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Abstract  This paper concerns the derivation of continuous linear multistep methods for solving first-order initial 
value problems (IVPs) of ordinary differential equations (ODEs) with step number 𝑘𝑘 = 3  using Hermite 
polynomials as basis functions. Adams-Bashforth, Adams-Moulton and optimal order methods are derived through 
collocation and interpolation technique. The derived methods are applied to solve two first order initial value 
problems of ordinary differential equations. The result obtained by the optimal order method compared favourably 
with those of the standard existing methods of Adams-Bashforth and Adams-Moulton. 

Keywords: linear multistep method, hermite polynomial, collocation, interpolation, optimal order scheme, 
ordinary differential equation, initial value problem 

Cite This Article: T. Aboiyar., T. Luga., and B.V. Iyorter, “Derivation of Continuous Linear Multistep 
Methods Using Hermite Polynomials as Basis Functions.” American Journal of Applied Mathematics and 
Statistics, vol. 3, no. 6 (2015): 220-225. doi: 10.12691/ajams-3-6-2. 

1. Introduction 
Linear multistep methods (LMMs) are very popular for 

solving initial value problems (IVPs) of ordinary 
differential equations (ODEs). They are also applied to 
solve higher order ODEs. LMMs are not self-starting 
hence, need starting values from single-step methods like 
Euler’s method and Runge-Kutta family of methods.  

The general 𝑘𝑘-step LMM is as given in Lambert (1973) 
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j n j j n j
j j

y h fα β+ +
= =
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where 𝛼𝛼𝑗𝑗  and 𝛽𝛽𝑗𝑗  are uniquely determined and  𝛼𝛼0 + 𝛽𝛽0 ≠
0, 𝛼𝛼𝑘𝑘 = 1. 

The LMM in Equation (1) generates discrete schemes 
which are used to solve first-order ODEs. Other 
researchers have introduced the continuous LMM using 
the continuous collocation and interpolation approach 
leading to the development of the continuous LMMs of 
the form 

 ( ) ( ) ( )
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y x x y h x fα β+ +
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where 𝛼𝛼𝑗𝑗  and 𝛽𝛽𝑗𝑗  are expressed as continuous functions of  
𝑥𝑥 and are at least differentiable once [8]. 

According to Okunuga and Ehigie [17], the existing 
methods of deriving the LMMs in discrete form include 
the interpolation approach, numerical integration, Taylor 
series expansion and through the determination of the 
order of LMM. Continuous collocation and interpolation 

technique is now widely used for the derivation of LMMs, 
block methods and hybrid methods. 

Several continuous LMMs have been derived using 
different techniques and approaches: Alabi [5] derived 
continuous solvers of IVPs using Chebyshev polynomial 
in a multistep collocation technique; Okunuga and Ehigie 
[17] derived two-step continuous and discrete LMMs 
using power series as basis function; Mohammed [15] 
derived a linear multistep method with continuous 
coefficients and used it to obtain multiple finite difference 
methods which were directly applied to solve first-order 
ODEs; Odekunle et al [16] developed a continuous linear 
multistep method using interpolation and collocation for 
the solution of first-order ODE with constant stepsize; 
Adesanya et al [2,3] considered the method of collocation 
of the differential system and interpolation of the 
approximate solution to generate a continuous LMM, 
which is solved for the independent solution to yield a 
continuous block method; James et al [11,12] proposed a 
continuous block method for the solution of second order 
IVPs with constant stepsize, the method was developed by 
interpolation and collocation of power series approximate 
solution; Anake [6] developed a new class of continuous 
implicit hybrid one-step methods capable of solving IVPs 
of general second order ODEs using the collocation and 
interpolation techniques of the power series approximate 
solution; James et al [11,12] adopted the method of 
collocation and interpolation of power series approximate 
solution to generate a continuous LMM; Ehigie et al [9] 
proposed a two-step continuous multistep method of 
hybrid type for the direct integration of second order 
ODEs in a multistep collocation technique; Akinfenwa et 
al [4] developed a four step continuous block hybrid 
method with four non-step points for the direct solution of 
first-order IVPs; Adesanya et al [2,3] adopted the method 
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of collocation of the differential system and interpolation 
of the approximate solution at grid and off grid points to 
yield a continuous LMM with constant stepsize and James 
et al [11,12] developed a continuous block method using 
the approach of collocation of the differential system and 
interpolation of the power series approximate solution. 

