
21 = 15 o
3242 (34— 1)° | +12149902% 4* — 301336435
+4695612 1% — 420044" +165,8

r —1r r 1r r 4r Iy = 2r,
28 819'29 420’30 321131 221

I —8I’ I —4I’ I —8l’ I3 =1,
32 523’ 33 325'34 725’35 261

41965752° —113603901%

+138190604" 1% —98908004° 1/
2835

4o = | +4582070° 4" ~1423996.2%4° |,
322 (4 —32)

+2964361°% 1% — 3984042 11"

+313544° —1104°

~ 189

9 3
37 =97, I3g = > 1281159 = 3r9, 140 = 21300141 = 5

I, —3r I, —gr I —gr Iys =T
42 2 32,743 7 3344 8 34,745 — 1351

3 76944 + 268431+ 7042 42

e =—"2 "3
4&5(/1 + ,u)s +12/1y3 + u4

1

3

:ﬁ(zo%3 +114% + %),
2244+ 1)

M47

g (4942 +10Au + 1),

2234+ )P

1

fa9 —
224+ p)*

=m(9l+ﬂ), 5o =

15 25614° +10374% 11 +3384° 12

51=576 9 2.3 45
87 (u+ )" \ +82A° 1> +13Au" +

5 5 5
5o =Slye, f53 ZEV47,V54 :§r48’r55 :Zr491r56 =50,

793715 +35981° 4
+13754% 1% + 4202318 |,
+95/12,u4 +14/1,L15 + ,u6

45

57 =—"""71¢
8" (A+ u)™°
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1
lsg =351, g = 3M5, o = 53

3 6
fe1 :§r54' o2 = grss- Ie3 =I5

Substituting the values of A, B;, C;, D; and H; from

equations (29), (33), (26), (24), (22), (32) and (34) into
equation (4), we obtain, when A >> x4 then & becomes
3(594% — 3444 +5u°)

a3
a=-¢ +
84334 ) 81331 - u)®
319443 —16942 11 +504u° —54°)
81531-p)*

2
(b3 + 6abc + 3a2d) +M e
844 (31— 1)

(ab2 + azc) +

(b®h+ 2ach)
4234+ )
3(94 + 1)
201+ p)° 2024+ p)
(20943 +594% 1 +1144°% + 1) o—Citat
2242+ w)®
{3(5/12 +142u+11°)ch®  3ah® 1

{3(49,12 +104u + u?) +3a°h

++9(bch +adh)

8/15 4 -i-,u)3 8,u3 (A+u)
. 9543 + 2042 1+ 2944% +16,4%)dnh? .\
8u®(A+u)!

2
N 3(2@1 + 3,u)b|’; }e_z "
8" (A+p)

And when 1 << u then abecomes

. a3
a=-¢ +
[{823(31-—u>

3(19413 169224+ 50742 —5ﬂ3)

3(594% —344u +5u°)
81331 -pu)®

2

(ab2 +a°c)+

81834 p)*

2
(b3 + 6abc +3a2d) +w o2t
844(34 - 1)

, 3(72-2u)(ab® +a%c)  zy2
b=-¢ +

424 (30— Y’ 82° (34— u)

+3(59/12—34/1y+5y2) b2h+2ach) 2

222 (A+u)*

dabh 3(92 + u)(b%h + 2ach)

A2+ p) 222 (2+u)*

3(bch-+adh) | _(zeu

2 2
+(49,1 +104u + u )2/13(/“#)5

, 9(5/12 +14/1,u+11,u2)

8/15 (ﬂ + ,u)3

{ 3bh?

i +

8u” (A+u)

322+ 3”)02_2 }e_zﬂt
44t (A+pu)

o _,| [(9A:+u)(bch +adh) 3(b°h-+2ach) g
222 (A+p)* 22 (A+u)

3(ab® +a’c) 3(74-2u)(b’ +6abc+3a%d)
+
823(31-u)

2
eth+{ 33Ch
8u (l+,u)

814 (34— u)’

2 h?
LS ;1+3,u)d2 }ezm
8u (/”H-,u)

(b3 +6abc + azc) g M

d=-c 813 (31
(32-4) (36)

