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1. Introduction 
The objective of this article is to investigate the Hyers-

Ulam-Rassias Stability for the nonlinear differential 
equation 

 ( ) 2 ( ) ( , ) 0,y t f t y y g t y t R+′′ ′+ + + =   (1) 

and the perturbed nonlinear differential equation of second 
order  

 ( ) 2 ( ) ( , ) ( )y t f t y y g t y h t′′ ′+ + + =  (2) 

by fixed point method under assumptions: ( ) 0,f t >  
( , )g t y  are continuous, and that 

 ( ) as ,
0

t
f s ds t→∞ →∞∫ ,  (3) 

 
2 ( )

( )
20

where 1, 0.

t
f u dut

se t s ds

t

α

α

− ∫
− ≤∫

< ≥

 (4) 

Suppose that there is 0L > such that if , ,x y L≤  then 

 ( , ) ( , ) ( ) , 0,g t x g t y Ld t x y t− ≤ − ≥  (5) 

where ( ) 0,d t >  ( ) 0d t →  as ,t →∞  and ( ,0) 0.g t =   
Furthermore, we assume that there is a positive constant 

A  such that ,A L<  and ( ) : [0, )h t R∞ →  with 

 
( )

( ) ( ) , 0
0

t
f u dut

st s e h s ds A t
− ∫

− ≤ ≥∫  (6) 

In 1940, Ulam [1] posed the stability problem of 
functional equations. In the talk, Ulam discussed a 

problem concerning the stability of homomorphisms. A 
significant breakthrough came in 1941, when Hyers [2] 
gave a partial solution to Ulam's problem. During the last 
two decades very important contributions to the stability 
problems of functional equations were given by many 
mathematicians (see [3-11]). More than twenty years ago, 
a generalization of Ulam's problem was proposed by 
replacing functional equations with differential equations: 

The differential equation ( )( , ( ), ( ),..., ( )) 0nF t y t y t y t′ =  
has the Hyers-Ulam stability if for given 0ε > and y a 
function such that 

 ( )( , ( ), ( ),..., ( ))nF t y t y t y t ε′ ≤  

there exists a solution 0y of the differential equation such 
that  

 | ( ) ( ) | ( )0y t y t K ε− ≤  

and lim ( ) 0.
0

K ε
ε

=
→

 

The first step in the direction of investigating the 
Hyers-Ulam stability of differential equations was taken 
by Obloza (see [12,13]). Thereafter, Alsina and Ger [14] 
have studied the Hyers-Ulam stability of the linear 
differential equation ( ) ( )y t y t′ = . The Hyers-Ulam stability 
problems of linear differential equations of first order and 
second order with constant coefficients were studied in the 
papers ([15,16]) by using the method of integral factors. 
The results given in [17,18,19] have been generalized by 
Popa and Rasa [20,21] for the linear differential equations 
of nth order with constant coefficients. In addition to 
above-mentioned studies, several authors have studied the 
Hyers-Ulam stability for differential equations of first and 
second order (see 22-26). The Hyers-Ulam-Rassias 
Stability by Fixed Point Technique for Half-linear 
Differential Equations with Unbounded Delay has been 
established by Qarawani [27]. Burton in [28] has used 
fixed point theory to establish Liapunov stability for 
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functional differential equations. Some researchers have 
used the fixed point approach to investigate the Hyers-
Ulam stability for differential equations [e.g. [29,30]]. 
Definition 1 Let  

 { : | (0) , }0S R R y Lφ φ φ+= → = ≤  

on , },R Cφ+  where [0, )R+ = ∞ . We say that 
equation (1.2) ( or (1.1) with ( ) 0)h t ≡ has the Hyers-Ulam-
Rassias (HUR) stability with respect to ϕ if there exists a 
positive constant 0k >  with the following property: For 
each ( )y t S  , if 

 
( ) 2 ( )

( ),
( , ) ( )

y t f t y
t

y g t y h t
ϕ

′′ ′+
≤

+ + −
 (7) 

then there exists some ( )0y t  of the equation (4) such that 

| ( ) ( ) | ( )0y t y t k tϕ− ≤ . 
Theorem 1 The Contraction Mapping Principle.  
Let ( , )S ρ  be a complete metric space and let 
: .P S S→  If there is a constant 1α < such that for 

each pair 1 2, Sφ φ  we have ( , )1 2P Pρ φ φ ≤  ( , ),1 2αρ φ φ  
then there is one and only one point Sφ   with .Pφ φ=   

2. Main Results On Hyers-Ulam-Rassias 
Stability 

Theorem 2 Suppose that ( )y t S  satisfies the 
inequality (1) with small initial condition (0) 0y y= . Let 

( ) : [0, ) (0, )tϕ ∞ → ∞  be a continuous function such that 

 
( )

( ) ( ) ( ),
0

0.

tt f u duss e t s ds C t

t

ϕ ϕ
−∫ − ≤∫

∀ ≥

 (8) 

If (3)-(6) hold, then the solution of (1) is stable in the 
sense of Hyers-Ulam-Rassias. 