The introduction of continuous collocation schemes is 
of great importance as better global error can be estimated 
and approximations can be equally obtained. Also, the gap 
between the discrete collocation methods and the 
conventional multistep methods is bridged. In this study, 
we will develop continuous multistep collocation methods 
for the solution of first-order IVPs of ODEs using the 
probabilists’ Hermite polynomials as the basis function. 
The corresponding discrete schemes shall also be obtained. 

2. Methods  
In Awoyemi [7] and Onumanyi et al [18], some 

continuous LMM of the type in Equation (2) were 
developed using the collocation function of the form: 

 ( )
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j
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Awoyemi et al [8] proposed a similar function of the 
type in Equation (3) 

 ( ) ( )
0

k
j

j k
j

y x x xα
=

= −∑  (4) 

to develop LMM for the solution of third-order IVPs. 
Adeniyi and Alabi [1] used Chebyshev polynomial 
function of the form: 
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where  𝑇𝑇𝑗𝑗 (𝑥𝑥)  are some Chebyshev function to develop 
continuous LMM. 

In this paper, we propose the Probabilists’ Hermite 
polynomial of the form [13]: 
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where 𝐻𝐻𝑗𝑗 (𝑥𝑥)  are probabilists’ Hermite polynomials 
generated by the formula: 
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and whose recursive relation is 

 ( ) ( ) ( )'
1n n nH x xH x H x+ = −  

to develop continuous LMMs for the solution of firs-order 
IVPs of ODEs of the form: 

 ( )( ) ( )'
0 0, , .y f x y x y x y= =  (5) 

The first six probabilists’ Hermite polynomials are: 

 2
0 1 21, , 1,H H x H x= = = −  

 3 4 2 5 3
3 4 53 , 6 3, 10 15 .H x x H x x H x x x= − = − + = − +  

2.1. Derivation of the Linear Multistep 
Methods 

We wish to approximate the exact solution  𝑦𝑦(𝑥𝑥) to the 
IVP in Equation (5) by a polynomial of degree  𝑛𝑛 of the 
form: 
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which satisfies the equations 
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The Adams-Bashforth Method 
To derive the three-step Adams-Bashforth method, we 

set  𝑛𝑛 = 3 in Equation (6), yielding  
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Differentiating once gives the equation: 

 ( ) ( ) ( )2'
1 2 32 3 1 .k ky x a a x x a x x = + − + − −  

 (9) 

Interpolating Equation (8) at 𝑥𝑥 = 𝑥𝑥𝑘𝑘+2 and collocating 
Equation (9) at 𝑥𝑥 = 𝑥𝑥𝑘𝑘 , 𝑥𝑥𝑘𝑘+1, 𝑥𝑥𝑘𝑘+2 yields 
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In matrix form, we have: 
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Solving the system of equations by Gaussian 
elimination we obtain: 
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Substituting for  𝑎𝑎𝑗𝑗 , 𝑗𝑗 = 0, 1, 2, 3 in Equation (8) yields 
the continuous method: 
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Evaluating Equation (10) at 𝑥𝑥 = 𝑥𝑥𝑘𝑘+3 , we obtain the 
discrete form as: 

 ( )3 2 2 123 16 5 .
12k k k k k
hy y f f f+ + + += + − +  (11) 

The Adams-Moulton Method 
To derive the three-step Adams-Moulton method, we 

let 𝑛𝑛 = 4 in Equation (6) and differentiate the obtained 
function once. This gives: 
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Interpolating Equation (12) at 𝑥𝑥 = 𝑥𝑥𝑘𝑘+2 and collocating 
Equation (13) at  𝑥𝑥 = 𝑥𝑥𝑘𝑘 , 𝑥𝑥𝑘𝑘+1, 𝑥𝑥𝑘𝑘+2, 𝑥𝑥𝑘𝑘+3  gives to the 
equations: 
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The equations can be written in matrix form: 
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Solving the system of equations by Gaussian 
elimination, we have that: 
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Substituting for  𝑎𝑎𝑗𝑗 , 𝑗𝑗 = 0, 1, 2, 3, 4  in Equation (12) 
yields the continuous method 
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Evaluating Equation (16) at  𝑥𝑥 = 𝑥𝑥𝑘𝑘+3 , we obtain the 
discrete scheme: 