24(bch + adh)e~ (740t N
84° (A+u)’

3dh2e 24
8u° (A + ﬂ)}
Again, when 1 >> z then h becomes
h=—gh3e24
(2716 +542°% - 28231° 32244 16045 - ,u6)
(82— )% (A+ )’

Further, when 1 << zzthen h becomes

S 3(4942% +10Au + 1) (b%h + 2ach)
2 A2 (A+ )

2092° +5942
3(bch + adh) TSAH

2a%h +1144% + 48

(A+m)* B+ p)!
2
+abh 291+ ,u?) o2t +i (225+ 3u)bh

AA+ 1) 16| 12 (A+u)
3dh?

u (A+p)’

(5,13 +2042 4+ 29244 +16,u3)

2 2

+(542 +14zﬂ+11y2)%+a_:‘ ot
©(A+p)” H

272° +5452°

+| —2823 4% —34% 4

h3e-24t ]
4 3 3
6B P (A=3u)" (A+u)" (34— u)

Here, all of the equations (36) have no exact solutions,

but since &, b, ¢, d and h are proportional to the small
parameter ¢, they are slowly varying functions of time t.
Therefore, it is possible to replace a, b, ¢, d and h by
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their respective values obtained in linear case (i.e., the
values of a, b, c,d and h obtained when ¢ =0) in the
right hand side of equations (36). This type of replacement
was first introduced by Murty and Deekshatulu [5] and
Mutry etal. [14] in order to solve similar types of
nonlinear equations.

Therefore, the solutions to the equations (36) are, when
A >> pthen a becomes

3
a= aO —-& BL
84334 - p)
. 3(5942 — 3444 +5u°)
81331 -n)®
3[194,13 16942 yJ

(aby” +3°¢o)

+504° —54°

815(31-p)*

L 31- Zu)azb} (1-e27)
814 (31— p)? 24

(bp® +BaghoCy +3a°dp)

3(492% 4104+ 41° ) (b2hy + 280Ch)
+

4723 (A+u)
38y 3(94+ ¢)aghohy
220+ 222+ w)?

. 20943 +594241 | 9(byCohy + agdghy) | (L—e~*+t)
42* (24 u)° (A+u)

+

+1My2 +,u3
(5/12 +14/1,u+11,uz)
8u°(A+u)
9(5,13 1+2042 4+ 29742 +16y3)d0h02
8u8 (A+u)*

3aghy’ 3(24+3u)bohy” | - )
8ut(A+u)  8ut(A+p) 2u

3cohg?

+

Again, when A << u then a becomes

3
2= _8[{8/13(61301—;1)
.\ 3(594% 3444 +54%)
81331 —p)®
3[194,13 16942 y]
+504° —54°
84531 -w)*

3(74-2u)35°y | @-e M)
+
814 (34— u)? 2

(3oho” +39°¢o)

(by® + 6aglyco +3a5°dp)

by —s 3(7/1—2y)(a0b02 +a02c0)+ 33,2,

42* (34 - p)’ 82°% (31— u)
by® +6
3(594% ~344+ 547 )| +6aoboCo
. +3ag’dy )| a-e)
222 (a+u)t 22

+{ 3aghohy +(b02h0+2aocoho)3(9/1+ﬂ)

Aa+u) 222 (A+p)

+3(49/12 +1OA,ILI + ,Uz ) (bOCOhO + aodoho)ﬁ}
+u

-Gty |9(542 +144u +1147
1-e )
+

+ dgh
(A+ 1) 88 (rpf

J’_

3bphy” +3(2’1+3#)Coh02 (L-e")
8u°(A+u) At (A+u)’ 2u

cec _SH(gf“ﬂ)(boCohoJraodoho)
—¢, . ;
24 (/1+,u)

+

(b02h0 + Z%Coho)i} (1_e—(ﬂ.+/l)t)

(A+u) 24 (A+p)
3{aobo2 ] [b03+6a0boco]
2 2 24t
3a,°d -
+ —3+a° % +3(74-2u) +f° L — d-e”)
84° (34— ) 84" (34— u) 24

