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Abstract  In this study, estimates of missing values for bilinear time series models with normally distributed 
innovations were derived by minimizing the h-steps-ahead dispersion error. For comparison purposes, missing value 
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Simulated data was used in the study. 100 samples of size 500 each were generated for different pure bilinear time 
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1. Introduction 
A time series is data recorded sequentially over a 

specified time period. There are cases where some 
observations that were supposed to be collected are not 
obtained and this result in missing values. Being unable to 
account for missing observation may result in a severe 
mis-representation of the phenomenon under study. 
Further, it can cause havoc in the estimation and forecasting 
of linear and nonlinear time series as in [3]. This problem 
can be solved through missing value imputation. 

Imputation of missing values has been done for several 
linear time series models. For non-linear time series 
models, imputation has been done for ARMA models with 
stable errors as in [24]. For other nonlinear models, such 
as bilinear time series models, there is no evidence to 
show that imputation of missing values has been explicitly 
done. Therefore this study derived estimates of missing 
values for the bilinear time series models with normally 
distributed innovations. The missing values were derived 
using optimal linear interpolation techniques based on 
minimizing the h-steps-ahead dispersion error. Other 
techniques for estimating missing values that were used 
included the non-parametric methods of artificial neural 
network as in [4] and [31] as well as exponential smoothing.  

Interest in this study was also on the quality of the 
imputed values at the level of the individual, an issue that 
has received relatively little attention as in [5]. The basic 
idea of an imputation approach, in general, is to substitute 

a plausible value for a missing observation and to carry 
out the desired analysis on the completed data as in [22]. 
Here, imputation can be considered to be an estimation or 
interpolation technique.  

The imputation of the missing value technique 
developed may be adopted by data analysts to improve on 
time series modeling. 

2. Literature Review 
Most of the real-life time series encountered in practice 

are neither Gaussian nor linear in nature and are 
adequately described by nonlinear models. One of the 
most important nonlinear models used in practice is the 
bilinear time series models. The nonlinearity of bilinear 
models can be approached in two ways. The first approach 
is to create a model that consist of a blend of non-
Gaussian and nonlinearity which has been widely 
discussed as in [31] where he considers the existence of 
bilinear models with infinite variance innovations. The 
other approach is to introduce nonlinearity in the model 
but assume that the distribution of the innovation 
sequence is Gaussian as in [36]. Properties of these 
models have been extensively studied in the literature. 

2.1. Bilinear Models 
A discrete time series process tX  is said to be a 

bilinear time series model of order BL (p,q , P, Q) if it 
satisfies the difference equation 
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where θ, φ  and ijb  are constants while te  is a purely 

random process which is normally distributed and oθ =1. 
For pure bilinear time series model, we have 
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Bilinear time series models may have sudden burst of 
large negative and positive values that vary in form and 
amplitude depending on the model parameters and thus it 
may be plausible for modeling nonlinear processes as in 
[25]. A bilinear model is a member of the general class of 
nonlinear time series models called ‘State dependent 
models’ formed by adding the bilinear term to the 
conventional ARMA model as in [30].  

It is a parsimonious and powerful nonlinear time series 
model. Researchers have achieved forecast improvement 
with simple nonlinear time series models. Reference [21] 
used a bilinear time series model to forecast Spanish 
monetary data and reported a near 10% improvement in 
one step-ahead mean square forecast error over several 
ARMA alternatives. Reference [9] also reported a forecast 
improvement with bilinear models in forecasting stock 
prices. The statistical properties of such models have been 
analyzed in detail as in [10,11,25], and [17], while an 
economic application is presented as in [14]. 

2.1.1. Identification of Bilinear Time Series Models 
The first step in identification of bilinear time series 

model is to determine whether a given data is nonlinear or 
not. Once the data is found to be nonlinear, it is important 
to fit an appropriate time series model to the data. 
Reference [39] pointed out that the second order 
properties of nonlinear BL (p, p, 0, 1) models are similar 
to those of linear ARMA (p, 1) ones and hence it is 
necessary to study higher order cumulants to distinguish 
them. The technique of identification of a given nonlinear 
model can be extended to more general bilinear models 
provided there are difference equations for higher order 
moments and cumulants as in [24]. 