Proof. Let C be the space of all continuous functions 

from R R+ →  and define the set S  by 

 
: | (0) ,0

, ,

R R y
S

L on R C

φ φ

φ φ

+ → = =  
+ ≤ 

 

Then, equipped with the supremum metric ( , )s⋅ , is a 

complete metric space. Now suppose that (3) holds.  For 
L  and ,α  find appropriate constants ,aδ  and B  such 
that  

 ( )1 .
2 2

L LBa Lα αδ+ + + ≤  

Multiplying both sides of (1) by 
2 ( )
0 ,

t
f s ds

e
∫

 and then 
integrating once with respect to t  yields 

 

2 ( ) 2 ( )
0 0(0) ( )

0

2 ( )
0( , ( ))

0

t t
f s ds f u dut

e y y y s e ds

t
f u dut

g s y s e ds

∫ ∫
′ ′= − ∫

∫
− ∫

 (9) 

Now, we multiply Eq. (9) by 
2 ( )
0 ,

t
f s ds

e
− ∫

and 
integrate with respect to t  to obtain 

 

2 ( )
0( ) (0) (0)

0

2 ( )
( ) ( )

0

2 ( )
( ) ( , ( )) .

0

s
f u dut

y t y y e ds

t
f u dut

st s y s e ds

t
f u dut

st s g s y s e ds

− ∫
′= + ∫

− ∫
− −∫

− ∫
− −∫

 

Define :P S S→  by  

 

( )
2 ( )
0( ) (0) (0)

0

2 ( )
( ) ( )

0

2 ( )
( ) ( , ( ))

0

s
f u dut

P t y y e ds

t
f u dut

st s y s e ds

t
f u dut

st s g s y s e ds

φ
− ∫

′= + ∫

− ∫
−− ∫

− ∫
− −∫

 (10) 

It is clear that for Sφ  , Pφ  is continuous. Let 
( )t Sφ   with Lφ ≤ , for some positive constant L . 

Then there is a 0δ >  with (0) .φ δ≤  Since 

( ) ,
0

t
f s ds →∞∫  as ,t →∞  then we can find a constant 

0a >  such that 

 
2 ( )
0(0) .

0

s
f u dut

y e ds aδ
− ∫

′ <∫  

Then using (3),(4) in the definition of ( ) ( )P tφ , we 
have 



228 American Journal of Applied Mathematics and Statistics  

 

 

( )

2 ( )
0(0) (0)

0

2 ( )
( ) ( )

0

2 ( )
( ) ( , ( ))

0

2 ( )
1 ( )

0

2 ( )
( ) ( )

0

s
f u dut

P y y e ds

t
f u dut

st s y s e ds

t
f u dut

st s g s y s e ds

t
f u dut

sa L t s e ds

t
f u dut

sLB t s e d s ds

φ

δ

− ∫
′≤ + ∫

− ∫
+ −∫

− ∫
+ −∫

− ∫
≤ + + −∫

− ∫
+ −∫

 

Since ( ) 0,d t →  as ,t →∞  we can choose a number 

B  sufficiently small such that 0 ( ) ,d t B< ≤  on R+  and 
with 

 1LB <  (11) 
Then from (4) we obtain  

 ( )1
2 2

L LBP a α αφ δ≤ + + +  

which implies that .P Lφ ≤  
To see that P  is a contraction under the supremum 

metric, let , ,Sφ η   then 

 

( ) ( ) ( )( )

2 ( )
( ) ( ) ( )

0

2 ( )
( , ( )) ( , ( )) ( )

0

2 ( )
( )

0

2 ( )
( )

0

P t P t

t
f u dut

st s s s e ds

t
f u dut

sg s s g s s t s e ds

t
f u dut

st s e ds

t
f u dut

sLB t s e ds

φ η

φ η

φ η

φ η

φ η

−

− ∫
≤ − −∫

− ∫
+ − −∫

− ∫
≤ − −∫

− ∫
+ − −∫

 

From this and in view of (4) and (11) we get the 
estimate 

 ( ) ( ) ( )( ) , with 1.P t P tφ η α φ η α− ≤ − <  

Thus, by the contraction mapping principle, P  has a 
unique fixed point, say 0y  in S  which solves (1) and is 
bounded. 