L 3he® | 9(22+3u)dohy” (1—e_2ﬂt)}
81 (A+u)  8ut(2+u) 2u

(b03 +629hyCo + aozco)(l—":‘*z'u)
162% (34— u)

d:do—g

N 24(byCohy +agdgh ) (L —e~ 7ty
82°% (A+u)"

. 3dghg? (1—e 24
164* (A+u)

(37

Moreover, when A >> u then h becomes

_a—2ut
h=hy —ehy® a-e ™)
2p

(27/16 +542% - 282318 ~322% + 6005 — 1° )

@a—p)®(A+p)’
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when A << u then h becomes

hohy 3| (494% +104u+ 1) (b g + 280Cohy)
8424+ u)®

1 (2002745927 411007 + 1%

+2a02h0 +
(A+m)* 22+ )]
(94 +u)
3(byCoho + 3gdohg ) + 2aghphy ————2
0o 0o o A+ 0
1-e2M) +i{(21+3y)b0h02
21 16| 15(2+u)
2
+%(512 +142 +11y2)
w(A+u)
[54%2012# J
297u° +164° 2] (q_g~(A+mt
. +29u° + 3,‘u 3d0h02+a°hf 1-e )
u' (A+ ) u (A+u)
2728 +5452°
Qe hy® 33 .2 4
+ =287 u" =34 u

2u(2+ ) (32-u) (2=3w)"| o 5 s

Hence, we obtain the first approximate solution of the
equation (13) as:

x(t,e) = (@a+bt+ct? +dtd)e ™ +he 4 cu;  (38)

where a, b, c,d and h are given by the equations (37)
and uy is given by (35).

4. Results and Discussion

Xt
—— Perturbation Results
wal\ e Numerical Results
03
02
01

2 4 6 g O 2 4

Figure 1. Comparison between perturbation and numerical results
for £=0.01, 4=4.50, #=0.30, with the initial condition ay =0.50,
bp =0.40, ¢4 =0.30, dy=0.25 and hy=0.45

In order to bring more efficiency to our results, the
numerical results obtained by Mathematica 9.0 are
compared with the perturbation results obtained by the
same program for the different sets of initial conditions.
Here, we have computed x(t,&) from (38) by considering

different values of 2 and x in which a, b, c,d and h
are obtained from (37) and uy is calculated from equation

(35) together with four sets of initial conditions. The
corresponding numerical solutions have been computed by
the Mathematica 9.0 program for various values of t and
all the perturbation solutions have been developed by a
code in Mathematica 9.0 program. All the results
presented by the Figure 1 and Figure 2 for the case
A >> p; and Figure 3 and Figure 4 for the case A << g,

show the perturbation results, which are plotted by a blue
line and the corresponding numerical results, which are
plotted by the red line respectively.
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Figure 2. Comparison between perturbation and numerical results
for £=0.01, A=7.0, £=0.50, with the initial condition ag =0.60,
bp =0.25, ¢g=0.35 dy=0.20 and hy=0.5.
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Figure 3. Comparison between perturbation and numerical results
for £=0.01, 1=2.00, £=9.00, with the initial ondition ay =0.60,
bp =0.25, ¢g=0.35 dy=0.20 and hy =0.35
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Figure 4. Comparison between perturbation and numerical results
for £=0.01, 4=1.65 x=7.00, with the initial condition ap = 0.40,
bp =0.30, cg=0.25 dy=0.15 and hy =0.35
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5. Conclusion

In conclusion, it can be said that, in this article, we have
successfully modified the KBM method and applied it to
the fifth order more critically damped nonlinear systems.
In relation to the fifth order more critically damped
nonlinear systems, the solutions are obtained in such
circumstances where the four eigenvalues are equal.
Ordinarily, it is seen that, in the KBM method, much error
occurs in the case of rapid changes of x with respect to
time t. However, it has been observed in this study that,
with respect to the different sets of initial conditions of the
modified KBM method, the results obtained for both the
cases (when A>> g and A << u) correspond accurately

to the numerical solutions obtained by Mathematica 9.0.
We, therefore, come to the conclusion that the modified
KBM method gives highly accurate results, which can be
applied for different kinds of nonlinear differential systems.
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