For some super diagonal and diagonal bilinear time 
series, the third order moments do not vanish and the 
pattern of nonzero moments can be used to discriminate 
between the white noise and the bilinear models and also 
between different bilinear models. Looking at the table of 
third order moments, one can easily distinguish bilinear 
models from pure ARMA or mixed ARMA models.  

Third order moments may also be useful in detecting 
non-normality in the distribution of the innovation 
sequence. References [10] and [37] have shown that in 
most cases, second order autocorrelation will be zero for 
these models which makes it difficult to distinguish them 
from complete white noise.  

Reference [24] showed that with a large bilinear 
coefficient ijb , a bilinear model can have sudden large 
amplitude burst and is suitable for some kind of 
seismological data such as earthquakes, underground 
nuclear explosions. The variant of the bilinear process is 
time dependent. This feature enables bilinear process to be 

used also for financial data as in [21]. Empirical studies 
have been done on estimating missing values for different 
time series data. Reference [26] used interpolation and 
mean imputation techniques to replace simulated missing 
values from annual hourly monitoring air pollution data. 

Reference [29] developed alternative techniques 
suitable for a limited set of ARMA (p, q) with stable 
innovations for the case with index α∈ (1, 2]. This was 
later extended to the ARMA stable process with index α∈ 
(0, 2] as in [24]. He developed an algorithm applicable to 
general linear and nonlinear processes by using the state 
space formulation and applied it in the estimation of 
missing values. 

2.2. Missing Value Imputation for Nonlinear 
Time Series Models 

Reference [35] derived a recursive estimation procedure 
based on optimal estimating function and applied it to 
estimate model parameters to the case where there are 
missing observations as well as handle time-varying 
parameters for a given nonlinear multi-parameter model. 
More specifically, to estimate missing observations, [3] 
formulated a nonlinear time series model which 
encompasses several standard nonlinear models of time 
series as special cases. It also offers two methods for 
estimating missing observations based on prediction 
algorithm and fixed point smoothing algorithm as well as 
estimating functions equations. Recursive estimation of 
missing observations in an autoregressive conditional 
heteroscedasticity (ARCH) model and the estimation of 
missing observations in a linear time series model are 
shown as special cases. However, little was done on 
bilinear time series models. 

Reference [28] investigated influence of missing values 
on the prediction of a stationary time series process by 
applying Kaman filter fixed point smoothing algorithm. 
He developed simple bounds for the prediction error variance 
and asymptotic behavior for short and long memory process.  

The work on estimation of missing values has also been 
extended to vector time series. A classic example is the 
studies done as in [20] who worked on estimation of 
missing values in possibly partially non stationary vector 
time series. He extended the method as in [19] for 
estimating missing values and evaluating the 
corresponding function in scalar time series. The series is 
assumed to be generated by a possibly partially non-
stationary and non-invertible vector autoregressive 
moving average process. No pattern of missing data is 
assumed. Future and past values are special cases of 
missing data that can be estimated in the same way. The 
method does not use the Kalman filter iterations and hence 
avoids initialization problems. The estimation of missing 
values is provided by the normal equations of an 
appropriate regression problem. 

2.3. Nonparametric Methods for Estimating 
Missing Values 

Nonparametric methods have also been proposed for 
missing data. Reference [26] considered kernel estimation 
of a multivariate density for data with incomplete 
observations. When the parameter of interest is the mean 
of a response variable which is subject to missingness, the 
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kernel conditional mean estimator to impute the missing 
values is proposed as in [5]. Reference [13] studied the 
estimation of average treatment effects using non-
parametrically estimated propensity scores. Time series 
smoothers estimate the level of a time series at time t as its 
conditional expectation given present, past and future 
observations, with the smoothed value depending on the 
estimated time series model as in [16]. 