Next we show that the solution 0y  is stable in Hyers-
Ulam-Rassias. From the inequality (7) we get 

 ( ) ( ) 2 ( ) ( , ) ( )t y t f t y y g t y tϕ ϕ′′ ′− ≤ + + + ≤  (12) 

Multiplying the inequality (12) by 
2 ( )

0 ,

t
f u du

e
∫

 we 
obtain 

 

2 ( )
0( )

2 ( ) 2 ( )
0 0( ) 2 ( ) ( )

2 ( ) 2 ( )
0 0( ) ( , ( ))

2 ( )
0( )

t
f u du

t e
t t

f u du f u du
e y t f t y t e

t t
f u du f u du

y s e g s y s e
t

f u du
t e

ϕ

ϕ

∫
−

∫ ∫
′′ ′≤ +

∫ ∫
+ +

∫
≤

 

Or equivalently, we have 

 

2 ( )
0( )

2 ( )2 ( )
0 0( ) ( )

2 ( ) 2 ( )
0 0( , ( )) ( )

t
f u du

t e

t t
f u duf u du

e y t y s e

t t
f u du f u du
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ϕ

ϕ

∫
−

′ 
 ∫ ∫
 ′≤ + 
 
 
 

∫ ∫
+ ≤

 

Integrate the last inequality from 0  to ,t  and then 

multiply the obtained inequality by 
2 ( )
0

t
f s ds

e
− ∫

 to get  

 

2 ( )
( )

0

2 ( )
0(0)

2 ( ) 2 ( )
( ) ( , ( ))

0 0

2 ( )
( )

0

tt f u duss e ds

t
f s ds

y y e
t t

f u du f u dut t
s sy s e ds g s y s e ds

tt f u duss e ds

ϕ

ϕ

− ∫− ∫

− ∫
′ ′≤ −

− −∫ ∫
+ +∫ ∫

− ∫≤ ∫

 

Integrating again with respect to ,t  we have 
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2 ( )
( ) ( )

0
( ) (0)

2 ( ) 2 ( )
0(0) ( ) ( )

0 0

2 ( )
( ) ( , ( ))

0

2 ( )
( ) ( )

0
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t
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ϕ

ϕ

− ∫− −∫
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− ∫ − ∫
′− + −∫ ∫

− ∫
+ −∫

− ∫≤ −∫

 

Hence from (8), (20) we infer that .Py y Cϕ− ≤  To 
show that 0y  is stable we estimate the difference 

 
( ) ( )0 0

0

y t y t Py y Py Py

C y yϕ α

− ≤ − + −

≤ + −
 

Thus 

 ( ) ( )0 1
Cy t y t ϕ
α

− ≤
−

 

which means that (7) holds true (with ( ) 0h t ≡ ) for all 0t ≥ . 
Example 1 Consider the differential equation  

 ( )
( )

sin( ) 4 2sin 0.
21

yy t t y y
t

′′ ′+ + + + =
+

 

Let us estimate the integrals  

 ( )( ) 2 sin ,
0 0 0
as ,

t t t
f s ds t ds ds t

t

= + ≥ ≥ →∞∫ ∫ ∫

→ ∞

 

and for all 0t >  we obtain 

 

( )

( )

2 ( )
( )

0

4 2sin
( )

0

2
( )

0

2( ) ( )
0
1 12 21 2 ,
4 4

t
f u dut

se t s ds

t
u dut

se t s ds

t
dut

se t s ds

t t se t s ds

t te te

− ∫
−∫

− ∫ +
= −∫

− ∫
≤ −∫

− −≤ −∫

− −= − − <

 

Since 
( )

sin( , ( ))) ,
21

yg t y t
t

=
+

 then ( , ) ( , )g t x g t y−  

( ) ( ) ( )
sinsin 1 .

2 2 21 1 1

yx x y
t t t

= − ≤ −
+ + +

  

Therefore, we take 
( )

1( ) ,
21

d t
t

=
+

 which tends to 

zero as .t →∞  

Now, if we set ( ) ,tt eϕ =  then we have 

 
( )

( )

( )
( ) ( )

0

4 2sin
( )

0

3 31 3 ( ),
9 9

1with , 0.
9

tt a u dust s s e ds

t
u dut s se e t s ds

t te et te te C t

C t

ϕ

ϕ

−∫−∫

− ∫ +
= −∫

− −≤ − − < ≤

≥ ∀ ≥

 

Let us take 11, , 0.1
2

L Bα= = = . Then for the 

corresponding coefficients by (1.3), we can choose small 
positive constants ,a δ  such that 

 ( )1
2 2

L L Ba Lα αδ+ + + ≤  

and so 

 ( ) 291 .
40

a δ+ ≤  

Thus, all the conditions of Theorem (3.1) are satisfied, 
hence the Eq. (3.6) is HUR stable for 0.t ≥   

Theorem 3 Suppose that ( )y t S  satisfies the 

inequality (7) with small initial condition (0) 0y y= .  Let 

( ) : [0, ) (0, )tϕ ∞ → ∞  be a continuous function such that 

 ( )
( ) ( ) ( ), 0.

