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Abstract  In this paper, the steady boundary layer stagnation point flow and heat transfer of a second grade fluid 
over an exponentially stretching sheet is investigated. The solutions are obtained through homotopy analysis method 
(HAM) and the Keller-box technique. Comparisons of both the solutions are given graphically as well as in tabular 
form. The effects of second grade parameter ,β  Prandtl number Pr,  and other important physical parameters are 
presented through graphs and the salient features are discussed. 
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1. Introduction 
Boundary layer flow due to stretching and stagnation 

point flows have achieved considerable attention due to its 
applications in industry and manufacturing processes. A 
large number of researchers are engaged with this area. 
Mention may be made to the works of [1-15]. In the 
analysis mentioned above simple stretching and stagnation 
flow have been used. However some researchers have 
used the exponential stretching because of its engineering 
applications. Sanjayanad and Khan [16] and Khan and 
Sanjayanad [17] have discussed the boundary layer flow 
of viscoelastic fluid due to exponential stretching sheet 
with and without heat transfer analysis. Later on, the idea 
of exponential stretching have further discussed by 
Nadeem et al [18,19] for considering different non-
Newtonian fluid models. Recently, Wei et al [20] have 
considered the stagnation point flow over an exponentially 
stretching/shrinking sheet for the viscous fluids. 

Motivated from the above analysis, the aim of the 
present paper is to discuss the boundary layer flow of 
second grade fluid over an exponential stretching sheet. 
To the best of author’s knowledge only a single attempt is 
available which discussed the exponential stagnation with 
the exponential stretching when fluid is taken as 
Newtonian. However, this analysis has not been discussed 
so far for non-Newtonian fluids. Therefore, in this paper 
we have discussed both the analytical and numerical 
solutions of the second grade fluid with exponential 
stagnation point flow with exponential stretching in the 
presence of mixed convection heat transfer. It is also 
worth able to mention here that we have discussed the two 

strong solution techniques together. The analytical 
solutions are carried out with the help of homotopy 
analysis method [21-28]. For validity of the solution we 
have also provided numerical solutions obtained with the 
of Keller-box technique [29,30,31]. The physical features 
of embedding parameters are discussed through graphs. 

2. Formulation 
Let us consider a stagnation point flow of an 

incompressible second grade fluid over a stretching sheet. 
The stretching and stagnation point is assumed to be of 
exponential type. The Cartesian coordinates (x, y) are used 
such that x is along the surface of the sheet, while y is 
taken normal to it. The related boundary layer equations of 
second grade fluid in the presence of heat transfer take the 
following form 
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Here ( , )u v  are the velocity components along the 

( ),x y  axes, ρ  is the fluid density, 1α  is the second 

grade parameter, ν  is the kinematic viscosity, T  is  
temperature, α  is the thermal diffusivity, p  is pressure 
and U∞  is the free-stream velocity. The corresponding 
boundary conditions for the problem are 

 at  0,   ,    0,    ( ),w wy u U v T T x= = = =  (4) 

 as  ,     ,     ,y u U T T∞ ∞→∞ → →  (5) 

where the free-stream velocity U∞ , the stretching velocity 

wU , and the surface temperature wT , are defined as 

 / / /,    ,    ,x L x L x L
w wU ae U be T T ce∞ ∞= = = +  (6) 

in which a  and b  are constant velocities, c  is constant 
temperature and L  is the reference length. Defining the 
following similarity transformations: 
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With the help of transformations defined in .Eqs  ( )7  

and ( )8 , .Eq  ( )1  is identically satisfied and .Eqs  ( )2  

and ( )3  take the form 

 2
2

2 5
2 2 0,

3 iv

f f f f
f ff f

f ff

η
β′

′′

′′ ′′′ ′ ′′′+ 
′′′ ′′+ − + + =  + − 

 (9) 

 Pr( 2 ) 0,f fθ θ θ′′ ′ ′+ − =  (10) 

in which 1 / 2U Lβ α µ∞=  is the nondimensional second 
grade fluid parameter and Pr /v α=  is the Prandtl 
number. The boundary conditions in nondimensional form 
can be written as 

 ( ) ( ) ( )0 0,    0 ,    0 1,f f ε θ′= = =  (11) 

 1,    0,  as ,f θ η′ → → →∞  (12) 

where /b aε = . 
The shear stress on the surfaces wτ , the frictional drag 

coefficient ,fC  the heat flux at the surface wq  and the 
local Nusselt numbers Nu  in dimensionless form are 
defined as 
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 ( )1/2/ Re 0 .xNu θ ′= −  (16) 

where Re / 2wU L υ= , and 2Re / 2x wU x Lυ=  is the local 
Reynolds number. 