Reference [25] derived a recursive form of the 
exponentially smoothed estimated for a nonlinear model 
with irregularly observed data and discussed its asymptotic 
properties. They made numerical comparison between the 
resulting estimates and other smoothed estimates. 
Reference [1] have used neural networks and genetic 
algorithms to approximate missing data in a database. A 
genetic algorithm is used to estimate the missing value by 
optimizing an objective function. Many approaches have 
been developed to recover missing values, such as k-
nearest neighbor as in [38], Bayesian PCA (BPCA) as in 
[27], least square imputation as in [12], local least squares 
imputation (LLSimpute) as in [15] and least absolute 
deviation imputation (LADimpute) as in [5]. 

It can be seen from the literature that there are a several 
methods used for estimating missing values for different 
time series data. What is however lacking in the literature 
is an explicit method for estimating missing values for 
bilinear time series models. The study therefore sought to 
estimate missing values for bilinear time series which 
have different probability distributions. 

2.4. Estimation of Missing Values Using 
Linear Interpolation Method 

Suppose we have one value mx missing out of a set of 
an arbitrarily large number of n possible observations 
generated from a time series process { }tx . Let the 

subspace mS∗  be the allowable space of estimators of mx  
based on the observed values , 1 2 1{ , ,..., }t t tx x x x− −  i.e., 

mS∗ =sp { }: 1 ,tx n t m≤ ≠  where n, the sample size, is 

assumed large. The projection of mx  onto mS∗  

(denoted xm
Sm

P ∗ ) such that the dispersion error of the 

estimate (written disp ( xm
m Sm

x P ∗− ) is a minimum would 

simply be a minimum dispersion linear interpolator. 
Direct computation of the projection mx onto mS∗  is 

complicated since the subspaces 1S =sp { }1 2, ,...m mx x− −  

and mS∗  are not independent of each other. We thus 
consider evaluating the projection onto two disjoint 
subspaces of mS∗ . To achieve this, we express mS∗  as a 

direct sum of the subspaces 1S  and another subspace, 

say x∗ , such that 1mS S S∗
∗= ⊕ . A possible subspace 

is { }ˆ : 1i iS sp x x i m∗ = − ≥ + , where ˆix  is based on the 

values { }1 2, ,...m mx x− − . The existence of the subspaces 

1S and S∗  is shown in the following lemma. 

2.4.1. Lemma 
Suppose { }tx  is a nondeterministic stationary process 

defined on the probability space ( , , )B PΩ  . Then the 

subspaces 1S and S∗  defined in the norm of the 2L are 

such that 1mS S S∗
∗= ⊕ . 

Proof: 
Suppose mx S∗∗ ∈ , then x∗  can be represented as 

 
1 1 1

ˆ ˆ( ) ( )
n n n

i i i i i i i
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= + = + = +

= + = + + −∑ ∑ ∑  

where 1Z S∈ . Clearly the two components on the right 
hand side of the equality are disjoint and independent and 
hence the result. The best linear estimator of mx  can be 

evaluated as the projection onto the subspaces 1S and S∗  

such that disp ( xm
m Sm

x P ∗− ) is minimized. i.e., 

 
1

ˆx x x xm m m m
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∗

∗ ∗
= = + = +  
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x xm m
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P a x x disp x P
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  = − − 
  
∑  where 

the coefficients’ are estimated such that the dispersion 
error is minimized. The resulting error of the estimate is 
evaluated as  

 
1

ˆ ˆ( ) ( )
n

m m m m k k k
k m

x x x x a x x∗

= +
− = − − −∑  

Now squaring both sides and taking expectations, we 
obtain the dispersion error as 

 

2

2

1

( )

ˆ ˆ( ) ( )

m m m

n

m m k k k
k m

dispx E x x

E x x a x x

∗

= +

= −

  = − − − 
  

∑
 (1) 

By minimizing the dispersion with respect to the 
coefficients the optimal linear estimate is  

 
1

ˆ ˆ( )
n

m m k k k
k m

x x a x x∗

= +
= + −∑  (2) 

3. Methodology 
Three methodologies were used in this study, each 

corresponding with the estimation method used. These 
methods included estimation based on optimal linear 
interpolation, artificial neural network and exponential 
smoothing. However, the time series data used and 
performance measures applied were the same for all the 
methods. 