 ( )3 2 3 2 19 19 5 .
24k k k k k k
hy y f f f f+ + + + += + + − +  (17) 

The Optimal Order Method 
The optimal order scheme is an implicit multistep 

method similar to the Adams-Moulton method. To derive 
the three-step optimal order method, we shall consider the 
system of equations in Equation (14) except for 𝑦𝑦(𝑥𝑥𝑘𝑘+2). 
Interpolating Equation (12) at 𝑥𝑥𝑘𝑘+1 we have  
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The corresponding matrix of the equations is: 
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Solving the system of equations give the same result as 
in Equation (15) above except for 𝑎𝑎0. Thus, we have 𝑎𝑎0 to 
be: 
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Substituting for 𝑎𝑎𝑗𝑗 , 𝑗𝑗 = 0, 1, 2, 3, 4   in Equation (12) 
yields the continuous three-step optimal order method: 
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1
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2
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3
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4
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5
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Evaluating Equation (18) at 𝑥𝑥 = 𝑥𝑥𝑘𝑘+3 , we obtain the 
discrete form: 

 ( )3 1 3 2 14 .
3k k k k k
hy y f f f+ + + + += + + +  (19) 

3. Numerical Examples 
In this section, we will apply the derived three-step 

methods of Adams-Barshforth, Adams-Moulton and the 
proposed optimal order to solve two IVPs of ODEs. Errors 
associated with the methods will also be obtained. The 
four-stage Runge-Kutta method is used to obtain the 
starting values, and the four-stage Adams-Bashforth 
method is used as a predictor to the implicit schemes. The 
result and errors obtained are tabulated for clarity.  
Example 1 

Consider the IVP 

 ( )' , 0 1, 0 1.y y x y= − ≤ ≤ =  

Exact Solution: 𝑦𝑦(𝑥𝑥) = 𝑒𝑒−𝑥𝑥 . 
Example 2 

Consider the IVP 

 ( )' , 0 1, 0 1.y xy x y= ≤ ≤ =  

Exact Solution:  𝑦𝑦(𝑥𝑥) = 𝑒𝑒�
𝑥𝑥2

2 �. 
The error is defined as: 

 ( ) ( )nError y x y x= −  

where 𝑦𝑦(𝑥𝑥)  is the exact solution and  𝑦𝑦𝑛𝑛 (𝑥𝑥)  is the 
approximate solution. 

Table 1. Result of Example 1, with stepsize  𝒉𝒉 = 𝟎𝟎.𝟏𝟏 

𝒙𝒙-value Exact Solution 
𝒚𝒚(𝒙𝒙) 

Adams-Bashforth 
Approximation 

𝒚𝒚𝒏𝒏(𝒙𝒙) 

Adams-Moulton 
Approximation 

𝒚𝒚𝒏𝒏(𝒙𝒙) 

Optimal Order 
Approximation 

𝒚𝒚𝒏𝒏(𝒙𝒙) 
0.1 0.9048374180 0.9048375000 0.9048375000 0.9048375000 
0.2 0.8187307531 0.8187309014 0.8187309014 0.8187309014 
0.3 0.7408182207 0.7407858120 0.7408181288 0.7408181824 
0.4 0.6703200460 0.6702644224 0.6703196483 0.6703200104 
0.5 0.6065306597 0.6064547288 0.6065299217 0.6065303868 
0.6 0.5488116361 0.5487200866 0.5488105242 0.5488113400 
0.7 0.4965853038 0.4964816829 0.4965838086 0.4965847443 
0.8 0.4493289641 0.4492164248 0.4493270829 0.4493283868 
0.9 0.4065696597 0.4064508309 0.4065674014 0.4065688105 
1.0 0.3678794412 0.3677565415 0.3678768199 0.3678785973 