3. Analytical Solution of the Problem 
The analytical solution of the above boundary value 

problem is obtained with the help of HAM. For HAM 
solution we choose the initial guesses as 

 ( ) ( ) ( ) ( )0 01 1 ,    .f e eη ηη ε η ε θ η− −= − + − − =  (17) 

The corresponding auxiliary linear operators are 
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They satisfy 

 1 2 3 4 5[ ] 0,    [ ] 0,fL c c c e L c c eη η
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where ( )1,...,5ic i =  are arbitrary constants. The zeroth-
order deformation equations are defined as 
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ˆ ˆ1 [ ; ] [ ; ],f fq L f q f q N f qη η η− − =   (20) 
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 ( ) ˆ ˆˆ ˆ ˆ ˆ[ ; ] Pr( 2 ).N q f fθ θ η θ θ θ′′ ′ ′= + −  (23) 

The appropriate boundary conditions for the zeroth 
order system are 

 ( ) ( )ˆ ˆ ˆ0; 0,   (0; ) ,    0; 1,f q f q qε θ′= = =  (24) 

 ( ) ( )ˆ ˆ; 1,   ; 0,  as .f q qη θ η η′ → → →∞  (25) 

Further details of the HAM solution can be found in 
[21,22]. 

4. Numerical Solution 
For accuracy of the HAM solution the problem is also 

solved using the Keller-box technique. For Keller-box 
scheme the nonlinear system of differential equations is 
first converted into a first order system using appropriate 
substitution. This first order system is then approximated 
by difference equations using central difference. The 
resulting finite difference system is linearized by applying 
Newton's method, at the end the obtained linearized 
system is solved using block-elimination procedure. 

5. Results and Discussion 
The problem of stagnation point boundary layer flow of 

a second grade fluid over an exponentially stretching sheet 
is solved analytically as well as numerically. The 
analytical solutions of the system of ordinary differential 
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equations ( )10 11−  subject to the boundary conditions 

( )12 13−  are obtained through homotopy analysis method 
(HAM). The convergence of the HAM solution is havily 
dependent upon the proper selection of ' s . To find 
appropriate values of 1  and 2  the convergence regions 
of f ′  and θ  are plotted in Figure 1-Figure 3 for specified 
combinations of involved parameters. Figure 1 is 
displaying the convergence regions for f  for different 
values of second grade parameter β  when stretching 
parameter 0.5.ε =  It is observed that convergence region 
for viscous fluids ( )0β =  is 11 0− ≤ ≤  and 
convergence region is 10.4 0− ≤ ≤  for 0,β =  that is 

with increase in β  convergence region reduced. Figure 2 
is graphed for convergence region of f  for different 
values of ε  when second grade parameter 1.β =  From 
Figure 2 it is observed that convergence region for rigid 
plat case ( )0ε =  is 10.5 0,− ≤ ≤  while for 2ε =  
convergence region is 10.13 0.03.− ≤ ≤ −  Figure 3 is 
sketched to observe convergence region for the 
temperature gradient for specified vales of stretching 
parameter, second grade parameter and the Prandtl 
number. It is noted that convergence region is 

21.5 0.3.− ≤ ≤ −  

 
Figure 1. h - curves for f  for different β  drawn at the 20th order-approximation 

 
Figure 2. h - curves for f  for different ε  drawn at the 20th order-approximation 
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Figure 3. h - curve for θ  for different Pr  drawn at the 20th order-approximation 

 
Figure 4. Comparison of Keller-box and HAM solutions for f ′  for 0.0,ε =  1.0,  2.0,  3.0  

 
Figure 5. Comparison of Keller-box and HAM solutions for f ′  for different values of β  
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Figure 6. Comparison of Keller-box and HAM solutions for θ  for different values of Pr  

 
Figure 7. Influence of β  over f ′  for different values of ε  

 
Figure 8. Influence of Pr  over θ  for different values of ε  
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Figure 9. Influence of Pr  over θ  for different values of β  