3.1. Methodology for Optimal Linear 
Interpolation Method 

In this study, the estimates of the missing values for 
bilinear time series models with normal innovations were 
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derived using optimal linear interpolation method by 
minimizing the dispersion error. The estimates of missing 
values using non parametric methods of ANN and 
exponential smoothing were also obtained. 

3.1.1. Data Collection 
Data was obtained through simulation using computer 

codes written in R-software. These codes are shown in the 
Appendix. The time series data were simulated from 
different simple bilinear models which have normal 
innovations. The seed in the R program code was changed 
to obtain a new sample for bilinear models BL(0,0,1,1) 
and BL(0,0,2,1). For each program code, a set of 100 
samples of size 500 were generated.  

3.1.2. Missing Data Points and Data Analysis 
Three data points 48, 293 and 496 were selected at 

random from a sample of 500. Observations at these 
points were removed to create a ‘missing value(s)’ at these 
points to be estimated. Data analysis was done using 
statistical and computer softwares which included Excel, 
TSM and R and Matlab7. 

3.1.3. Performance Measures 
The MAE (Mean Absolute Deviation) and MSE (Mean 

Squared Error) were used. These were obtained as follows 

 1

n

t
t

e
MAD

n
==
∑

 (3) 

and 

 1

n

t
t

e
MSE

n
==
∑

 (4) 

4. Results 

4.1. Derivation of the Optimal Linear 
Estimates of Missing Values 

Estimates of missing values for pure bilinear time series 
models whose innovations have a Gaussian innovation 
were derived by minimizing the h-steps-ahead dispersion 
error. Two assumptions were made. The first one was that 
that the series are stationary and thus their roots lie within 
the unit circle. Secondly, the higher powers (of orders 
greater than two or products of coefficients of orders 
greater than two) of the coefficients are approximately 
negligible.  

4.2. Pure Bilinear Time Series with Normally 
Distributed Innovations 

4.2.1. Simple Pure Bilinear Time Series Models with 
Normal Distribution 

The missing value estimate is based on the following 
theorem 4.1. 
Theorem 4.1 

The optimal linear estimate for pure bilinear model 
BL(0,0,1,1) with normal distribution is given by 

 1 2 1

11 1 1

ˆ
( / , ,..... )

ˆ ˆ

m m

t m m

m m
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=

=

=

 

Proof 
The simplest pure bilinear time series model of order 

one, BL (0, 0, 1, 1) is of the form 

 11 1 1t t t tx b x e e− −= +  (5) 

Through recursive substitution, of equation (5), the 
stationary BL (0, 0, 1, 1) is obtained as  

 11
1 1

.
i

t t j t i t
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The h-steps ahead forecast is  
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.
i
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Therefore the forecast error is 
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This can be expressed as 

 
1
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i j

x x b e e e
−

+ − −
= =

  − = + 
  

∑ ∏  (6) 

Substituting equation (6) in equation (1) we have 
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Simplifying each term of equation (7) separately, we 
obtain 
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Hence equation (7) can be simplified as 

 2 4 2 2 2 2
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Now differentiating equation (8) with respect to ka and 
equating to zero, we obtain 
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11

1 1
3 0.

ˆ 0

m
k
n n

k k
k k m k m

k

d disp x
da

d b a a
da

a

σ σ σ
= + = +

  = + + = 
  

⇒ =

∑ ∑  

Substituting the values of ka  in equation (1), we obtain 
best estimator of the missing value as  
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This result shows that the missing value is a one step-
ahead prediction based on the past observations collected 
before the missing value. This is similar to the findings of 
Nassiuma (1994) and Abraham (1981) which found 
ˆ 0ka =  for missing values for stable processes in some 

cases.  