Table 2. Comparison of Absolute Error for Example 1  

𝒙𝒙-value 
Error in 

Adams-Bashforth 
Scheme 

Error in 
Adams-Moulton 

Scheme 

Error in 
Optimal Order 

Scheme 
0.1 8.196404 E-008 8.196404 E-008 8.196404 E-008 
0.2 1.483283 E-007 1.483283 E-007 1.483283 E-007 
0.3 3.240871 E-005 9.187851 E-007 3.826926 E-008 
0.4 5.562367 E-005 3.977782 E-007 3.563031 E-008 
0.5 7.593093 E-005 7.379661 E-007 2.728729 E-007 
0.6 9.154951 E-005 1.111848 E-006 2.961309 E-007 
0.7 1.036209 E-004 1.495200 E-006 5.594595 E-007 
0.8 1.125393 E-004 1.881206 E-006 5.773206 E-007 
0.9 1.188289 E-004 2.258387 E-006 8.492640 E-007 
1.0 1.228997 E-004 2.621222 E-006 8.439141 E-007 
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Table 3. Result of Example 2, with stepsize  𝒉𝒉 = 𝟎𝟎.𝟏𝟏 

𝒙𝒙-value Exact Solution 
𝒚𝒚(𝒙𝒙) 

Adams-Bashforth 
Approximation 

𝒚𝒚𝒏𝒏(𝒙𝒙) 

Adams-Moulton 
Approximation 

𝒚𝒚𝒏𝒏(𝒙𝒙) 

Optimal Order 
Approximation 

𝒚𝒚𝒏𝒏(𝒙𝒙) 
0.1 0.9048374180 1.0050125208 1.0050125208 1.0050125208 
0.2 0.8187307531 1.0202013398 1.0202013398 1.0202013398 
0.3 0.7408182207 1.0459088908 1.0460285650 1.0460282102 
0.4 0.6703200460 1.0830308352 1.0832888045 1.0832874947 
0.5 0.6065306597 1.1327285214 1.1331514299 1.1331491504 
0.6 0.5488116361 1.1965938880 1.1972215971 1.1972178290 
0.7 0.4965853038 1.2767374642 1.2776264969 1.2776213322 
0.8 0.4493289641 1.3759040738 1.3771330553 1.3771262162 
0.9 0.4065696597 1.4976287157 1.4993061863 1.4992981404 
1.0 0.3678794412 1.6464447440 1.6487202423 1.6487114007 

Table 4. Comparison of Absolute Error for Example 2  

𝒙𝒙-value 
Error in 

Adams-Bashforth 
Scheme 

Error in 
Adams-Moulton 

Scheme 

Error in 
Optimal Order 

Scheme 
0.1 2.606759 E-010 2.606759 E-010 2.606759 E-010 
0.2 2.683873 E-010 2.683873 E-010 2.683873 E-010 
0.3 1.189691 E-003 7.050566 E-007 3.503098 E-007 
0.4 2.562325 E-003 1.736780 E-006 4.269973 E-007 
0.5 4.199317 E-003 2.976807 E-006 6.973629 E-007 
0.6 6.234752 E-004 4.233982 E-006 4.659187 E-007 
0.7 8.838490 E-004 5.183733 E-006 1.904074 E-009 
0.8 1.223690 E-003 5.290980 E-006 1.548156 E-006 
0.9 1.673784 E-003 3.686243 E-006 4.359680 E-006 
1.0 2.276527 E-003 1.028407 E-006 9.869963 E-006 

4. Discussion 
Three continuous and discrete LMMs are derived 

through the technique of collocation and interpolation 
using the probabilists’ Hermite polynomials as basis 
functions. The result has shown that continuous and 
discrete LMMs can be derived using any polynomial 
function and approach. Table 1-Table 4 presents the 
results by the three derived methods: Equation (11), (17) 
and (19). Specifically, Table 2 and Table 4 give the errors 
by these methods. From the results obtained, the Adams-
Moulton method produced better results than the Adams-
Bashforth method but the proposed optimal order method 
is the most accurate.  

5. Conclusion 
The approach and basis functions applied in deriving 

the LMMs in this paper are different from those of some 
other researchers, though, the obtained LMMs (continuous 
and discrete) are same. Also, the proposed optimal order 
scheme has shown superiority over the standard existing 
methods of Adams-Bashforth and Adams-Moulton of the 
same step number, in terms of accuracy. 
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