 
Figure 10. Influence of β  over θ  for different values of ε  

 
Figure 11. Variation of Skin-friction for different combinations of β  and ε  against Re  
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To check accuracy of the HAM solution, the problem is 
also solved with the help of second order implicit finite 
difference scheme Keller-box technique. Figure 4-Figure 6 
are prepared for comparison of both the HAM and Keller-
box solutions for specified values of involved parameters. 
Figure 4 is schemed to spot behavior of the HAM and 
Keller-box solutions for different values of ε  when 

1.β =  It is noted that both solutions are in excellent 
contract. Figure 5 is organized to observe behavior of the 
two solutions for different values of second grade 
parameter β  when 0.5.ε =  It is witnessed that both the 
solutions are in decent agreement. From Figure 5 it is also 
noted that an escalation in second grade parameter β  
demands a decrease in the velocity profile, this is due to 
the fact that higher β  resembles to higher tensile stress 
between fluid layers, that in return corresponds to higher 
resistance to fluid motion. Figure 6 is drawn to check the 
behavior of the two solutions for the temperature profile 
θ  for different values of the Prandtl number Pr,  when 

0.5ε =  and 0.5,β =  respectively. From Figure 6 it is 
seen that both the solutions are again in good agreement 
and that an increase in Pr  demands a decline in the 
temperature profile θ  and also corresponds to decrease in 
thermal boundary layer thickness. This is due to the fact 
that large Pr  corresponds to low thermal diffusivity, 
which in return corresponds to less energy transfer ability 
due to which thermal boundary layer decreases. Figure 7 is 
designed to observe influence of second grade parameter 
β  over the velocity profile f ′  for different values of ε . 
From Figure 7 it is observed that β  has a dual behavior 
for f ′  for different ε . That is, for 1,ε <  an increase in 
β  implies decrease in f ′ , whereas for 1,ε >  an increase 
in β  corresponds to a decrease in f ′ . From Figure 7 it is 

also noted that f ′  has greater reliance over β  when ε  is 
away from unity, but when ε  is near to unity, dependence 
of f ′  over β  is minimal. Figure 8 is plotted to perceive 
the effects of Pr  for different values of ε . From Figure 8 
it is observed that as stretching parameter ε  increases the 
temperature profile decreases more rapidly with respect to 
Pr,  as compare to smaller .ε  Figure 9 is drafted to 
observe the behavior of θ  with respect to Pr  for different 
values of second grade parameter β . From Figure 8 it is 
observed that decrease in θ  with Pr  is slow for larger 
values of β . Figure 10 is included to check the behavior 
of temperature profile against different β  when 0.5ε =  
and 1.5ε = . It is perceived that θ  has a dual behavior 
against β  for different ε , that is when 1ε < , an increase 
in β  produces increase in θ , whereas when 1ε > , an 
increase in β  gives opposite behavior. Figure 11 is 
affiliated to check behavior of second grade parameter β  
over skin-friction coefficient against Reynolds number 
Re  for different values of ε . It is depicted from Figure 11 
that with an increase in ,β  skin-friction coefficient 
increases. The rate of increase in  fC  against β  
decreases with an increase in ε . It is also noted that skin-
friction coefficient fC  has strong dependence over ε  and 
behavior of other involved parameters are noticeable only 
when 1,ε →  whereas, fC  shoots to infinity when 

0,ε →  while fC  decays to zero for 1.ε >>  Figure 12 
portrays behavior of Nusselt numbers Nu  for different 
values of local Reynolds number Rex  against Pr . From 
Figure 12 an increase is observed in Nu  with respect to 
Rex . 

 
Figure 12. Variation of Nusselt numbers for different values of Rex  against Pr  

Table 1-Table 2 are prepared to compare the HAM and 
Keller-box solutions for velocity and temperature 
gradients at the surface of stretching sheet. From Table 1-
Table 2 it is obvious that both the solutions are compatible. 
From Table 1 it is also predicted that wall shear stress at 
the surface wτ  decreases with ε , when 1ε < , while wτ  

increases with ε , when 1ε > . Whereas with respect to 
second grade parameter β  wall shear stress wτ  decreases. 
Table 2 contains values for temperature gradient at surface 
of stretching sheet. From Table 2 it is noted that with an 
increase in Pr  and ε  the local heat flux decreases, 
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whereas with an increase in ,β  the heat transfer at the wall decrease. 