4.2.2. Estimating Missing Values for the Pure Diagonal 
Bilinear Time Series Model BL (0, 0, 2, 1)  

The pure diagonal bilinear time series model with 
normal innovations of order p is given by 

 2
21 2 1 , ~ (0, ).t t t t tx b x e e e N σ− −= +  (9) 

The missing value estimate is based on the following 
theorem 4.2. 
Theorem 4.2 

The optimal linear estimate for the bilinear time series 
model BL (0, 0, 2, and 1) is given by 

 21 2 1
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Proof 
The stationary BL(0,0,2,1) is given by 
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The h-steps ahead forecast error is given by 
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or it can also be represented as 
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Substituting equation (0) in equation (1), we have 
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Simplifying each term of equation (11) separately, we 
have 
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Hence equation (7) can be simplified as 
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Now differentiating equation (8) with respect to ka  and 
equating to zero, we obtain 

 ˆ 0ka⇒ =  

 21 2 1
ˆ ˆ .t tmx b x e∗

− −=  

4.2. Simulation Results 
In this section, the results of the estimates obtained 

from the optimal linear estimate, artificial neural networks 
and exponential smoothing are presented. The graphs of 
the time series data are shown in figures 1 and 2 below. 
They are characterized by sharp outburst as clearly evident 
in BL (0,0,1,1). Sharp outburst is one of the characteristics 
of nonlinearity in bilinear models. . 

 
Figure 1. BL(0,0,1,1) with Normally Distributed Innovations 

 
Figure 2. BL(0,0,2,1) with Normally Distributed Innovations 

Simulation results are given in Table 1-Table 2. 

Table 1. Efficiency of Measures for normal BL(0,0,1,1) 
MISSING MAD MSE 

POSITION OLE ANN EXP OLE ANN EXP 

48 0.765 0.843 0.762 1.033 1.224 1.054 

293 0.887 0.900 0.908 1.166 1.260 1.216 

496 0.950 0.932 0.952 1.498 1.363 1.475 

Total 2.602 2.675 2.622 3.697 3.846 3.745 

Mean 0.867 0.892 0.874 1.232 1.282 1.248 

From Table 1, it is evident that the OLE gave the most 
efficient estimates (mean MAD=0.867245) of the missing 
values for the different missing data points positions, 
followed by EXP smoothing estimates (mean 
MAD=0.8742). Estimates based on ANN had the least 
efficiency (mean MAD=0.89154). 

Table 2. Efficiency of Measures obtained for Normal_ BL(0,0,2,1) 
MISSING MAD MSE 

POSITION OLE ANN EXP OLE ANN EXP 

48 0.793 1.135 0.982 1.043 2.621 1.542 

293 0.760 0.870 0.812 0.906 1.603 1.079 

496 0.803 0.863 0.933 0.976 1.215 1.369 

Total 2.356 2.869 2.726 2.925 5.439 3.990 

Mean 0.785 0.956 0.909 0.975 1.813 1.330 

From Table 2, it is clear that the OLE estimates of 
missing values were the most efficient (mean 
MAD=0.785298) for the different missing data point 
positions. This was followed by EXP smoothing estimates 
(mean MAD=0.908818). It evident that for bilinear time 
series data with normal errors, the OLE estimates gave the 
most efficient estimates of the missing values.  

5. Conclusion 
In this study we have derived the estimates of missing 

values for pure bilinear time series models whose 
innovations are normally distributed by minimizing the 
dispersion error. The study found the optimal estimate of 
the missing value is equivalent to one-step-ahead forecast. 
Further the study found that optimal linear estimates were 
the most efficient for normally distributed data. The study 
recommends that for bilinear time series data with normal 
innovations, OLE estimates be used in estimating missing 
values.  

5.1. Recommendation for Further Research 
A more elaborate research should be done to compare 

the efficiency of several imputation methods such as K-
NN, Kalman filter and estimating functions, genetic 
algorithms, besides the three used in this study. 
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