0

tt f u duss e t s ds C t tϕ ϕ
−∫ − ≤ ∀ ≥∫  (13) 

If (3)-(7) hold, then the solution of (2) is stable in the 
sense of Hyers-Ulam-Rassias. 

Proof. Define { : | (0) , ,0S R R y Lφ φ φ+= → = ≤  

},on R Cφ+  where ⋅  is the supremum metric. 

Then ( , )S ⋅ is a complete metric space.  
Now suppose that (3) holds. For ,L A  and α  we find 

constants ,aδ  and B  so that 

( )1 .
2 2

L L Ba A Lα αδ+ + + + ≤   

Applying the same approach used in Theorem 1 we 
define :P S S→  by  
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Then from (4) we obtain  

 ( )1
2 2

L L BP a Aα αφ δ≤ + + + +  

which implies that .P Lφ ≤  
To see that P  is a contraction under the supremum 

metric, let , ,Sφ η   then 
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−
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− ∫
≤ − −∫

− ∫
+ − −∫

 

From this and using (4) and (11) we get the estimate 

 ( ) ( ) ( )( ) , with 1.P t P tφ η α φ η α− ≤ − <  

Thus, by the contraction mapping principle, P  has a 
unique fixed point, say 0y  in S  which solves (1) and is 
bounded. 

Next we show that the solution 0y  is stable in Hyers-
Ulam-Rassias. From the inequality (7) we get 

 
( ) ( ) 2 ( )

( , ) ( ) ( )
t y t f t y y

g t y h t t
ϕ

ϕ
′′ ′− ≤ + +

+ − ≤
 (14) 

Multiplying the inequality (14) by 
2 ( )
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t
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e
∫

 we 
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Or equivalently, we have 
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∫
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t eϕ

∫ ∫
− +

∫
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Integrating the last inequality from 0  to ,t  and then 

multiplying the obtained inequality by 
2 ( )
0

t
f s ds

e
− ∫

 we 
get 
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0

2 ( )
0(0)

2 ( ) 2 ( )
( ) ( , ( ))

0 0
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( ) ( )
0 0
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ϕ
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− ∫
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+ +∫ ∫

− ∫
− ∫− ≤∫ ∫

 

Integrating again with respect to ,t  we have 
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f u dut t t f u dus sh s e ds t s s e dsϕ

−
− ∫− ≤ −

∫
∫ ∫  

From the definition of Py and in view of (20), we infer 
that .Py y Cϕ− ≤  Now, to show that 0y  is stable we 
estimate the difference 

 
( ) ( )0 0

0

y t y t Py y Py Py

C y yϕ α

− ≤ − + −

≤ + −
 

Thus 

 ( ) ( )0 1
Cy t y t ϕ
α

− ≤
−

 

which completes the proof. 
Example 2 Consider the nonlinear differential equation 

 
( )

2 2sin cos( ) (4 2sin )
2 11

ty e ty t t y y
tt

−
′′ ′+ + + + =

++
 

One can similarly, as in Example 1 establish the validity 
of conditions (1.3)-(1.6). So, to establish the stability of 
this equation, it remains to estimate the integral  

 

( )
( ) ( )

0

(4 2sin ) 2 2cos( )
10

2( ) 2( )
0

2 2 12( ) , 0.
22 20

t
f s dst

st s e h s ds

t
t ds st e sst s e ds

s

t t s st s e e ds

tt t ett s e ds t
e

− ∫
−∫

− ∫ + −
= −∫

+

− − −≤ −∫

−
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Let us take 1 11, , ,
2 22

L A
e

α= = =  and 0.1B = .  

Then for these coefficients by (3), we can choose small 
positive constants ,a δ  such that 

 ( )1
2 2

L L Ba A Lα αδ+ + + + ≤  

From which it follows that 

 ( ) 29 1 531 .
240 802

a
e

δ+ ≤ − <  

Hence the conditions of Theorem 2 are satisfied. 

3. Conclusion  
We have obtained two theorems which provide the 

sufficient conditions for the Hyers-Ulam-Rassias Stability 
of solutions of two nonlinear differential equations. To 

illustrate the results we provided two examples satisfying 
the assumptions of the two proved theorems. 
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