Table 1. Comparison of behavior of wall shear stress at the surface wτ , against different parameters. The tabulated values are the 

corresponding absolute values of ( )0f ′′  

 
f´´(0) 

HAM K-b HAM K-b HAM K-b HAM K-b 

ε\β 0.0 0.5 1.0 2.0 

0.00 1.6831 1.6831 1.5955 1.5955 1.5531 1.5531 1.5139 1.5139 

0.25 1.3354 1.3354 1.0141 1.0141 0.8589 0.8589 0.7103 0.7103 

0.50 0.9342 0.9342 0.6147 0.6147 0.4954 0.4954 0.3950 0.3950 

0.75 0.4870 0.4870 0.2887 0.2887 0.2270 0.2270 0.1782 0.1782 

1.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

1.25 0.5219 0.5219 0.2669 0.2669 0.2046 0.2046 0.1588 0.1588 

1.50 1.0748 1.0748 0.5200 0.5200 0.3959 0.3959 0.3063 0.3063 

1.75 1.6554 1.6554 0.7637 0.7637 0.5783 0.5783 0.4469 0.4469 

2.00 2.2609 2.2609 1.0009 1.0009 0.7551 0.7551 0.5829 0.5829 

3.00 4.8902 4.8902 1.9115 1.9115 1.4287 1.4287 1.1022 1.1022 

4.00 7.7774 7.7774 2.7921 2.7921 2.0779 2.0779 1.6043 1.6043 

5.00 10.8557 10.8557 3.6595 3.6595 2.7170 2.7170 2.1001 2.1001 

Table 2. Comparison of behavior of heat flux at the surface wq  against different parameters 

Pr\β 

-ϴ´(0) 

HAM K-b HAM K-b HAM K-b HAM K-b 

0.00 0.50 1.00 2.00 

ε 
= 

0 

0.20 0.5750 0.5750 0.5435 0.5435 0.5296 0.5296 0.5163 0.5163 

0.72 0.9209 0.9209 0.8580 0.8580 0.8292 0.8292 0.8012 0.8012 

1.00 1.0436 1.0436 0.9718 0.9718 0.9386 0.9386 0.9061 0.9061 

7.00 2.1405 2.1405 2.0068 2.0068 1.9415 1.9415 1.8755 1.8755 

10.00 2.4351 2.4351 2.2874 2.2874 2.2146 2.2146 2.1407 2.1407 

ε 
= 

.5
 

0.20 0.6578 0.6578 0.6351 0.6351 0.6258 0.6258 0.6175 0.6175 

0.72 1.1528 1.1528 1.1079 1.1079 1.0898 1.0898 1.0737 1.0737 

1.00 1.3402 1.3402 1.2891 1.2891 1.2686 1.2686 1.2504 1.2504 

7.00 3.3072 3.3072 3.2160 3.2160 3.1807 3.1807 3.1499 3.1499 

10.00 3.9153 3.9153 3.8160 3.8160 3.7777 3.7777 3.7444 3.7444 

ε 
= 

2 

0.20 0.8614 0.8614 0.9191 0.9191 0.9361 0.9361 0.9488 0.9488 

0.72 1.7041 1.7041 1.8019 1.8019 1.8268 1.8268 1.8445 1.8445 

1.00 2.0361 2.0361 2.1425 2.1425 2.1686 2.1686 2.1870 2.1870 

7.00 5.7402 5.7402 5.8889 5.8889 5.9207 5.9207 5.9432 5.9432 

10.00 6.9266 6.9266 7.0850 7.0850 7.1185 7.1185 7.1423 7.1423 

ε 
= 

3 

0.20 0.9765 0.9765 1.0940 1.0940 1.1234 1.1234 1.1444 1.1444 

0.72 2.0061 2.0061 2.1897 2.1897 2.2274 2.2274 2.2531 2.2531 

1.00 2.4129 2.4129 2.6090 2.6090 2.6476 2.6476 2.6738 2.6738 

7.00 6.9659 6.9659 7.2248 7.2248 7.2705 7.2705 7.3014 7.3014 

10.00 8.4306 8.4306 8.7085 8.7085 8.7572 8.7572 8.7903 8.7903 
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